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In this paper we discuss a new method which can be used to obtain arbitrarily accurate analytical
expressions for the deflection angle of light propagating in a given metric. Our method works by mapping
the integral into a rapidly convergent series and provides extremely accurate approximations already to
first order. We have derived a general first order formula for a generic spherically symmetric static metric
tensor and we have tested it in four different cases.
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I. INTRODUCTION

According to general relativity the trajectory of a ray of
light which passes close to a mass distribution departs from
being a straight line. The amount of the deflection of the
light depends upon the mass and can be quite large for light
passing very close to a massive compact body, such as a
black hole. The study of gravitational lensing under such
conditions, also known as ‘‘strong gravitational lensing,’’
has received wide attention in the recently. For example,
strong gravitational lensing in a Schwarzschid black hole
was considered by Frittelli, Kling, and Newman [1] and by
Virbhadra and Ellis [2]; Virbhadra and Ellis [3] later
treated the strong gravitational lensing by naked singular-
ities; Eiroa, Romero, and Torres [4] described Reissner-
Nordström black hole lensing, while Bhadra considered the
gravitational lensing due to the GMGHS charged black
hole [5]; Bozza studied the quasiequatorial gravitational
lensing by a spinning black hole [6]; Whisker [7] and Eiroa
[8] considered strong gravitational lensing by a braneworld
black hole; still Eiroa [9] recently considered the gravita-
tional lensing by an Einstein-Born-Infeld black hole;
Sarkar and Bhadra have studied the strong gravitational
lensing in the Brans-Dicke theory [10]; and finally, Perlick
[11] has obtained an exact gravitational lens equation in a
spherically symmetric and static spacetime and has used it
to study lensing by a Barriola-Vilenkin monopole and by
an Ellis wormhole.

Additionally, different strategies have been used to
evaluate the effects of strong gravitational lensing. Bozza
[12] has introduced an analytical method which allows one
to discriminate among different types of black holes: the
method is based on a careful description of the logarithmic
divergence of the deflection angle (the photon sphere);
Mutka and Mähönen [13,14] and Belorobodov [15] have
derived improved formulas for the deflection angle in a
Schwarzschild metric; and more recently, Keeton and
Petters [16] also have developed a formalism for comput-
ing corrections to lensing observables in a static and
spherically symmetric metric beyond the weak deflection
limit.
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The purpose of this paper is to present a new method
which can be used to calculate analytically and systemati-
cally the deflection angle in a static spherically symmetric
metric. Originally this method was devised by Amore and
collaborators [17,18] to obtain analytical formulas for the
period of classical oscillators; our method works by con-
verting the integral which needs to be calculated into a
series depending upon a variational parameter. Such a
procedure is inspired by the linear delta expansion method
[19] and by variational perturbation theory [20]. For cer-
tain values of the variational parameter, the series obtained
is proved to converge to the exact result, while at finite
orders a particular value of the parameter can be chosen
using the principle of minimal sensitivity (PMS) [21] to
minimize the error. Fully analytical results, which do not
correspond to a perturbative expansion in some small
parameter, are obtained.

The paper is organized as follows: in Sec. II we describe
the method and obtain a general first order formula, which
is valid for an arbitrary metric tensor; in Sec. III we discuss
the convergence of the method and provide an estimate of
the rate of convergence, which is proved to be exponential;
in Sec. IV we apply our formula to four different metric
tensors and discuss the precision of our approximation,
comparing it with the available results in the literature;
finally in Sec. V we draw our conclusions.
II. THE METHOD

We are interested in the general static and spherically
symmetric metric which corresponds to the line element

ds2 � B�r�dt2 � A�r�dr2 �D�r�r2�d�2 � sin2�d�2�

(1)
and which contains the Schwarzschild metric as a special
case. We also assume that the flat spacetime is recovered at
infinity, i.e. that limr!1f�r� � 1, where f�r� �
�A�r�; B�r�; D�r��.

The angle of deflection of light propagating in this
metric can be expressed by means of the integral [22]
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where r0 is the distance of closest approach of the light to
the center of the gravitational attraction.

If we perform a change of variable, z � r0=r, and define
the function

V�z� � z2 D�r0=z�
A�r0=z�

�
D2�r0=z�B�r0�

A�r0=z�B�r0=z�D�r0�
�
B�r0�

D�r0�
; (3)

we can write Eq. (2) in the form

�� � 2
Z 1

0

dz�������������������������
V�1� � V�z�

p � �: (4)

Notice that t �
���
2
p R

1
0 dz=

�������������������������
V�1� � V�z�

p
is the time

spent by a classical oscillator moving in a potential V�z�
for passing from z � 0 to the inversion point located at z �
1; in a flat spacetime, where A�r� � B�r� � D�r� � 1,
V�z� reduces to the familiar harmonic oscillator potential
and the deflection angle identically vanishes. The integral
of Eq. (4) also can be performed exactly in the case of the
Schwarzschild metric [23] and of the Reissner-Nordström
metric [4]. In both cases the exact result is expressed in
terms of elliptic integrals. However, in more general cases
the integration of Eq. (4) cannot be done exactly and one
typically resorts to an expansion around the flat metric (of
course such expansion also can be used in cases where
exact results are available, to avoid dealing with compli-
cated special functions). In the case of the Schwarzschild
metric, for example, this approach yields a perturbative
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series in powers of GM=r0, whose leading term ��0 �
4GM=r0 was first obtained by Einstein. A big disadvantage
of this approach is that the validity of the expressions
obtained in this way is restricted to a large distance/weak
field regime. For example, the exact solution to lensing in
the Schwarzschild metric provided by Darwin possesses a
singularity at r0 � 3GM, known as a photon sphere, and is
clearly out of reach in a perturbative approach.

We will therefore pursue a different approach to deal
with Eq. (4), which is not based on a perturbative expan-
sion and which we will prove to be capable to describe very
accurately the physics of our problem. The method that we
propose has been devised by Amore and collaborators
[17,18] to obtain precise analytical formulas for the period
of classical oscillators. In a recent work, the method also
has been used to obtain analytical expressions for the
spectrum of quark-antiquark potentials [24]. Further-
more, a similar technique has been applied by Amore to
accelerate the convergence of certain series (such as the
Riemann and Epstein zeta functions) [25], which can be
used in the calculation of loop integrals in finite tempera-
ture problems occurring in field theory [26].

We now briefly describe our method. In the spirit of the
linear delta expansion, we interpolate the full potential
V�z� with a solvable potential V0�z�

1:

V��z� � V0�z� � ��V�z� � V0�z��:

Depending on the value of � one will obtain the original
potential (� � 1) or the solvable potential (� � 0). In
general V0�z� will depend upon one or more arbitrary
parameters, which we will call �: in fact we will assume
the form V0�z� � �z2. With this definition we write the
deflection angle as
��� � 2
Z 1

0

dz������������������������������������������������������������������������������������������������������
V0�1� � V0�z� � ��V�1� � V�z� � V0�1� � V0�z��

p � �; (5)
1By solvable we mean that integrals
R

1
0 z

ndz=
�������������������������
V�1� � V�z�

p
can be performed analytically.
which clearly reduces to the original expression for � � 1.
After introducing

��z� �
E� V�z�
E0 � V0�z�

� 1; (6)

one can write (5) as

��� � 2
Z 1

0

dz�����������������������
E0 � V0�z�

p 1����������������������
1� ���z�

p � �: (7)

Provided that j��z�j< 1 for 0 � z � 1, one can expand
Eq. (7) in powers of � and obtain a series (after performing
the integrals) which converges to the exact result. As
discussed in [17,18] this condition requires that � be
greater than a critical value, � > �C: in this case one
obtains a family of series which depend upon � and which
all converge to the exact result, which is independent of �.
However, if the series is truncated to a finite order, the
partial sum displays an artificial dependence on �: such
dependence can be minimized by applying the PMS [21]:

@
@�

���N� � 0; (8)

having called ���N� the partial sum to order N.
Notice that the solution to this equation selects the value

of � where the series is less sensitive to changes in � itself:
this value of � selects the series with the optimal conver-
gence. In [17,18] a large class of oscillators was studied
using this method and it was found that our PMS series has
an exponential rate of convergence.
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However, since it was observed that the first order results
are quite precise, we focus our present effort in obtaining a
first order formula, which is valid for a generic spherically
symmetric static metric tensor corresponding to a potential

V�z� �
X1
n�1

vnzn: (9)

After expanding to first order we obtain

���1� �
2����
�
p

Z 1

0

dz��������������
1� z2

p �
1�

��z�
2

�
� �; (10)

where

��z� �
X1
n�1

vn
�

Xn�1

k�0

zk

1� z
� 1: (11)

The deflection angle can now be written as

���1� �
3�

2
����
�
p �

1

�3=2

X1
n�1

vn
Xn�1

k�0

Ik � �; (12)

where we have defined

Ik �
Z �=2

0

sink�
1� sin�

d�

�

����
�
p

���k� 1�=2�

�
��k=2� 1� �

	���k� 1�=2�
2

��k=2�

�
:

(13)

Notice that Eq. (12) can be expressed in terms of the
‘‘transformed’’ potential

��z� �
X1
n�1

vn�nzn; (14)

where

�n �
Xn�1

k�0

Ik �
����
�
p ��n=2� 1=2�

��n=2�
: (15)

As expected our first order result depends upon � and we
must use the PMS to obtain the optimal value of �:

��1�PMS �
2��1�
�

: (16)

Once this value is substituted inside Eq. (12) we obtain
our first order result

���1�PMS � �
� ������������

�
2��1�

s
� 1

�
; (17)

which in our opinion is the most valuable formula con-
tained in this paper. Notice that because of the form of
Eq. (17) our approximation does not correspond to a
perturbative expansion in some small parameter, as it
will be clear in the next section.
083004
III. CONVERGENCE

Here we discuss the convergence of our method: we
wish to prove that our procedure provides a series with
an exponential rate of convergence. As we mentioned in
the previous section we can write the expression for the
deflection angle in a power series in ��z� as

�� � 2
Z 1

0

dz�����������������������
E0 � V0�z�

p X1
n�0

�2n� 1�!!

2nn!
����z��n � �

�
X1
n�0

�n; (18)

if the condition j��z�j< 1 is fulfilled in the region of
integration, z 2 �0; 1�.

Let us now call �max the maximum value of j��z�j in the
region of integration; we can therefore write

j�nj � �
�2n� 1�!!

2nn!
�n

max: (19)

For large values of n one can approximate the factorial
and double factorial in this expression with the correspond-
ing asymptotic series, �2n� 1�!!=2nn! � 1=

�������
�n
p

and
therefore obtain

j�nj �
�n

max�������
�n
p ; (20)

which confirms that the series converges geometrically.
Notice that since �max is defined in terms of the original
potential V�z� and of the interpolating potential V0�z�, it
will depend upon the arbitrary parameter �. We therefore
expect that the optimal value of �, obtained at a finite order
using the PMS, will be such that at large orders �max

assumes the smallest value possible. Alternatively, one
could think of lowering the value of �max by choosing a
potential different from the simple harmonic potential,
V0�z� � �z2, discussed in the previous section. Indeed,
the only limitation that we have provided over V0�z� is
that it is such that the integrals contained in the series for
�� can be performed analytically. This strategy, although
possible, is not followed here because the increased com-
plication in the form of V0�z� would necessarily reflect in a
complication of the formulas obtained and in the drawback
of obtaining approximations in terms of special functions.
Clearly, such a procedure should be investigated in future
works.

We will now provide an estimate of �max. Under the
assumption that ��z� is a monotonous function, we have
that

�max � maxfj��0�j; j��1�jg: (21)
-3
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The convergence of the series requires that �max < 1,
which is fulfilled for

� > �C � max
�
1

4

X1
n�1

nvn;
1

2

X1
n�1

vn

�
: (22)

On the other hand it is easy to convince oneself that the
minimal value of �max is obtained when the condition
��0� � ���1� is fulfilled, i.e. when

�max �
1

2

X1
n�1

vn

�
1�

n
2

�
; (23)

corresponding to

�max �

P
1
n�1 vnP

1
n�1

vn
2 �1� n=2�

� 1: (24)

The reader should notice also that our series cannot be
used when �max � �C, because the condition �max < 1
cannot be obeyed.

We can test our results easily over the Duffing potential
V�z� � z2 � z4; in this case we have that �max and �PMS

coincide (�PMS � 5=2). Corresponding to this value we
have �max � 1=5 and we obtain a rate of convergence
which is stronger than rn � �1=5�n=

�������
�n
p

and is in good
agreement with the rate observed fitting the behavior of the
series up to order 10, rn � 0:028� 0:17n.
IV. APPLICATIONS

We consider in this section four applications of the
formula (17) obtained in the previous section. In the first
two cases explicit formulas for the exact results are known
due to Darwin [23] and Eiroa and collaborators [4]; in the
last two cases we consider the metric of Janis-Newman-
Winicour and the metric of a charged black hole coupled to
Born-Infeld electrodynamics, for which no explicit for-
mula is available.

A. Schwarzschild metric

Our first application is to the Schwarzschild metric,
which corresponds to

B�r� � A�1�r� �
�
1�

2GM
r

�
; D�r� � 1: (25)

Here M is the Schwarzschild mass. The angle of deflection
of a ray of light reaching a minimal distance r0 from the
black hole can be obtained using Eq. (4). The exact result
can be expressed in terms of incomplete elliptic integrals of
the first kind [23] and reads

�� � 4

�����
�r0

�

r �
F
�
�
2
; �
�
� F�’;��

�
; (26)
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where �r0 � r0=GM and

� �

��������������
�r0 � 2

�r0 � 6

s
; � �

������������������������������������
��� �r0 � 6�=2�

q
;

’ �

������������������������������������������
arcsin

�
2��� �r0

6��� �r0

�s
:

(27)

Although Eq. (26) is exact, it is often valuable to obtain
approximations which do not involve special functions.
Here we will compare our first order approximation, cor-
responding to the use of Eq. (17), with other approxima-
tions which have been derived in the literature.

For example, Mutka and Mähönen [13,14] have ob-
tained the approximate formula

��MM �
4

b� 3
; (28)

where b � r0

�������������������������
D�r0�=B�r0�

p
� r0=

���������������������������
1� 2GM=r0

p
is the

impact parameter. This formula is a natural extension of
the Einstein formula

��E �
4

b
: (29)

Beloborodov [15] has obtained another approximate for-
mula which reads

��B �
4GM

r0 � 2GM
: (30)

Finally, Keeton and Petters [16] have devised a system-
atic approach to deal with integrals as (4) and obtained the
formula

��KP � A1

�
GM
b

�
� A2

�
GM
b

�
2
� A3

�
GM
b

�
3

� A4

�
GM
b

�
4
� A5

�
GM
b

�
5
� A6

�
GM
b

�
6

�O
��
GM
b

�
7
�
; (31)

where the numerical values of the coefficients Ai are given
in Eq. (25) of [16].

Using the general equation for the deflection angle to
first order, Eq. (17), we have obtained the formula:

���1�PMS � �
�

1�������������������������������
1� 8GM=�r0

p � 1
�
; (32)

corresponding to ��1�PMS �
�������������������������������
1� 8GM=�r0

p
.

Despite its simplicity, we can appreciate from Figs. 1
and 2 that Eq. (32) provides the best approximation to the
deflection angle, even in proximity of the photon sphere
(the singularity): indeed our formula predicts the location
of the singularity at rs � 8GM=� � 2:55GM, slightly
below the exact value r�ex�s � 3GM. While the expression
-4
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FIG. 1 (color online). Deflection angle as a function of r0

assuming GM � 1.
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of Beloborodov puts the singularity at a smaller value of r0,
the remaining approximations either put it in the unphys-
ical region (r0 < 0) (Mutka and Mähönen) or fail to pro-
duce a singularity (Keeton and Petters).

In Fig. 2 we have plotted the analytical approximation of
Bozza [12], which correctly describes the photon sphere;
our first order formula provides better approximations al-
ready for r0 > 4GM.

Remarkably our expression works very well also in the
opposite regime, corresponding to r0 ! 1; our Eq. (32)
3 4 5

r0

0

2

4

6

8

∆φ

Darwin
∆φE

∆φMM

∆φ(1)
PMS

∆φB

∆φKP
Bozza

FIG. 2 (color online). Deflection angle as a function of r0

assuming GM � 1 close to the photon sphere.
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can be expanded for r0 � 1 to give

���1�PMS �
4GM
r0
�

7:639 44G2M2

r2
0

�
16:2114G3M3

r3
0

�O	�GM=r0�
4
; (33)

which compares quite favorably with the exact asymptotic
behavior of the Darwin solution:

�� �
4GM
r0
�

7:780 97G2M2

r2
0

�
17:1047G3M3

r3
0

�O	�GM=r0�
4
: (34)

In Fig. 3 we show the magnification (see [13])

� �
��������
�
1�

a
b

��
��

1� a
@r0

@b
@��
@r0

����������1
; (35)

as a function of the impact parameter b. a is the distance
between the lens and the source. Once again our simple
formula provides a very accurate approximation to the
exact result over a wide range of values.

Given the success of our approach to first order, a higher
order calculation is not essential, although it is not techni-
cally difficult.2 For example, it is straightforward to obtain
the second order formula
���2�PMS �
��15�2��2 � 1�2 � 16���2 � 1�2 � 32�8�5 � 5�4 � 6�2 � 3��

256�5
; (36)
where

� �
�����������
��1�PMS

q
�

��������������������
1�

8GM
�r0

s
: (37)

This formula approximates the deflection angle to a 1%
level up to r0 � 3:5GM, i.e. quite close to the singularity,
compared to r0 � 7:4GM of the first order result.

Using the results obtained in Sec. III, we can estimate
the rate of convergence of our series. In this case the
potential is

V�z� � z2 �
2GM
r0

z3; (38)

and

�max �
GM=r0

2� 5GM=r0
: (39)

It is interesting to notice that the condition of applicability
of our series, �max > �C, can be fulfilled only for r0 >
3GM, which is the exact location of the photon sphere for
the Schwarzschild metric: in other words, our series can
also describe strong gravitational lensing close to the pho-
ton sphere.
2In [17], for example, the method was applied up to order 100
to calculate analytically the period of an anharmonic oscillator
with a precision of about 10�50.
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FIG. 4 (color online). Deflection angle for the Reissner-
Nordström metric as a function of r0 assuming GM � 1 and
Q � 1=2.
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FIG. 3 (color online). Magnification as a function of the im-
pact parameter assuming a � 1000 and GM � 1.
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B. Reissner-Nordström metric

The Reissner-Nordström metric describes a black hole
with charge and corresponds to

B�r� � A�1�r� �
�
1�

2GM
r
�
Q2

r2

�
; D�r� � 1:

(40)

As for the Schwarzschild metric the angle of deflection
of a ray of light reaching a minimal distance r0 from the
black hole can be obtained from Eq. (2). Eiroa, Romero,
and Torres [4] have been able to express the deflection
angle in terms of elliptic integrals of the first kind (see
Eq. (A3) of [4]).

It is straightforward to use our general formula to obtain
the transformed potential for the Reissner-Nordström met-
ric

��1� �
�
2
�

4GM
r0
�

3�Q2

4r2
0

(41)

and thus the deflection angle

���1�PMS � �

264 1������������������������������
1� 8GM

�r0
� 3Q2

2r2
0

r � 1

375: (42)

We can compare our formula both with the exact ana-
lytical result of Eiroa et al. and with the expressions (47)
and (53) of [16], which provide a systematic expansion of
the deflection angle in terms of GM=b. In Fig. 4 we have
plotted the exact solution of [4] together with our first order
formula and with the expression of Keeton and Petters,
assuming G � M � 1 and Q � 1=2.3 The reader can ap-
3Notice the different definition of Q in [16].
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preciate that our simple formula is very accurate even in
proximity of the photon sphere.

Notice that our expression reproduces well also the
asymptotic behavior of the deflection angle. In fact,
Eq. (19) of [5] provides the leading asymptotic behavior
of ��, valid for r! 1:

�� �
4GM
r0
�

4G2M2

r2
0

�
15�
16
� 1

�
�

3�
4

Q2

r2
0

�O
��

1

r0

�
2
�

�
4GM
r0
� 7:78

G2M2

r2
0

� 2:36
Q2

r2
0

�O
��

1

r0

�
2
�
:

(43)

which can be compared with the asymptotic behavior of
our formula

���1�PMS �
4GM
r0
�

24G2M2

�r2
0

�
3�
4

Q2

r2
0

�O
��

1

r0

�
2
�

�
4GM
r0
� 7:64

G2M2

r2
0

� 2:36
Q2

r2
0

�O
��

1

r0

�
2
�
:

(44)

Once again we can refer to the results of Sec. III to
estimate the rate of convergence of our series. In this case
the potential is

V�z� � z2 �
2GM
r0

z3 �
Q2

r2
0

z4; (45)

and

�max �
GM=r0 �Q

2=r2
0

2� 5GM=r0 � 3Q2=r2
0

: (46)

In this case, the condition of applicability of our series,

�max > �C, can be fulfilled only for r0 > 3GM=2�1��������������������������������������
1� 8=9�Q=GM�2

p
�, which is the exact location of the
-6
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FIG. 5 (color online). Ratio between the approximate first
order formula and the exact (numerical) result in the Janis-
Newman-Winicour metric for different values of 	 and assuming
b � 1. The potential is expanded to order z3.
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photon sphere for the Reissner-Nordström metric (see
Eq. (8) of [4]).

C. Janis-Newman-Winicour metric

We consider now the spherically symmetric metric so-
lution to the Einstein massless scalar equations [27]:

A�r� � �1� b=r��	; B�r� � �1� b=r�	;

D�r� � �1� b=r�1�	;
(47)

which reduces to the Schwarzschid metric for 	 � 1 and
for b � GM. In this case we obtain the potential

V�z� � �
�
1�

b
r0

�
2	�1

�
1�

bz
r0

�
2�2	

� z2

�
1�

bz
r0

�

�

�
1�

b
r0

�
2	�1

; (48)

which can be expanded around z � 0 to give

V�z���2�	�1�
�

1�
b
r0

�
2	�1 b

r0
z�

�
1��	�1��2	�1�

�

�
1�

b
r0

�
2	�1

�
b
r0

�
2
�
z2�

�
�

2

3
�	�1�	�2	�1�

�

�
b
r0

�
3
�
1�

b
r0

�
2	�1
�
b
r0

�
z3�O	z4
: (49)

Using this expansion inside our formula, Eq. (17), we
obtain the deflection angle
083004
���1�PMS � �

264 1���������������������������������������������������������������������������������������
1� �	�1��1�
�2	
��2	�1�
�8	
�3���12��12�
�1�


3��
�1�

q

1�

3
75; (50)

where 
 � b=r0.
In Fig. 5 we have plotted the ratio ���1�PMS=��exact for

three values of 	, up to small values of r0. Notice that the
exact result is calculated numerically and that the ratio is
close to 1 up to very small values of r0.

The expansion of Eq. (50) around r0 reads
���1�PMS �
2b	
r0
�
�2�6� 4�� �2�	2 � 3��4� ���	� ��4� ����

2�
b2

r2
0

�O	1=r3
0
; (51)
and provides a deviation from Einstein’s leading order
term, �� � 2b=r0 for 	 � 1.

D. Einstein-Born-Infeld black holes

As a final example of application of our method we
consider the propagation of light in a charged black hole
coupled to Born-Infeld electrodynamics. This problem was
considered recently by Eiroa in [9] and corresponds to the
effective metric

A�r� �

����������
!�r�

p
 �r�

; B�r� �
����������
!�r�

p
 �r�;

D�r� �
1����������
!�r�

p ;

(52)

where
!�r� � 1�
Q2b2

r4 ; (53)

 �r� � 1� 2
M
r
�

2

3b2

�
r2 �

����������������������
r4 � b2Q2

q

�

������������
jbQj3

p
r

F
�

arccos
�
r2 � jbQj

r2 � jbQj

�
;

1���
2
p

��
: (54)

F�a; b� is the incomplete elliptic integral of the first kind.
We follow the convention of [9] and set G � 1.

In this case one obtains the potential

V�z� � z2  �r0=z�
!�r0=z�

�
 �r0�!�r0�

!2�r0=z�
�  �r0�!�r0�; (55)
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which can be expanded around z � 0 as

V�z� �
X1
n�2

vnzn: (56)

Unlike in the first two cases V�z� is not polynomial in z
and the deflection angle reads

���1�PMS��

2
64 1������������������������������������������������������������������

1� 8M
�r0
� 3

2v4�
16
3�v5�

15
8 v6� . . .

q �1

3
75:
(57)

Clearly one has to keep in mind that the truncation of the
series (56) to a finite order is an additional source of error
in our calculation; in practice, however, it is straightfor-
ward to include further terms of the expansion.

In Fig. 6 we have compared the exact result obtained
numerically integrating the integral in �� with the result
obtained with our first order formula using the expansion
V�z� to order z4:

V�z� � z2 �
2M
r0
z3 � v4z4 �O	z5
; (58)

where

v4 �
7Q2

3r2
0

�
2

3
�3b2 � 2��

Q2

r4
0

�
4

3

bQ2

r5
0

��Q
�������
bQ

p
� 3bM�

�
4b2Q4

3r6
0

�
2

3
b2�3b2 � 2��

Q4

r8
0

�
4Mb4Q4

r9
0

�

�
�Q3=2

3
���
b
p
M
� 1

�
(59)
083004
and

�2 � b2Q2 � r4
0; (60)

� � F
�
arccos

�
1�

2bQ

r2
0 � bQ

�
;

1���
2
p

�
: (61)

Our analytical formula reproduces with high accuracy the
numerical result obtained assuming b � M � 1 and Q �
1=2.

Furthermore, it is easy to obtain the asymptotic behavior
of �� from our expression

�� �
4M
r0
�

�
24

�
M2

r2
0

�
3�
4

Q2

r2
0

�
�

�
160

�2

M3

r3
0

� 9
MQ2

r3
0

�

�O
�

1

r4
0

�
: (62)
V. CONCLUSIONS

In this paper we have presented a new method to obtain
analytical expressions for the deflection angle of a ray of
light propagating in a spherically symmetric static metric.
We have been able to prove the convergence of our ap-
proach and to estimate the rate of convergence of the series
obtained applying our method: the series converges expo-
nentially and can be applied over all the physical region, as
explicitly seen in the case of the Schwarzschild and
Reissner-Nordström metrics, where the correct location
of the photon sphere is recovered.

This method has been used to derive a first order for-
mula, which is valid for a general spherically symmetric
static metric tensor. We have tested this formula in four
different cases, observing that it is quite accurate even in
proximity of the photon sphere. Clearly, higher order cor-
rections to the first order formula of this paper will further
improve the quality approximation, given the convergent
nature of our expansion. We plan to study higher order
corrections to our formula in a forthcoming paper.

Additionally, we stress that the series obtained with our
method are nonperturbative, because they do not corre-
spond to an expansion in a small parameter and therefore
they are capable of providing small errors even when the
parameters in the model are not small (a typical perturba-
tive parameter would be GM=r0).
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