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Interacting vectorlike dark energy, the first and second cosmological coincidence problems
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One of the puzzles of the dark energy problem is the (first) cosmological coincidence problem, namely,
why does our Universe begin the accelerated expansion recently? Why are we living in an epoch in which
the dark energy density and the dust matter energy density are comparable? On the other hand,
cosmological observations hint that the equation-of-state parameter (EoS) of dark energy crossed the
phantom divide wde � �1 in the near past. Many dark energy models whose EoS can cross the phantom
divide have been proposed. However, to our knowledge, these models with crossing the phantom divide
only provide the possibility that wde can cross �1. They do not answer another question, namely, why
crossing the phantom divide occurs recently? Since in many existing models whose EoS can cross the
phantom divide, wde undulates around �1 randomly, why are we living in an epoch wde <�1? This can
be regarded as the second cosmological coincidence problem. In this work, the cosmological evolution of
the vectorlike dark energy interacting with background perfect fluid is investigated. We find that the first
and second cosmological coincidence problems can be alleviated at the same time in this scenario.
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I. INTRODUCTION

Dark energy problem [1] has been one of the most active
fields in modern cosmology, since the discovery of accel-
erated expansion of our Universe [2–7]. In the observa-
tional cosmology, the equation-of-state parameter (EoS) of
dark energy wde � pde=�de plays a central role, where pde

and �de are its pressure and energy density, respectively. To
accelerate the expansion, the EoS of dark energy must
satisfy wde <�1=3. The simplest candidate of the dark
energy is a tiny positive time-independent cosmological
constant �, whose EoS is �1. However, it is difficult to
understand why the cosmological constant is about 120
orders of magnitude smaller than its natural expectation,
i.e. the Planck energy density. This is the so-called cosmo-
logical constant problem. Another puzzle of the dark en-
ergy is the (first) cosmological coincidence problem,
namely, why does our Universe begin the accelerated
expansion recently? Why are we living in an epoch in
which the dark energy density and the dust matter energy
density are comparable? This problem becomes very seri-
ous especially for the cosmological constant as the dark
energy candidate. The cosmological constant remains un-
changed while the energy densities of dust matter and
radiation decrease rapidly with the expansion of our
Universe. Thus, it is necessary to make some fine-tunings.
In order to give a reasonable interpretation to the (first)
cosmological coincidence problem, many dynamical dark
energy models have been proposed as alternatives to the
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cosmological constant, such as quintessence [8,9], phan-
tom [10–12], k-essence [13], etc.

Recently, by fitting the SNe Ia data, marginal evidence
for wde�z�<�1 at redshift z < 0:2 has been found [14]. In
addition, many best-fits of the present value of wde are less
than �1 in various data fittings with different parametri-
zations (see [15] for a recent review). The present obser-
vational data seem to slightly favor an evolving dark
energy with wde crossing �1 from above to below in the
near past [16]. Obviously, the EoS of dark energy wde

cannot cross the so-called phantom divide wde � �1 for
quintessence or phantom alone. Although it seems possible
for some variants of k-essence to give a promising solution
to cross the phantom divide, a no-go theorem, shown in
[17], shatters this kind of hopes. In fact, it is not a trivial
task to build a dark energy model whose EoS can cross the
phantom divide. To this end, a lot of efforts [18–34] have
been made. However, to our knowledge, many of these
models only provide the possibility that wde can cross �1.
They do not answer another question, namely, why cross-
ing phantom divide occurs recently? Since in many exist-
ing models whose EoS can cross the phantom divide, wde

undulates around �1 randomly, why are we living in an
epoch wde <�1? It can be regarded as the second cosmo-
logical coincidence problem [35].

The so-called second cosmological coincidence problem
was seriously discussed in [35] for the first time. In [35],
the key point is the trigger mechanism, similar to the case
of hybrid inflation [36] and the model by Gong and Kim
[37]. In the hybrid dark energy model considered in [35], a
quintessence and a phantom are employed. The feature of
spontaneous symmetry breaking plays a critical role. In the
-1 © 2006 The American Physical Society
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first stage, the phantom field � is trapped to � � 0, while
the quintessence field � slowly rolls down for a long time.
In this stage, the effective EoS of hybrid dark energy
remains larger than �1. When � reaches a critical value
�c, a phase transition takes place and the phantom field �
is triggered to climb up its potential. And then, the quin-
tessence field� is trapped to� � 0. Crossing the phantom
divide occurs between the moment of phase transition� �
�c and the moment of � being trapped at � � 0 even-
tually. The effective EoS remains smaller than �1 in the
major part of the second stage. When � continuously
climbs up, it will eventually arrive at a critical value �c.
The quintessence field � is triggered to roll down again. In
the third stage, whether the EoS remains smaller than �1
or changes to be larger than �1 depends on the profile of
the effective potential of hybrid dark energy in this stage.
Thus, the avoidance of the big rip is possible for suitable
model parameters. We refer to the original paper [35] for
more details. (Also, see [38] for other discussion on the
second cosmological coincidence problem, soon after our
previous paper [35].)

Although the scalar field is used extensively because of
its simplicity, the vector field also gets its applications in
modern cosmology. Here, we only mention a few, such as
in [39,40], the vector field is considered as the source
which drives the inflation; in [41,42] the Lorentz-violated
vector field and its effects to the Universe are studied; the
quantum fluctuations of vector fields produced at the first
stage of reheating after inflation is also studied in [43]; the
cosmology of massive vector fields with SO(3) global
symmetry is investigated in [44]; and also see [45,46]
and references therein for the literature on the magnetic
fields in the Universe. It is found that a nonlinear electro-
magnetic field can drive the acceleration of the Universe
[47]. The vector field can be a good dark matter candidate
reproducing flat rotation curves in dark halos of spiral
galaxies (see [48] for example). Of course, the vector field
is also a viable dark energy candidate [49,50]. The effects
of vector field dark energy candidate on the cosmic micro-
wave background radiation and the large scale structure are
discussed in [51].

In this work, the cosmological evolution of the vector-
like dark energy proposed in [49] interacting with back-
ground perfect fluid is investigated. In fact, in [49] the
cosmological evolution of the vectorlike dark energy
with inverse power-law potential and without interaction
with background matter was studied, by means of directly
numerical and approximate solutions of the equation of
motion in two limits of matter domination and vectorlike
dark energy domination. Differing from [49], we investi-
gate the cosmological evolution of the vectorlike dark
energy and background perfect fluid in this work by means
of dynamical system [52]. And we study the models with
not only inverse power-law potential but also exponential
potential. Furthermore, we consider the cases of vectorlike
083002
dark energy interacting with background perfect fluid,
while the interaction terms are taken to be four different
forms which are familiar in the literature. We find that the
first and second cosmological coincidence problems can be
alleviated at the same time in this scenario.

This paper is organized as follows. In Sec. II, we will
briefly present the main points of the vectorlike dark
energy model proposed in [49]. In Sec. III, we give out
the equations of the dynamical system of vectorlike dark
energy with interaction to background perfect fluid for the
most general case. That is, we leave the potential of vector-
like dark energy and the interaction form undetermined.
We will investigate the dynamical system for the models
with inverse power-law and exponential potentials in
Sec. IV and V, respectively. In each case with different
potential, we consider four different interaction forms
between vectorlike dark energy and background perfect
fluid. The interaction forms are taken to be the most
familiar interaction ones considered in the literature. In
Sec. VI, the first and second cosmological coincidence
problems are discussed. Finally, brief conclusion and dis-
cussion are given in Sec. VII.

We use the units @ � c � 1 and �2 � 8�G throughout
this paper.
II. VECTORLIKE DARK ENERGY

In fact, the ‘‘vectorlike dark energy’’ is a so-called
‘‘cosmic triad’’ (see [49]), which is a set of three identical
vectors pointing in mutually orthogonal directions, in order
to avoid violations of isotropy. Following [49], we consider
the case of vectorlike dark energy minimally coupled to
gravity, and the action is given by

S �
Z
d4x

�������
�g
p

�
R

2�2 �
X3

a�1

�
1

4
Fa��F

a�� � V�Aa2�

�

�Lm�g��;  �
�
; (1)

where g is the determinant of the metric g��, R is the Ricci
scalar, Fa�� � @�Aa� � @�Aa�, Aa2 � g��Aa�Aa�, and Lm is
the Lagrangian density of matter fields  . Latin indices
label the different fields (a; b; . . . � 1; 2; 3) and Greek in-
dices label different spacetime components (�; �; . . . �
0; 1; 2; 3). Actually, the number of vector fields is dictated
by the number of spatial dimensions and the requirement of
isotropy [49]. The Latin indices are raised and lowered
with the flat ‘‘metric’’ �ab. The potential term V�Aa2�
explicitly violates gauge invariance. In [49], it is argued
that this kind of ‘‘cosmic triad’’ can naturally arise from
gauge theory with a single SU�2� gauge group.

From action (1), one can get the energy-momentum
tensor of the cosmic triad and the equations of motion
for the vectors Aa� as
-2
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�A�T�� �
X
a

�
Fa��F

a�
� � 2

dV

dAa2 A
a
�A

a
�

�

�
1

4
Fa��F

a�� � V�Aa2�

�
g��

�
; (2)

and

@��
�������
�g
p

Fa��� � 2
�������
�g
p dV

dAa2 A
a�; (3)

respectively. We consider a flat Friedmann-Robertson-
Walker (FRW) universe with metric

ds2 � �dt2 � a2�t�dx2; (4)

where a is the scale factor. An ansatz for the vectors, which
can be compatible with homogeneity and isotropy, is

Ab� � �b�A�t� � a: (5)

Thus, the three vectors point in mutually orthogonal spatial
directions, and share the same time-dependent length, i.e.
Aa2 � Aa�Aa� � A2�t�. Substituting Eqs. (5) and (4) into
Eq. (3), one obtains

�A� 3H _A�
�
H2 �

�a
a

�
A�

dV
dA
� 0; (6)

whereH � _a=a is the Hubble parameter, and a dot denotes
the derivative with respect to the cosmic time t. The
Friedmann equation and Raychaudhuri equation are given
by, respectively,

H2 �
�2

3
�tot �

�2

3
��A � �m�; (7)

and

_H � �
�2

2
��tot � ptot� � �

�2

2
��A � �m � pA � pm�;

(8)

where pm and �m are the pressure and energy density of
background matter, respectively. The energy density and
(isotropic) pressure of the vectorlike dark energy are given
by

�A �
3
2�

_A�HA�2 � 3V�A2�; (9)

pA �
1

2
� _A�HA�2 � 3V�A2� � 2

dV

dA2 A
2; (10)

respectively. Noting that �a=a � H2 � _H, one can check
that Eq. (6) is equivalent to the energy conservation equa-
tion of vectorlike dark energy, namely _�A � 3H��A �
pA� � 0.

The most remarkable feature of the vectorlike dark
energy is that its EoS wA � pA=�A can be smaller than
�1, while possessing a conventional positive kinetic term.
This is thanks to the additional term in proportion to
dV=dA2 in pA. While the energy density �A is positive,
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one can find that the condition for wA <�1 is

dV

dA2
A2 <�� _A�HA�2: (11)

Thus, dV=dA2 < 0 is necessary [49,53]. There are other
interesting issues concerning the vectorlike dark energy.
We refer to the original paper [49] for more details.
III. DYNAMICAL SYSTEM OF VECTORLIKE
DARK ENERGY INTERACTING WITH

BACKGROUND PERFECT FLUID

As mentioned in Sec. I, in this work we will generalize
the original vectorlike dark energy model [49] to include
the interaction between the vectorlike dark energy and
background matter. The background matter is described
by a perfect fluid with barotropic equation of state

pm � wm�m � �	� 1��m; (12)

where the barotropic index 	 is a constant and satisfies 0<
	 � 2. In particular, 	 � 1 and 4=3 correspond to dust
matter and radiation, respectively. We assume the vector-
like dark energy and background matter interact through an
interaction term C, according to

_� A � 3H��A � pA� � �C; (13)

_�m � 3H��m � pm� � C; (14)

which preserves the total energy conservation equation
_�tot � 3H��tot � ptot� � 0. It is worth noting that the equa-

tion of motion (6) should be changed when C � 0, a new
term due to C will appear in its right-hand side.

Following [54–56], we introduce following dimension-
less variables

x �
� _A���
6
p
H
; y �

�
����
V
p���
3
p
H
;

z �
�

�������
�m
p���
3
p
H
; u �

�A���
6
p :

(15)

By the help of Eqs. (7)–(10), the evolution equations (13)
and (14) can then be rewritten as a dynamical system [52],
i.e.

x0 � 6
�
�x� u�2 �

	
4
z2 ��

�
�x� u� � 2�u�1

� 3x� 2u� C1; (16)

y0 � 6y
�
�x� u�2 �

	
4
z2 �

�
1�

1

3
xy�2u�1

�
�
�
; (17)

z0 � 6z
�
�x� u�2 �

	
4
z2 ���

	
4

�
� C2; (18)

u0 � x; (19)
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where

� �
u2

H2

dV

dA2 ; (20)

and

C1 �
�2C

18H3 �x� u�
�1; C2 �

zC
2H�m

; (21)

a prime denotes derivative with respect to the so-called
e-folding time N � lna, and we have used

�
_H

H2 � 6
�
�x� u�2 �

	
4
z2 ��

�
: (22)

The Friedmann constraint Eq. (7) becomes

3	�x� u�2 � y2
 � z2 � 1: (23)

The fractional energy densities of vectorlike dark energy
and background matter are given by

�A �
�2�A
3H2 � 3	�x� u�2 � y2
; �m �

�2�m
3H2 � z2;

(24)

respectively. The EoS of vectorlike dark energy and the
effective EoS of the whole system are

wA �
pA
�A
�
�x� u�2 � 3y2 � 4�

3	�x� u�2 � y2

; (25)

and

weff �
ptot

�tot
� �AwA ��mwm; (26)

respectively. From Eq. (25), it is easy to see that the
condition for wA <�1 is

�x� u�2 ��< 0; (27)

which is equivalent to Eq. (11). Finally, it is worth noting
that y � 0 and z � 0 by definition, and in what follows, we
only consider the case of expanding universe with H > 0.

It is easy to see that Eqs. (16)–(19) become an autono-
mous system when the potential V�A2� is chosen to be an
inverse power-law or exponential potential and the inter-
action term C is chosen to be a suitable form. Indeed, we
will consider the model with an inverse power-law and
exponential potential in Sec. IVand V, respectively. In each
model with different potential, we consider four cases with
different interaction forms between vectorlike dark energy
and background perfect fluid, which are taken as the most
familiar interaction terms extensively considered in the
literature [55–60], namely
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Case�I� C � 3
H�m;

Case�II� C � 3�H�tot � 3�H��A � �m�;

Case�III� C � ���m _A;

Case�IV� C � 3�H�A;

where 
, �, �, and � are dimensionless constants.
In the next two sections, we first obtain the critical points

( �x, �y, �z, �u) of the autonomous system by imposing the
conditions �x0 � �y0 � �z0 � �u0 � 0. Of course, they are sub-
ject to the Friedmann constraint, namely 3	� �x� �u�2 �
�y2
 � �z2 � 1. We then discuss the existence and stability
of these critical points. An attractor is one of the stable
critical points of the autonomous system.
IV. MODEL WITH INVERSE POWER-LAW
POTENTIAL

In this section, we consider the vectorlike dark energy
model with an inverse power-law potential

V�A2� � V0��2A2��n; (28)

where n is a positive dimensionless constant (required by
the condition dV=dA2 < 0). In this case,

� � �
n
2
y2: (29)

One can obtain the critical points ( �x, �y, �z, �u) of the
dynamical system equations (16)–(19) with Eqs. (28) and
(29) by imposing the conditions �x0 � �y0 � �z0 � �u0 � 0.
Note that these critical points must satisfy the Friedmann
constraint (23), �y � 0, �z � 0 and the requirement of �x, �y, �z,
�u all being real. To study the stability of these critical
points, we substitute linear perturbations x! �x� �x, y!
�y� �y, z! �z� �z, and u! �u� �u about the critical
point ( �x, �y, �z, �u) into dynamical system equations (16)–
(19) with Eqs. (28) and (29) and linearize them. Because of
the Friedmann constraint (23), there are only three inde-
pendent evolution equations, i.e.

�x0 �
�

9�n� 2�� �x� �u�2 � 2n �u�1� �x� �u� �
�
3

2
	� n

�
�z2

� n� 3
�
�x� 2�z

��
3

2
	� n

�
� �x� �u� �

n
3

�u�1

�
�z

�

�
�18� 9n� n �u�2�� �x� �u�2 �

�
3

2
	� n

�
�z2

�
n
3
�1� �z2� �u�2 � 2n �x �u�1 � 3n� 2

�
�u� �C1;

(30)
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TABLE I. Critical points for Case (I) C � 3
H�m in the
model with inverse power-law potential.

Label Critical point ( �x, �y, �z, �u)

P.I.1 0, 0, 0, � 1��
3
p

P.I.2 0,
�

2
3�2�n�

�
1=2

, 0, �
�

n
3�2�n�

�
1=2

P.I.3 0, 0,
�

1� 3

3	�4

�
1=2

, �
�



3	�4

�
1=2

TABLE III. Critical points for Case (III) C � ���m _A in the
model with inverse power-law potential.

Label Critical point ( �x, �y, �z, �u)

P.III.1 0, 0, 0, � 1��p
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�z0 � 6�n� 2��z� �x� �u��x�
�

3�n� 2�� �x� �u�2

�

�
3

2
	� n

�
�3�z2 � 1�

�
�z

� 6�n� 2��z� �x� �u��u� �C2; (31)

�u0 � �x; (32)

where �C1 and �C2 are the linear perturbations coming
from C1 and C2, respectively. The three eigenvalues of the
coefficient matrix of the above equations determine the
stability of the corresponding critical point.

A. Case (I) C � 3�H�m
In this case, C1 �



2 �x� u�

�1z2 and C2 �
3
2
z. The

physically reasonable critical points of the dynamical sys-
tem Eqs. (16)–(19) with Eqs. (28) and (29) are summarized
in Table I. Next, we consider the stability of these critical
points. Substituting �C1 � �



2 �z2� �x� �u��2�x� 
�z� �x�

�u��1�z� 

2 �z2� �x� �u��2�u, �C2 �

3
2
�z, and the corre-

sponding critical point ( �x, �y, �z, �u) into Eqs. (30)–(32), we
find that Point (P.I.1) is always unstable; Point (P.I.2) exists
and is stable under condition 
< 	; Point (P.I.3) is un-
stable if it can exist. The unique late time attractor (P.I.2)
has

�A � 1; �m � 0; wA � �1; weff � �1;

(33)

which is a vectorlike dark energy dominated solution.
TABLE II. Critical points for Case (II) C � 3�H�tot �
3�H��A � �m� in the model with inverse power-law potential.
r1 is given in Eq. (34).

Label Critical point ( �x, �y, �z, �u)

P.II.1 0, 0,
�

1
2 �1� r1�

�
1=2

, �
�

1
6 �1� r1�

�
1=2

P.II.2 0, 0,
�

1
2 �1� r1�

�
1=2

, �
�

1
6 �1� r1�

�
1=2

P.II.3 0,
�

4	����4�3	�
6�2�n�	

�
1=2

,
�
�
	

�
1=2

, �
�

2n�	����3�	
6�2�n�	

�
1=2
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B. Case (II) C � 3�H�tot � 3�H��A � �m�

In this case, C1 �
�
2 �x� u�

�1 and C2 �
3
2�z

�1. We
present the physically reasonable critical points of the
dynamical system Eqs. (16)–(19) with Eqs. (28) and (29)
in Table II, where

r1 �

������������������������
1�

12�
4� 3	

s
: (34)

Then, we substitute �C1 � �
�
2 � �x� �u��2��x� �u�,

�C2 � �
3
2��z�2�z, and the corresponding critical point

( �x, �y, �z, �u) into Eqs. (30)–(32) to study its stability. We find
that Point (P.II.1) exists and is stable under conditions 0<

�< 4�3	
12 f	

4�3	
3�3	�4�


2 � 1g and 	 > 8=3, which is out of the
range 0<	 � 2; Point (P.II.2) exists and is stable under
conditions �<minf0; 4�3	

12 	
�4�3	�2

9�4�3	�2
� 1
g and 	 < 4=3;

Point (P.II.3) exists and is stable in a proper parameter-
space [61].

The late time attractor (P.II.2) has

�A �
1
2�1� r1�; �m �

1
2�1� r1�; wA �

1
3;

weff �
1
6	�1� r1��3	� 4� � 2
;

(35)

which is a scaling solution. The late time attractor (P.II.3)
has

�A � 1�
�
	
; �m �

�
	
;

wA �� 1�
�	
	� �

; weff � �1;

(36)

which is a scaling solution also. Note that weff of attractor
(P.II.2) is larger than �1, since 0< 	 � 2 and 0< r1 < 1
which is required by Eq. (34) and its corresponding �m,
while wA of attractor (P.II.3) is smaller than �1, since 0<
�< 	 is required by its corresponding �m.
3

P.III.2 0,
�

2
3�2�n�

�
1=2

, 0, �
�

n
3�2�n�

�
1=2

TABLE IV. Critical points for Case (IV) C � 3�H�A in the
model with inverse power-law potential. r2 is given in Eq. (38).

Label Critical point ( �x, �y, �z, �u)

P.IV.1 0, 0, �3r2�
1=2, �

�
1
3� r2

�
1=2

P.IV.2 0,
�

	�4�3��
6�2�n��	���

�
1=2

,
�

�
	��

�
1=2

, �
�

	�2n�3��
6�2�n��	���

�
1=2
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TABLE V. Critical points for Case (I) C � 3
H�m in the
model with exponential potential.

Label Critical point ( �x, �y, �z, �u)

E.I.1 0, 0, 0, � 1��
3
p

E.I.2 0, 1����
3
p , 0, �

�
�1
3

�
1=2

E.I.3 0, 0,
�

1� 3

3	�4

�
1=2

, �
�



3	�4

�
1=2
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C. Case (III) C � ���m _A

In this case, C1 �
���
6
p �x� u��1xz2 and C2 �

	3=2
1=2�xz. The physically reasonable critical points of
the dynamical system Eqs. (16)–(19) with Eqs. (28) and
(29) are shown in Table III. Substituting �C1�

���
6
p 

� �x� �u��1 �z2	1�� �x� �u��1 �x
�x�	2=3
1=2�� �x� �u��1 �x �z
�z� ���

6
p � �x� �u��2 �x�z2�u, �C2�	3=2
1=2��z�x�	3=2
1=2

� �x�z, and the corresponding critical point ( �x, �y, �z, �u) into
Eqs. (30)–(32), we find that Point (P.III.1) is always un-
stable, while Point (P.III.2) is always stable. The unique
late time attractor (P.III.2) has

�A� 1; �m� 0; wA��1; weff ��1; (37)

which is a vectorlike dark energy dominated solution.

D. Case (IV) C � 3�H�A
In this case, C1 �

3
2�	�x� u�

2 � y2
�x� u��1 � �
2 

�1� z2��x� u��1 and C2 �
9
2�	�x� u�

2 � y2
z�1 �
3
2��z

�1 � z�. The physically reasonable critical points of
the dynamical system Eqs. (16)–(19) with Eqs. (28) and
(29) are shown in Table IV, where

r2 �
�

�4� 3	
: (38)

Next, we consider the stability of these critical points.
Substituting �C1 � �

�
2 � �x� �u��2�1� �z2��x� ��z� �x�

�u��1�z� �
2 � �x� �u��2�1� �z2��u, �C2 � �

3
2���z

�2 �

1��z, and the corresponding critical point ( �x, �y, �z, �u) into
Eqs. (30)–(32), we find that Point (P.IV.1) is unstable if it
can exist, while Point (P.IV.2) exists and is stable in a
proper parameter space [61]. The unique late time attractor
(P.IV.2) has

�A �
	

	� �
; �m �

�
	� �

;

wA � �1� �; weff � �1;
(39)

which is a scaling solution. Note that wA of attractor
(P.IV.2) is smaller than �1, since �> 0 is required by its
corresponding �m.

V. MODEL WITH EXPONENTIAL POTENTIAL

In this section, we consider the vectorlike dark energy
model with an exponential potential

V�A2� � V0 exp���2A2�; (40)

where  is a positive dimensionless constant (required by
the condition dV=dA2 < 0). In this case,

� � �3u2y2: (41)

One can obtain the critical points ( �x, �y, �z, �u) of the
dynamical system Eqs. (16)–(19) with Eqs. (40) and (41)
by imposing the conditions �x0 � �y0 � �z0 � �u0 � 0. Note
that these critical points must satisfy the Friedmann con-
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straint (23), �y � 0, �z � 0 and the requirement of �x, �y, �z, �u
all being real. To study the stability of these critical points,
we substitute linear perturbations x! �x� �x, y! �y�
�y, z! �z� �z, and u! �u� �u about the critical point
( �x, �y, �z, �u) into dynamical system Eqs. (16)–(19) with
Eqs. (40) and (41) and linearize them. Because of the
Friedmann constraint (23), there are only three indepen-
dent evolution equations, namely

�x0 � 6
�

3�1�3 �u2�� �x� �u�2�2 �u� �x� �u��
�
 �u2�

	
4

�
�z2

� �u2�
1

2

�
�x�4�z

�
3� �x� �u�

�
 �u2�

	
4

�
� �u

�
�z

�2
�
18 �u� �x� �u�3�3�9 �u2�3��� �x� �u�2

�6 �u� �x� �u��
�

6 �u� �x� �u��3
�
 �u2�

	
4

�
�

�

��z2�1��
3

4
	�1

�
�u��C1; (42)

�z0 �12�z�1�3 �u2�� �x� �u��x�6
�
�1�3 �u2�� �x� �u�2

�

�
 �u2�

	
4

�
�3�z2�1�

�
�z�12�z	3 �u� �x� �u�2

��1�3 �u2�� �x� �u�� �u� �z2�1�
�u��C2; (43)

�u0 � �x; (44)

where �C1 and �C2 are the linear perturbations coming
from C1 and C2, respectively. The three eigenvalues of the
coefficient matrix of the above equations determine the
stability of the corresponding critical point.

A. Case (I) C � 3�H�m
In this case, C1 �



2 �x� u�

�1z2 and C2 �
3
2
z. The

physically reasonable critical points of the dynamical sys-
tem Eqs. (16)–(19) with Eqs. (40) and (41) are summarized
in Table V. Next, we consider the stability of these critical
points. Substituting �C1 � �



2 �z2� �x� �u��2�x� 
�z� �x�

�u��1�z� 

2 �z2� �x� �u��2�u, �C2 �

3
2
�z, and the corre-

sponding critical point ( �x, �y, �z, �u) into Eqs. (42)–(44), we
find that Point (E.I.1) is always unstable; Point (E.I.2)
exists and is stable under conditions 
< 	 and  > 1;
-6



TABLE VI. Critical points for Case (II) C � 3�H�tot �
3�H��A � �m� in the model with exponential potential. r1 and
r3 are given in Eqs. (34) and (46), respectively.

Label Critical point ( �x, �y, �z, �u)

E.II.1 0, 0,
�

1
2 �1� r1�

�
1=2

, �
�

1
6 �1� r1�

�
1=2

E.II.2 0, 0,
�

1
2 �1� r1�

�
1=2

, �
�

1
6 �1� r1�

�
1=2

E.II.3 0,
�
	���	�r3

6	

�
1=2

,
�
�
	

�
1=2

, �
�
	��1�����r3

6	

�
1=2

E.II.4 0,
�
	���	�r3

6	

�
1=2

,
�
�
	

�
1=2

, �
�
	��1�����r3

6	

�
1=2

TABLE VII. Critical points for Case (III) C � ���m _A in the
model with exponential potential.

Label Critical point ( �x, �y, �z, �u)

E.III.1 0, 0, 0, � 1��
3
p

E.III.2 0, 1����
3
p , 0, �

�
�1
3

�
1=2

TABLE VIII. Critical points for Case (IV) C � 3�H�A in the
model with exponential potential. r2 and r4 are given in Eqs. (38)
and (50), respectively.

Label Critical point ( �x, �y, �z, �u)

E.IV.1 0, 0, �3r2�
1=2, �

�
1
3� r2

�
1=2

E.IV.2 0,
�
	�1�����r4

6�	���

�
1=2

,
�

�
	��

�
1=2

, �
�
	��1�����r4

6�	���

�
1=2

E.IV.3 0,
�
	�1�����r4

6�	���

�
1=2

,
�

�
	��

�
1=2

, �
�
	��1�����r4

6�	���

�
1=2
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Point (E.I.3) is unstable if it can exist. The unique late time
attractor (E.I.2) has

�A � 1; �m � 0; wA ��1; weff ��1; (45)

which is a vectorlike dark energy dominated solution.

B. Case (II) C � 3�H�tot � 3�H��A � �m�

In this case, C1 �
�
2 �x� u�

�1 and C2 �
3
2�z

�1. We
present the physically reasonable critical points of the
dynamical system Eqs. (16)–(19) with Eqs. (40) and (41)
in Table VI, where

r3 �
������������������������������������������������������������
�3�	2� �	� �� 	�2

q
: (46)

Then, we substitute �C1 � �
�
2 � �x� �u��2��x� �u�,

�C2 � �
3
2��z�2�z, and the corresponding critical point

( �x, �y, �z, �u) into Eqs. (42)–(44) to study its stability. We find
that Point (E.II.1) exists and is stable under conditions 0<

�< 4�3	
12 f	

4�3	
3�3	�4�


2 � 1g and 	 > 8=3, which is out of the
range 0<	 � 2; Point (E.II.2) exists and is stable under
conditions �<minf0; 4�3	

12 	
�4�3	�2

9�4�3	�2 � 1
g and 	 < 4=3;

Points (E.II.3) and (E.II.4) exist and are stable in a proper
parameter space [61], respectively.

The late time attractor (E.II.2) has

�A �
1
2�1� r1�; �m �

1
2�1� r1�; wA �

1
3;

weff �
1
6	�1� r1��3	� 4� � 2
; (47)

which is a scaling solution. The late time attractors (E.II.3)
and (E.II.4) both have

�A � 1�
�
	
; �m �

�
	
;

wA �� 1�
�	
	� �

; weff � �1;

(48)

which are scaling solutions also. Note that weff of attractor
(E.II.2) is larger than �1, since 0< 	 � 2 and 0< r1 < 1
which is required by Eq. (34) and its corresponding �m,
while wA of attractors (E.II.3) and (E.II.4) are both smaller
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than �1, since 0<�< 	 is required by their correspond-
ing �m.

C. Case (III) C � ���m _A

In this case, C1 �
���
6
p �x� u��1xz2 and C2 �

	3=2
1=2�xz. The physically reasonable critical points of
the dynamical system Eqs. (16)–(19) with Eqs. (40) and
(41) are shown in Table VII. Substituting �C1 �

���
6
p � �x�

�u��1 �z2	1� � �x� �u��1 �x
�x� 	2=3
1=2�� �x� �u��1 �x �z �z�
���
6
p � �x� �u��2 �x�z2�u, �C2�	3=2
1=2��z�x�	3=2
1=2� �x�z,

and the corresponding critical point ( �x, �y, �z, �u) into
Eqs. (42)–(44), we find that Point (E.III.1) is always un-
stable, while Point (E.III.2) exists and is stable under
condition  > 1. The unique late time attractor (E.III.2)
has

�A � 1; �m � 0; wA ��1; weff ��1; (49)

which is a vectorlike dark energy dominated solution.

D. Case (IV) C � 3�H�A
In this case, C1 �

3
2�	�x� u�

2 � y2
�x� u��1 � �
2 

�1� z2��x� u��1 and C2 �
9
2�	�x� u�

2 � y2
z�1 �
3
2��z

�1 � z�. The physically reasonable critical points of
the dynamical system Eqs. (16)–(19) with Eqs. (40) and
(41) are shown in Table VIII, where

r4 �
������������������������������������������������������������������������
�3	��	� �� � �	� 	� ��2

q
: (50)

Then, we consider the stability of these critical points.
Substituting �C1 � �

�
2 � �x� �u��2�1� �z2��x� ��z� �x�

�u��1�z� �
2 � �x� �u��2�1� �z2��u, �C2 � �

3
2���z

�2 �

1��z, and the corresponding critical point ( �x, �y, �z, �u) into
Eqs. (42)–(44), we find that Point (E.IV.1) is unstable if it
-7
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can exist, while Points (E.IV.2) and (E.IV.3) exist and are
stable in a proper parameter space [61], respectively. The
late time attractors (E.IV.2) and (E.IV.3) both have

�A �
	

	� �
; �m �

�
	� �

;

wA � �1� �; weff � �1;
(51)

which are scaling solutions. Note that wA of attractors
(E.IV.2) and (E.IV.3) are both smaller than �1, since �>
0 is required by their corresponding �m.
VI. THE FIRST AND SECOND COSMOLOGICAL
COINCIDENCE PROBLEMS

As is well known, the most frequently used approach to
alleviate the (first) cosmological coincidence problem is
the scaling attractor(s) in the interacting dark energy sce-
nario (see [52,54–60] for examples). The dark energy can
exchange energy with the background matter (usually the
cold dark matter), through the interaction between them.
The most desirable feature of dynamical system is that the
whole system will eventually evolve to its attractors, hav-
ing nothing to do with the initial conditions. Therefore,
fine-tunings are needless. When the Universe is attracted
into the scaling attractor, a balance can be achieved, thanks
to the interaction. In the scaling attractor, the effective
densities of dark energy and background matter decrease
in the same manner with the expansion of our Universe,
and the ratio of dark energy and background matter be-
comes a constant. So, it is not strange that we are living in
an epoch when the densities of dark energy and matter are
comparable. In this sense, the (first) cosmological coinci-
dence problem is alleviated (see [52,54–60] for examples).

On the other hand, if the scaling attractor also has the
property that its EoS of dark energy is smaller than�1, the
second cosmological coincidence problem is alleviated at
the same time. However, this is impossible in the interact-
ing quintessence or k-essence scenario. Although the at-
tractor’s EoS is smaller than �1 in the interacting scalar
phantom scenario, it is impossible to cross the phantom
divide wde � �1, since the EoS of scalar phantom is al-
ways smaller than �1. Fortunately, the EoS of vectorlike
dark energy can be smaller than �1, while possessing a
conventional positive kinetic term [49], in contrast to the
scalar phantom. Of course, the EoS of vectorlike dark
energy can be larger than �1 also. Thus, crossing the
phantom divide is possible in the vectorlike dark energy
model [49]. As is explicitly shown in this work, for suitable
interaction forms [for instance, Cases (II) and (IV)], re-
gardless of the model with inverse power-law or exponen-
tial potential, there are some attractors with wA <�1
while their corresponding �A and �m are comparable in
the interacting vectorlike dark energy model. In the
Case (IV), all stable attractors have these desirable prop-
erties. Even in the Case (II), we can choose the model
083002
parameters to avoid the attractor with wA >�1, and the
scaling attractor(s) with wA <�1 becomes the unique late
time attractor(s). So, for a fairly wide range of initial
conditions with wA >�1, the Universe will eventually
evolve to the scaling attractor(s) with wA <�1. Similar
to the ordinary way to alleviate the (first) cosmological
coincidence problem, the second cosmological coinci-
dence problem is alleviated at the same time.
VII. CONCLUSION AND DISCUSSION

In summary, the cosmological evolution of the vector-
like dark energy interacting with background perfect fluid
is investigated in this work. We find that the first and
second cosmological coincidence problems can be allevi-
ated at the same time in this scenario. Our results obtained
here may support the vector field to be one of the viable
dark energy candidates. In particular, the feature of the
vectorlike dark energy that its EoS wA � pA=�A can be
smaller than �1 while possessing a conventional positive
kinetic term is very attractive. While considering the in-
teraction between the vectorlike dark energy and back-
ground matter, the first and second cosmological
coincidence problems can be alleviated at the same time.
This is a profitable support to the vectorlike dark energy. Of
course, there are many remaining works to make this
scenario more concrete, especially to fit the observational
data to determine the realistic model parameters, which is
beyond the main aim of the present work.

The other issue is concerning the fate of our Universe. It
is easy to see that for all cases considered in this work, all
stable attractors have weff � �1. Although the EoS of
vectorlike dark energy can be smaller than �1, the big
rip never appears in this model. This is also in contrast to
the ordinary phantomlike models.

Finally, we would like to mention that the gauge invari-
ance is violated for the potential forms V�Aa2� taken in this
paper. Although in [49], it is argued that this kind of
‘‘cosmic triad’’ can naturally arise from gauge theory
with a single SU�2� gauge group because of the equations
of motion can be written down in a gauge invariant form,
one should be careful to this problem. For the cases of
inverse power-law and exponential potential, however, it
does no longer hold, which means a particular gauge has
been taken.
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APPENDIX

The particular parameter space for the existence and
stability of these critical points is considerably involved
and verbose. Since our main aim here is just to point out the
fact that it can exist and is stable, we do not present those
very long expressions for the corresponding parameter
space. Of course, one can easily work out with the help
of Mathematica.

Instead of giving concrete expressions, we here give just
some examples to support our statement. For the case of
inverse power-law potential (Sec. IV), Point (P.II.3) of
Case (II) exists and is stable for parameters 	 � 1, � �
1=3, and n�2, with eigenvalues f�0:866239;�1:36688�
i3:29093;�1:36688� i3:29093g, while it is unstable for
083002
parameters 	 � 1, � � 1=3, and n � 1, with eigenvalues
f�1:26235; 2:13117� i2:04255; 2:13117� i2:04255g;
Point (P.IV.2) of Case (IV) exists and is stable for parame-
ters 	 � 1, � � 1=2, and n � 2, with eigenvalues
f�1:70481;�1:6976� i2:60705;�1:6976� i2:60705g,
and for parameters 	 � 1, � � 1=2, and n � 3, with
eigenvalues f�1:1769;�2:32821� i2:93245;�2:32821�
i2:93245g, while it is unstable for parameters 	 � 1, � �
1=2, and n � 1, with eigenvalues f2:15106�
i1:12309;�2:80212; 2:15106� i1:12309g. Similarly, for
the case of exponential potential (Sec. V), Point (E.II.3)
of Case (II) exists and is stable for parameters 	 � 1, � �
1=3, and  � 6, while Point (E.II.4) is unstable for the
same parameters; Point (E.IV.2) of Case (IV) exists and is
stable for parameters 	 � 1, � � 1=2, and  � 5, while
Point (E.IV.3) is unstable for the same parameters. Note
that in the above examples, we chose the demonstrative
parameter 	 � 1 for dust matter, and � � 1=3 or � � 1=2
to make �m � 1=3, which are more realistic.
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