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We give a joint description of weak radiative (WR) and nonleptonic (NL) hyperon decays (HD) in
broken SU(3). The two groups of decays are linked via SU�2�W spin symmetry and vector-meson
dominance (VMD). We use experimental information on the parity-conserving NLHD amplitudes to
fix the corresponding WRHD amplitudes. With the latter known, the data on the WRHD branching ratios
and asymmetries permit us to determine the parity-violating WRHD amplitudes in terms of two
parameters corresponding to the two-quark and single-quark transitions. We obtain a good description
of the data, and, in particular, a large �� ! p� asymmetry. Then, using the SU�2�W � VMD route we
determine the non-soft-meson correction term in the parity-violating NLHD amplitudes. The latter is
shown to subtract a substantial amount from the current-algebra commutator thus leading towards the
resolution of the S:P discrepancy in NLHD.
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I. INTRODUCTION

For a long time weak hyperon decays have been present-
ing us with a couple of puzzles (see [1,2]). These have been
in particular: the problem of the S:P ratio in the nonlep-
tonic hyperon decays (NLHD) and the issue of a large
negative asymmetry in the �� ! p� weak radiative hy-
peron decay (WRHD).

Both problems emerged several decades ago. The first
(S:P) problem is the inconsistency between the size of
matrix elements of the parity-conserving (p.c.)
Hamiltonian in between ground-state baryon states, as
estimated from the p.c. (P-wave) NLHD amplitudes, and
the size of the same matrix elements when estimated from
the parity-violating (p.v., S-wave) NLHD amplitudes via
PCAC in the standard soft-pion limit. The two estimates
differ by a factor of around 2 or a little bit larger, depending
on the details of the models used.

The second problem emerged when first experiments
hinted that the �� ! p� asymmetry is large [3]. The large
size of this asymmetry was unexpected since a theorem
proved by Hara [4] stated that in the SU(3) limit the
relevant parity-violating amplitude should vanish. For bro-
ken SU(3), having in mind the size of hadron-level SU(3)-
breaking effects elsewhere, one would expect this asym-
metry to be of the order �0:2, and not of the order of �1
(the present experimental number is �0:76� 0:08). The
situation was further confounded by a number of theoreti-
cal calculations which violated Hara’s theorem (even) in
the SU(3) limit (see Ref. [2]).

Some time ago it was pointed out [2] that the status of
Hara’s theorem can be clarified through the measurement
of the �0 ! �� decay asymmetry. By yielding a large and
negative value of �0:78� 0:19 for this asymmetry, the
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recent NA48 experiment [5,6] has decided very clearly in
favor of the theorem.

The experimental result of the NA48 collaboration per-
mits us to conclude that theoretical results which violate
Hara’s theorem in the SU(3) limit constitute artefacts of the
relevant approaches. This concerns both the quark-level
calculations of Kamal and Riazuddin [7], and the hadron-
level calculation of the present author [8]. However, the
origins of the artefacts are different in these two
approaches.

In the quark model of Ref. [7] Hara’s theorem is violated
because in the calculations the intermediate photon-
emitting quark enters its mass shell. Thus, this quark is
treated as a free ordinary particle. This leads to a non-
vanishing nonlocal contribution and violates Hara’s im-
plicit assumption that the relevant transition be described
in a language of a local hadron-level theory [9].

The result of Ref. [8] follows from Ref. [10] when the
description of weak p.v. couplings of vector mesons V to
baryons B provided by [10] is supplied with the idea of
vector-meson dominance (VMD). In Ref. [10] the B0 !
VBweak p.v. amplitudes are obtained by the application of
SU�6�W to the full B0 ! PB weak p.v. amplitudes
(P-pseudoscalar mesons), with the latter determined from
experimental data on nonleptonic hyperon decays. If the
applicability of VMD is accepted, the way in which the
SU�6�W-related B0 ! VB counterparts of the B0 ! PB
amplitudes are determined in [10] must be incorrect.

In fact, Ref. [10] considers contributions to the p.v.
NLHD amplitudes coming from the current-algebra (CA)
commutator term only. It is the application of SU�2�W spin
symmetry to this contribution which ultimately leads to
terms violating Hara’s theorem. In general, however, the
p.v. NLHD amplitudes contain two terms: the CA commu-
tator term and the correction term which should vanish in
the soft-pion limit. If the latter term is not small for
physical pion momentum, then its SU�2�W-related counter-
part in WRHD is not small either and could be important in
-1 © 2006 The American Physical Society
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the description of WRHD. The observed sign and size of
the �0 ! �� asymmetry permits us to make definite
conclusions concerning not only Hara’s theorem, but
also—via the SU�2�W � VMD route—the size and sign
of the non-soft-pion term in nonleptonic hyperon decays.
As observed in the approach in [11], in which in the parity-
violating sector the SU(3) symmetry was exact, WRHD
permits us to establish that the correction term subtracts a
substantial part from the CA commutator contribution, thus
working towards the resolution of the old S:P problem in
NLHD.

In the present paper we introduce explicit SU(3) break-
ing into the parity-violating sector of the scheme of [11],
and show that despite the fact that the p.v. �� ! p�
amplitude vanishes in exact SU(3), in broken SU(3) this
amplitude is comparable in size to other SU(3)-
unsuppressed p.v. WRHD amplitudes. As a result we ob-
tain a large �� ! p� asymmetry. Our description of the
branching ratios and asymmetries in weak radiative hy-
peron decays is in good agreement with the data. Although
it deviates from the experimental data more than the cor-
responding description of NLHD, it reproduces both the
large size of all observed asymmetries, and provides a fair
description of the branching ratios. In addition, it predicts a
substantial positive asymmetry in the �� ! ��� decay.
We also show that when SU(3) is broken in the parity-
violating sector, then the non-soft-pion contribution to
NLHD [obtained from WRHD via the SU�2�W � VMD
route] is of proper sign and order of magnitude to resolve
the S:P problem.

II. GENERAL

If we write the effective Lagrangian for nonleptonic
hyperon decay Bi ! Bf� as

�u f�A� B�5�ui��; (1)

where A (B) denotes the parity-violating (parity-
conserving) amplitude, the decay rate is given by

� �
1

4�
k�
mi
�Ef �mf��jAj2 � j �Bj2�; (2)

where Ef,mf�mi� are energy and mass for the final (initial)
baryon, k� is pion momentum, and
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�B �

�������������������
Ef �mf

Ef �mf

s
B: (3)

The asymmetry is

� �
2 Re�A	 �B�

jAj2 � j �Bj2
: (4)

Similarly, if the effective Lagrangian for weak radiative
hyperon decay Bi ! Bf� is written as

�u fi����pf � pi�
��C�D�5�uiA

�; (5)

with C (D) being the parity-conserving (violating) ampli-
tude, then the decay rate is given by

� �
1

�

�m2
i �m

2
f

2mi

�
3
�jCj2 � jDj2�; (6)

and the asymmetry is

� �
2 Re�C	D�

jCj2 � jDj2
: (7)

Theoretical models of hyperon decays may relate some or
all of the four amplitudes A, B, C, D. We start with the
parity-conserving sector and the relation between ampli-
tudes B and C.
III. PARITY-CONSERVING AMPLITUDES

The parity-conserving NLHD amplitudes are known to
be well described by the pole model with the ground-state
�56; 1=2�� baryons in the intermediate state. By SU�2�W
spin symmetry one expects that the same model (supplied
with the VMD assumption) is adequate for the description
of the p.c. WRHD amplitudes. In this section we present
our version of this approach.

A. Nonleptonic decays

In the ground-state baryon pole model the explicit de-
pendence of the p.c. NLHD amplitudes B�Bi ! Bf�� on
(1) F=D describing the SU(3) structure of�BB0 couplings,
and (2) fP=dP characterizing the SU(3) structure of the
matrix elements of the parity-conserving part Hp:c:

W of the
weak Hamiltonian is (see e.g. [8,12]):
B��� ! p�0� 
 B���0 � �
1���
2
p

�
fP
dP
� 1

��
1�

F
D

�
N;

B��� ! n��� 
 B����� � �
4

3
N

B��� ! n��� 
 B����� �
��
fP
dP
� 1

�
F
D
�

1

3

�
3
fP
dP
� 1

��
N

B��! n��� 
 B��0
�� � �

���
2
p
B��0

0� �
1���
6
p

�
fP
dP
� 3�

�
3
fP
dP
� 1

�
F
D

�
N

B��� ! ���� 
 B����� � �
���
2
p
B��0

0� � �
1���
6
p

�
3�

fP
dP
�

�
3
fP
dP
� 1

�
F
D
�N; (8)
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TABLE I. P-wave NLHD amplitudes B�Bi ! Bf�� (in units
of 10�7) using Eq. (8) (with fP=dP � �1:9, F=D � 0:55, N �
�31� 10�7) and the data.

Decay Equation (8) Data

��0 28.6 26:6� 1:3
��� 41.3 42:4� 0:35
��� 0.9 �1:44� 0:17
�0
� 18.8 22:1� 0:5

��� 15.4 16:6� 0:8

1Uncertainties of this order might result e.g. from the treat-
ment of kaon poles which were neglected by us but taken into
account in [1].
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with the standard notation given in the second column (see
also Table IV below).

In writing Eqs. (8) we assumed as in [8,12] that all pole
denominators are equal i.e. that

1

m� �mN
�

1

m� �mN
�

1

m� �m�
�

1

m� �m�



1

�ms
; (9)

with �ms � 190 MeV, and absorbed them into an overall
normalization factor N

N �
2m8

F�

DdP
�ms

; (10)

where F� � 94 MeV, m8 is some average value of baryon
ground-state octet masses, taken asm8 � �mN �m��=2 �
1130 MeV, and dP together with fP describe the SU(3)
structure of the parity-conserving weak Hamiltonian. The
form of SU(3) breaking specified in Eq. (9) was used in
previous papers on the subject, and specifically in
Ref. [11], and does not constitute the novelty. The differ-
ence with respect to Ref. [11] lies in the explicit consid-
eration of SU(3) breaking in the parity-violating sector
(Sec. IV).

Our assumption of equal pole denominators (i.e. no ��
� splitting) corresponds to the simplest form of SU�3�F
symmetry breaking one can consider, the whole effect of
SU(3) breaking being due to a heavier mass of the strange
quark. Other elements of the description (such as the strong
B0BP couplings, or the matrix elements of the p.c. weak
Hamiltonian) are SU�3�F-symmetric.

As the ��� splitting results from spin-spin effects, it
follows that taking this splitting into account would require
the consideration of the influence of spin-spin SU(3) break-
ing effects in strong meson-baryon couplings (and possibly
in weak transition amplitudes). These are not understood
well, however. Consequently, SU�3�F symmetry was as-
sumed in this paper for the meson-baryon couplings. For
reasons of consistency, therefore, we cannot take the spin-
interaction-induced ��� splitting into consideration.
Equations (8) may be also viewed as just a simple parame-
trization of the Bi ! Bf� amplitudes. Transition from
these amplitudes to the amplitudes with pion replaced by
a U-spin singlet vector meson U0 (a linear combination of
�, !, and �), as needed in the next subsection, is achieved
via SU�6�W symmetry. If the B�Bi ! Bf�� amplitudes are
well described by Eqs. (8) (and they indeed are, see
Table I), then the B�Bi ! BfU

0� amplitudes should also
be well described.

Our normalization of fP, dP can be read off from

hpjHp:c:
w j��i �

���
2
p
�dP � fP�; (11)

(compare also Table III).
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For F=D � 0:55 �F � 0:44; D � 0:81�, N � �31 (in
units of 10�7), and fP=dP � �1:90 one obtains a very
good description of the data (see Table I, also [12]). Note
that our scheme satisfies the �I � 1=2 rule. Consequently,
one cannot expect here a better agreement in view of the
violation of this rule: e.g. the �I � 1=2 relation���

2
p
B���0 � � B����� � B��

�
�� experimentally reads:

37:6� 1:8 � 43:8� 0:4, indicating that the �I � 3=2 ef-
fects are of the order of 5–10%.

From Eq. (10) one finds

dP �
F�
D

�ms

2m8
N � �3:0� 10�5 MeV

fP � 5:8� 10�5 MeV:

(12)

Our fP and dP parameters are related to the ones used in
[1] by

fP � �2
���
3
p
F�fP��1�� (13)

dP � �2
���
3
p
F�dP��1�� (14)

The values of fP��1�� � �1:44� 10�7 and dP��1�� �
0:8� 10�7 given in [1] correspond to our

dP � �2:6� 10�5 MeV fP � 4:7� 10�5 MeV:

(15)

The difference between the latter numbers and the esti-
mates of Eq. (12) indicates how large the uncertainty in the
extracted values of fP and dP might be.1

B. Radiative decays

For the WRHD the parity-conserving amplitudes
C�Bi ! Bf��, obtained in the ground-state baryon pole
model from the p.c. NLHD amplitudes via the SU�2�W �
VMD route, are given by

C�Bi ! Bf�� �
�
e
g

�
1

�mi �mf�
���
2
p B�Bi ! BfU

0�: (16)

In the above equation e=g � 0:0606 is the VMD factor
-3
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(e2=4� � 1=137, g � 5:0), and B�Bi ! BfU
0� describe

amplitudes for the emission of a linear superposition U0

of virtual vector mesons �0, !, �, corresponding to a
076005
photon and obtained by the SU�6�W symmetry from the
NLHD amplitudes Bi ! Bf� of Eq. (8). For the B�Bi !
BfU

0� amplitudes one gets
B��� ! pU0� �
���
2
p �

fP
dP
� 1

�
���� ��p�

N
�pD

B��0 ! nU0� �

�
�

�
fP
dP
� 1

�
���0 ��n� �

1���
3
p

�
3
fP
dP
� 1

�
���

�
N
�pD

B��! nU0� �

�
1���
3
p

�
3
fP
dP
� 1

�
��� ��n� �

�
fP
dP
� 1

�
���

�
N
�pD

B��0 ! �U0� �

�
�

1���
3
p

�
3
fP
dP
� 1

�
���0 ���� �

�
fP
dP
� 1

�
���

�
N
�pD

B��0 ! �0U0� �

��
fP
dP
� 1

�
���0 ���0� �

1���
3
p

�
3
fP
dP
� 1

�
���

�
N
�pD

B��� ! ��U0� � �
���
2
p �

fP
dP
� 1

�
���� �����

N
�pD

;

(17)
TABLE II. P-wave amplitudes B�Bi ! BfU
0� (in units of

10�7) as obtained from Eqs. (17) with fP=dP � �1:9, dP �
�3:0� 10�5 MeV, N � �31� 10�7.

Decay Equation (17)

�� ! pU0 �18:8
�0 ! nU0 �42:1
�! nU0 �15:7
�0 ! �U0 �13:9
�0 ! �0U0 �62:1
�� ! ��U0 �8:9
where we used equal mass splittings as suggested both by
the success of Eqs. (8) when describing the data, and by the
analysis of the Lee-Sugawara relations performed in [13].
The appearance of magnetic moments in Eqs. (17) will be
explained shortly.

The particular form of the right-hand side of Eqs. (17)
was obtained in [13], where the standard expressions for
the B�Bi ! BfU0� amplitudes [depending on the F and D
couplings and similar to Eqs. (8)] were rewritten in terms
of the corresponding magnetic moments to which they
would be proportional in the SU(6) symmetry limit. The
reason for using this representation is that ultimately we
want to describe photon couplings which originate from
the �u1���q

�u2A
� terms and thus are expressed in terms of

the anomalous parts of baryon magnetic moments. Now,
the description of baryon magnetic moments provided by
SU(6) (or when the strange quark is assumed to be heavier
and has a smaller magnetic moment) is not good enough
for our purposes. This is because there are substantial
cancellations between various terms in Eqs. (17), and the
results depend on the detailed values of baryon magnetic
moments. In fact, it is known that substantial nonadditiv-
ities are observed in the experimental values of baryon
magnetic moments: a thorough analysis performed in [14]
revealed that the nonstrange quark contributions to baryon
magnetic moments in protons and neutrons are signifi-
cantly larger than in the baryons containing strange quarks.
Since ultimately we want to describe photon couplings, the
need to use magnetic moments on the left-hand side of
Eq. (16) requires that its right-hand side takes them into
account as well, as in Eqs. (17), thus modifying the vector-
meson couplings accordingly.

In order to describe the photon couplings best, we chose
to use in Eqs. (17) the experimental values themselves, i.e.
(from [15]): �p � 2:793, �n � �1:913, ��� �

2:46� 0:01, ��� � 1:61� 0:08, ��� � �1:16�
0:025, �� � �0:613� 0:004, ��0 � �1:25� 0:014,
��� � �0:651� 0:003, ��0 � ���� �����=2. From
Eq. (16), using the fit of Table I, one can predict the p.c.
WRHD amplitudes C�Bi ! Bf��. The relevant numbers
for the related B�Bi ! BfU

0� amplitudes are given in
Table II.

The numbers given in Table II result from cancellations
between various terms in Eqs. (17). Such cancellations are
strongest for the B��! nU0� amplitude. Specifically, for
B��! nU0� the three terms seen in Eqs. (17) contribute as
follows: the�� term gives�22:9, the�n term:�71:4, and
the ��� term: �64:2. A change of ��� by 1 standard
deviation from 1.61 to 1.69 leads to the absolute value of
B��! nU0� larger than the value given in Table II by
20%. For the remaining amplitudes the uncertainty in ���

leads to errors of the order of a few percent only.
One should keep also in mind that our approach leads to

an additional uncertainty in the size of the p.v. amplitudes
for the �� ! p� and �� ! ��� decays. This is because
within our treatment of SU(3) breaking the differences of
the anomalous parts of baryon magnetic moments reduce
to the differences of baryon magnetic moments
themselves.
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TABLE III. Parity-violating amplitudes in NLHD.

Amplitude Parametrization Values (in units of 10�7)

Commutator Diagram decomposition Experiment Description (bS � �5, cS � 12)

A��0
�� 1

2F�

��
2
3

q
�3fP � dP� � 1

2
��
6
p �bS � cS� 3.25 3.47

A��0
0� � 1

2F�
1��
3
p �3fP � dP�

1
4
��
3
p �bS � cS� �2:37 �2:46

A����� 0 0 0.13 0

A���0 � � 1
2F�

���
2
p
�fP � dP�

1
2
��
2
p �bS �

cS
3 � �3:27 �3:18

A�����
1

2F�
2�fP � dP� � 1

2 �bS �
cS
3 � 4.27 4.50

A��0
0� � 1

2F�
1��
3
p ��3fP � dP� � 1

2
��
3
p �bS �

cS
2 � 3.43 3.18

A�����
1

2F�

��
2
3

q
��3fP � dP�

1��
6
p �bS �

cS
2 � �4:51 �4:49
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IV. PARITY-VIOLATING AMPLITUDES

A. Nonleptonic decays

In the first approximation the parity-violating ampli-
tudes A��! 	�� are given by the soft-meson estimate
[16,17]:

h�a	jH
p:v:
W j�i �

�i
F�
h	j�F5

a; H
p:v:
W �j�i � q�M

�
a

���!q!0�i
F�
h	j�F5

a; H
p:v:
W �j�i; (18)

where Fa5 is the axial charge, F� � 94 MeV, and Hp:v:
W is

the p.v. part of the weak Hamiltonian. Since

�F5
a; H

p:v:
W � � ��Fa;H

p:c:
W �; (19)
FIG. 1. Quark diagrams for parity-violating weak transitions
Bi ! BfM.
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the commutator term h	j�F5
a; H

p:v:
W �j�imay be expressed in

terms of h	j�Fa;H
p:c:
W �j�i, with Fa the generator of ordi-

nary flavor symmetry. Consequently, the commutator term
may be expressed in terms of the matrix elements of Hp:c:

W
between appropriate baryon states.

In Table III we gather expressions for the p.v. NLHD
amplitudes given in terms of the commutator parameters
fP and dP as well as in terms of the observed p.v. ampli-
tudes bS and cS corresponding to the contributions of the
topology of the W-exchange and penguin diagrams, re-
spectively. The relevant diagrams are shown in Fig. 1. As
shown, the comparison with the data requires

bS � �5� 10�7 cS � �12� 10�7: (20)

[Diagrams (a) and (a’) of Fig. 1 do not contribute in
NLHD.]

When the SU(3) amplitudes f and d describing the p.c.
transitions are extracted from bS and cS one obtains 2:

fS 
 �
F�
4

�
bS �

2

3
cS

�
� 3:1� 10�5 MeV

dS 

F�
4
bS � �1:2� 10�5 MeV:

(21)

Comparing with Eq. (12) we see that

dP � 2:6dS fP � 1:9fS: (22)

If one introduces

bP 

4

F�
dP cP 


6

F�
�fP � dP�; (23)

one further finds

bP � �12:9� 10�7 cP � 17:5� 10�7: (24)

If instead of Eq. (12) one uses the estimates of fP and dP
given in Eq. (15) one obtains
2The values in Eq. (21) are in full agreement with those given
in Eq. (6.12) of [1], with the relative relation being fS �
�2

���
3
p
F�fS��1��, dS � �2

���
3
p
F�dS��1��, where fS��1�� �

�0:92� 10�7, dS��1�� � 0:38� 10�7.
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dP � 2:2dS fP � 1:5fS; (25)

and

bP � �11:1� 10�7 cP � 13:4� 10�7: (26)

Thus, the description of NLHD amplitudes in terms of
the leading order terms: the ground-state-baryon pole con-
tribution for the P-waves, and the current-algebra commu-
tator term for the S-waves presents a problem. While soft-
meson theorems lead to fP � fS and dP � dS, the values
of fP and dP as extracted from the parity-conserving
amplitudes are larger by a factor of around 2 than those
(i.e. fS, dS) needed for the description of the parity-
violating amplitudes (the S:P problem). In addition, their
ratios differ significantly: fP=dP � �1:8 to �1:9, while
fS=dS � �2:6. When the problem is expressed in terms of
amplitudes b and c corresponding to W-exchange-
mediated and single-quark transitions we observe from
Eqs. (20), (24), and (26) that the reduction of bP to bS is
much stronger than a similar reduction of cP to cS. This
indicates that the dominant correction to the soft-meson
formula originates from the W-exchange diagrams.

Following the success of the ground-state baryon pole
model in the p.c. sector it was proposed in [18] that the
soft-meson expression for the p.v. amplitudes should be
supplemented with a substantial correction term R �
q�M� originating from a pole model contribution of the
negative-parity intermediate excited states [�70; 1=2�� in
the quark model].

The pole model contribution contains two terms [dia-
grams (1) and (2) in Fig. 1—for both (b) and (c) type
transitions], differing in the order of the action of weak and
strong transitions. The parity-violating weak transition is
described by (see e.g. [19])

akl �ukul; (27)

where the pair of indices k, l describes a pair of 1=2� and
1=2� baryons �B;B	�, i.e. �k; l� $ �B	k; Bl� or �Bk; B	l �.
Hermiticity and CP invariance require a to be purely
imaginary and antisymmetric [19,20]:

akl � �alk: (28)

The (parity-conserving) strong transition is described by
a gradient coupling of the pion. For simplicity, we shall
consider �0 only as its C-parity is well-defined:

fkl �ukq6 ul�
0; (29)

with k, l describing as before a pair of 1=2� and 1=2�

baryons. Hermiticity andCP invariance require f to be real
and antisymmetric:

fkl � �flk: (30)

Diagrams (1) [i.e. (b1) and (c1)) and (2) (i.e. (b2) and
(c2)] lead to the following total contribution of the 1=2�

poles to the Bi ! Bf�0 decay:
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� ffk	ak	i
mi �mk	

�
afk	fk	i
mf �mk	

�
�ufq6 ui�

0; (31)

where the first (second) term originates from diagram (1)
[respectively (2)] and the subscripts k	 label intermediate
excited 1=2� baryons. When mf � mi one finds that the
term in braces is symmetric under i$ f interchange.

Using symmetry properties of ak	l and fk	l one can see
from Eq. (31) that for mi � mf the contribution from
diagram (1) [alternatively diagram (2)] in Bi ! Bf�0 tran-
sition must be equal to the contribution from diagram (2)
[alternatively diagram (1)] in Bf ! Bi�0 transition.

In the present paper the sums over intermediate
�70; 1=2�� baryons k	 are not actually performed since
our approach deals with their end results only. Thus, only
the SU�6�W structure of the latter is important. Originally,
calculations of this structure were carried out in [8,10]. The
only difference of this paper with respect to [8,10] is a
different relative sign of contributions from diagrams (1)
and (2). The presence of this difference is understable as
SU�6�W relates all amplitudes corresponding to diagram (1)
[alternatively diagram (2)], but does not relate amplitudes
of diagrams (1) to those of diagrams (2). Relation between
amplitudes corresponding to diagrams (1) and (2) is dic-
tated by the considerations above and, in particular, by the
gradient form of pion coupling. In the SU�6�W symmetric
scheme supplied with the above i$ f symmetry condition
the relevant expressions may be therefore readily copied
from [12,19] with appropriate sign adjustments. These
amplitudes, expressed in terms of amplitudes bR and cR,
corresponding to W-exchange and penguin diagrams, re-
spectively, are gathered in Table IV. In order to show in an
explicit way the i$ f symmetry property required by the
gradient coupling, in addition to the amplitudes for the
observed decays (��0 , ��� etc.) we also listed the ampli-
tudes for the kinematically forbidden transitions p!
���0, p! p�0, and �� ! pU0

P (with U0
P � �

���
3
p
�0 �


8�=
���
2
p

).
When expressed in the language of b and c amplitudes

the correction term R leads to

bS � bP � bR cS � cP � cR; (32)

with bR, cR representing the corrections. The terms bR and
cR are proportional to mi �mf [in Eq. (31) this originates
from the �ufq6 ui factor] and therefore they vanish in the
limit when q0 � mi �mf ! 0. The above formulas are
quite general as they follow from SU(3) and the gradient-
coupling form only. Later we shall consider SU(3) break-
ing in the propagators of the intermediate 1=2� states. The
size of the 1=2�-induced correction terms may be esti-
mated in a quark model [18] and is sizable. Still, the error
of such an estimate may be substantial (in [18] it is judged
to be of the order of 50%). Consequently, we shall try a
different route and estimate the size and sign of the cor-
-6



TABLE IV. Contributions of diagrams (b1), (b2) and (c1), (c2) of Fig. 1 to NLHD amplitudes
using SU�6�W with gradient pion coupling (using [12,19], U0

P � �
���
3
p
�0 � 
8�=

���
2
p

).

Transition (b1) (b2) (c1) (c2)

��0 �� ! p�0 0 1
2
��
2
p bR

1
6
��
2
p cR 0

��� �� ! n�� 0 0 0 0

��� �� ! n�� 0 � 1
2 bR � 1

6 cR 0

�0
� �! p�� 0 � 1

2
��
6
p bR � 1

2
��
6
p cR 0

�0
0 �! n�0 0 1

4
��
3
p bR

1
4
��
3
p cR 0

��� �� ! ��� 0 1��
6
p bR

1
2
��
6
p cR 0

�0
0 �0 ! ��0 0 � 1

2
��
3
p bR � 1

4
��
3
p cR 0

p! ���0 1
2
��
2
p bR 0 0 1

6
��
2
p cR

p! p�0 1
2
��
2
p bR cot�C

1
2
��
2
p bR cot�C

1
6
��
2
p cR cot�C

1
6
��
2
p cR cot�C

�� ! pU0
P

1
2
��
6
p bR

1
2
��
6
p bR

1
6
��
6
p cR

1
6
��
6
p cR
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rection term from weak radiative hyperon decays using
VMD and SU�2�W (SU�6�W) spin symmetry.

B. Radiative decays

The parity-violating WRHD amplitudes are obtained
from those of NLHD amplitudes by replacing the emission
of a pion with that of a photon. The connection between the
two sets of amplitudes may be obtained via VMD and the
symmetry of SU�6�W (SU�2�W).

When VMD and SU�6�W are together applied to the
commutator term of NLHD they lead to the violation of
Hara’s theorem [4] in the SU(3) limit [8]. Although the
simple quark model, the bag model and early experiments
also hinted at the violation of Hara’s theorem in that limit,
thus suggesting that some assumption of the theorem is
violated, the question of Hara’s theorem violation is now
experimentally settled in the negative by the measurement
of the �0 ! �� asymmetry [6] as discussed in [11]. Thus,
in agreement with the general theoretical expectations (cf.
the argument presented in [11]), the soft-meson commuta-
tor term present in the p.v. NLHD amplitudes has no
SU�2�W-generated counterpart in the WRHD sector.

Consequently, up to an appropriate VMD factor, the
parity-violating WRHD amplitudes are the
SU�2�W-generated counterparts of the q�M

� term in
NLHD. As discussed in the previous subsection and in
[18], in NLHD this term originates from the pole-model
contribution of the intermediate 1=2� excited baryons.
Following [18], it was therefore proposed in [21] that the
parity-violating WRHD transitions are generated in an
analogous manner.

Thus, in the considerations of the previous section one
has to replace the strong vertices of Eq. (29) by the elec-
tromagnetic ones:

�kl �uki����5q�ulA�; (33)

with k, l describing as before a pair of 1=2� and 1=2�

baryons. Hermiticity and CP invariance require � to be
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purely imaginary and symmetric [19,20]:

�kl � �lk: (34)

Diagrams (1) and (2) lead to the following total contribu-
tion of the 1=2� poles to the Bi ! Bf� decay:� �fk	ak	i

mi �mk	
�

afk	�k	i

mf �mk	

�
�ufi�

���5q�uiA�: (35)

Whenmi � mf one finds that the term in braces in Eq. (35)
is antisymmetric under i$ f interchange.

Using symmetry properties of ak	l and �k	l one can see
from Eq. (35) that for mi � mf the contribution from
diagram (1) [alternatively diagram (2)] in Bi ! Bf� tran-
sition must be opposite in sign and equal in absolute
magnitude to the contribution from diagram (2) [alterna-
tively diagram (1)] in Bf ! Bi� transition. For i � ��

and f � p it then follows from the symmetry of the weak
interaction Hamiltonian under s$ d (and thus �� $ p)
that the term in braces in Eq. (35) has to be both antisym-
metric and symmetric under i$ f interchange. This
means that the p.v. �� ! p� amplitude must vanish in
the SU(3) limit (Hara’s theorem [4]).

As in the case of NLHD, in the SU�6�W approach to
WRHD the sums over intermediate �70; 1=2�� baryons k	

are not actually performed, since we deal with the end
results only. Up to an appropriate normalization and the
VMD factor the SU�6�W scheme relates then the correction
terms to the p.v. NLHD amplitudes and the p.v. WRHD
amplitudes for diagrams (1). Similar connection exists
(separately) for diagrams (2). The obtained amplitudes
A�Bi ! BfU

0�, copied from [2,12] with appropriate sign
adjustment (as in Table IV), are gathered in Table V.
Contributions from the coupling of the U0 vector meson
(later photon) to the strange quark are described by pa-
rameter � [ � 1 in SU(3)]. All single-quark contributions
may be lumped into a single unknown parameter sR (which
includes cR and the amplitudes corresponding to
-7



TABLE VI. Numerical values of coefficients at bR in
Eqs. (37).

Process x � 0, � � 1 x � 1=3, � � 2=3

�� ! p� 0 0.196
�! n� 0.192 0.048
�0 ! �� �0:192 �0:128
�0 ! �0� �0:333 �0:5

TABLE V. Contributions of diagrams (b1), (b2) of Fig. 1 and
single-quark transitions to A�Bi ! BfU

0� amplitudes using
SU�6�W and Table IV (from [2,12]).

Process diagram (b1) diagram (b2) single-quark

�� ! pU0 1
3
��
2
p bR � 2��

9
��
2
p bR

1
3
��
2
p sR

�0 ! nU0 1
6 bR

2��
18 bR � 1

6 sR

�! nU0 � 1
6
��
3
p bR

2��
6
��
3
p bR �

��
3
p

2 sR

�0 ! �U0 0 � 2��
9
��
3
p bR

1
2
��
3
p sR

�0 ! �0U0 � 1
3 bR 0 � 5

6 sR
�� ! ��U0 0 0 5

3
��
2
p sR
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diagrams (a), (a’) of Fig. 1, see [8,10]). Any SU(3)-
breaking effects may be absorbed into its definition. The
relevant contributions are also gathered in Table V.

In the pole model with broken SU(3) (�ms �
190 MeV) the contribution from diagrams (1) and (2)
given in Tables IV and V will be somewhat modified.
Namely, diagrams (1) are associated with the presence of
mass denominators �!��ms, while for diagrams
(2) these mass denominators contain �!� �ms, where
�! � 570 MeV is the average splitting between the
�56; 1=2�� and �70; 1=2�� multiplets. Assuming that all
of the SU(3) breaking originates from mass differences
(plus possibly from a reduced coupling of U0=photon to
the strange quark, i.e. � < 1), we may take it into account
by multiplying the contributions of diagrams (1) by
�!=��!��ms� 
 1=�1� x� with x � 1=3. For dia-
grams (2) the relevant factor is 1=�1� x�. It is mainly
through the presence of these SU(3) breaking effects that
the present paper differs from Ref. [11].

Using the above considerations one obtains the follow-
ing expressions for the parity-violating WRHD ampli-
tudes:

D�Bi ! Bf�� �
�
e
g

�
1

�mi �mf�
���
2
p A�Bi ! BfU0�; (36)

where amplitudes A are related by SU�2�W to the (vanish-
ing in the soft-meson limit) correction terms in NLHD:

A���!pU0��
1

9
���
2
p

6x��1����1�x�

1�x2 bR�
1

3
���
2
p sR

A��0!nU0��
1

18

6��1����1�x�

1�x2 bR�
1

6
sR

A��!nU0���
1

6
���
3
p

4x�2��1����1�x�

1�x2 bR�

���
3
p

2
sR

A��0!�U0���
2��

9
���
3
p

1�x

1�x2bR�
1

2
���
3
p sR

A��0!�0U0���
1

3

1�x

1�x2bR�
5

6
sR

A���!��U0��
5

3
���
2
p sR: (37)
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The factor 1=�mi �mf� in Eq. (36) is canceled by factors
mi �mf contained in amplitudes A�Bi ! BfU

0� since bR
and sR vanish in the limit mi �mf ! 0, as discussed after
Eq. (32).

In Table VI we show the sizes of the coefficients at the
bR terms in Eqs. (37) [and hence, up to a factor, in Eq. (36)]
for the SU(3)-symmetric case (x � 0, � � 1), and the
SU(3)-breaking case (x � 1=3, � � 2=3). Please note
that with growing x the �� ! p� coefficient increases
from zero very fast, so that at x � 1=3 it becomes larger
than the absolute value of the corresponding coefficient for
�0 ! �� [for �0 ! ���0�� the relevant change is of the
order of 30%, as naively expected for SU(3) breaking
effects]. Thus, for the �� ! p� p.v. amplitude the
SU(3) breaking effect is very large indeed.
V. FROM RADIATIVE TO NONLEPTONIC DECAYS

Since the parity-conserving WRHD amplitudes are
known via the symmetry connection to the parity-
conserving NLHD amplitudes (see Table II), the branching
ratios and asymmetries of WRHD provide information on
the size of parity-violating WRHD amplitudes, and, con-
sequently, on parameters bR and sR.

Present data on WRHD are gathered in Table VII. In
order to get information on the size of bR and sR we
performed fits to the five known branching ratios (given
in Table VII) and the three well-known asymmetries (as in
Table VII with the exception of �� ! ���). Since only a
rough description of the data can be achieved in this way,
we decided not to use the experimental errors in the fitting
procedures. Still, the fits yield a fairly well-defined value of
sR (around �0:75). For the fixed value sR � �0:75 one
can study then how the branching ratios and asymmetries
depend on the value of bR. In Table VII we present results
of such calculations for three values of bR, i.e. for bR �
�4:2,�5:3, and�6:5. One can see that in this range of bR
theory is in a reasonable agreement with the data.

Quantification of this agreement in terms of a 
2-like
function depends on the details of how the errors are
treated. A reasonable requirement to impose is to admit
equal deviations from unity of the ratios of xi 

Bi�the�=Bi�exp� and yk 
 �k�the�=�k�exp� with Bi (�k)
denoting the branching ratios (asymmetries) in question.
Since the position of the minimum depends somewhat on
whether one uses

P
i�xi � 1�2 �

P
k�yk � 1�2 or a similar
-8



TABLE VII. Fit to branching ratios and asymmetries of weak radiative hyperon decays; data
from [15] and from [6] (marked with 	).

Process Data Fit Ref. [21]
bR � �4:2 bR � �5:3 bR � �6:5
sR � �0:75 sR � �0:75 sR � �0:75

Branching ratio (in units of 10�3)
�� ! p� 1:23� 0:05 0.68 0.72 0.78 0:92�0:32

�0:14

�! n� 1:75� 0:15 0.74 0.77 0.80 0.62
�0 ! �� 1:16� 0:08	� 0.91 1.02 1.17 3.0
�0 ! �0� 3:33� 0:10 3.80 4.42 5.33 7.2
�� ! ��� 0:127� 0:023 0.16 0.16 0.16

Asymmetry

�� ! p� �0:76� 0:08 �0:54 �0:67 �0:79 �0:80�0:32
�0:19

�! n� �0:90 �0:93 �0:95 �0:49
�0 ! �� �0:78� 0:19	� �0:92 �0:97 �0:99 �0:78
�0 ! �0� �0:63� 0:09 �0:78 �0:92 �0:99 �0:96
�� ! ��� �1:0� 1:3 �0:8 �0:8 �0:8
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function with xi ! 1=xi and yk ! 1=yk, we decided to
consider the minimization of the function

X5

i�1

�
Bi�the� �Bi�exp�

Bi�the� �Bi�exp�

�
2
�
X3

k�1

�
�k�the� � �k�exp�

�k�the� � �k�exp�

�
2
;

(38)

which embodies such requirements in a more symmetric
way (i.e. it treats the theoretical and the experimental
entries in the same way). The fitted values of bR and sR
are then (in units of 10�7)

bR � �5:3 (39)

sR � �0:75: (40)

Putting aside the �� ! ��� branching ratio which de-
pends on sR only, we observe from Table VII that the �0 !
�0� branching ratio is overestimated while the branching
ratios of �� ! p�, and �! n� are underestimated. This
suggests that there might be a problem with �0 ! �0�.
Consequently, it seems more likely that bR is somewhat
larger than 5.3.

For the �� ! p� the discrepancy between the model
and experiment is about 20% at the amplitude level. For the
�0 ! �0� the discrepancy is larger. There seems to be an
even larger discrepancy for the �! n� branching ratio,
but—as already discussed—this is the decay for which
strong cancellations occur in the parity-conserving ampli-
tude with the result depending quite substantially on the
precise value of the transition moment ���. The overall
description of the data is rough but fairly satisfactory and
indicates that bR � �bS as discussed in [11]. The fits have
a clear tendency to choose a small negative value for sR,
thus predicting a substantial positive asymmetry for the
�� ! ��� decay. For comparison, in Table VII we also
076005
quoted the branching ratios and asymmetries calculated in
[21].

When one inserts the value bR � 6:0� 10�7 into
Eq. (32) one obtains (in units of 10�7)

�5 � �12:9�
6:0

1� x
� �8:4; (41)

or, if the estimate of bP (Eqs. (15, 26)) from [1] is used,

�5 � �11:1�
6:0

1� x
� �6:6; (42)

where the factor 1=�1� x� takes into account the SU(3)
breaking in the propagators of amplitudes (b2). [This is
consistent with the analogous factors used in the derivation
of Eqs. (37).] The discrepancy between the P- and S-
waves is now significantly smaller, especially for the val-
ues of fP and dP extracted in [1].

If one accepts that the small size of sR suggests the
smallness of cR [sR contains contributions from cR and
diagrams (a), (a’) in Fig. 1, and therefore one cannot
determine cR uniquely], one concludes that one should
have

cS � cP: (43)

This is indeed true for the parameters of [1] for which
Eq. (43) reads:

12� 10�7 � 13:4� 10�7: (44)

In conclusion, we have shown that the argument of
Ref. [11] works fairly well also when SU(3) is broken in
the p.v. sector as well. Still, some room for unaccounted
corrections is obviously present.
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VI. CONCLUSIONS

The aim of this paper was to provide both an explanation
of the S:P puzzle in NLHD and a successful description of
the gross structure of the observed pattern of asymmetries
and branching ratios in WRHD in the SU(3) breaking case,
the two explanations being related as discussed in [11]. The
scheme maintains an intimate connection between NLHD
and WRHD, uses VMD, and yet it does not lead to the
Hara’s-theorem-violating results of both the constituent
quark model [7] and the original VMD approach of [8,13].

The resolution of the problem of weak hyperon decays
given in the present paper was originally suggested in
[18,21]. However, complex quark model calculations of
[18,21] did not make it easy to see the simple SU�2�W
symmetry connection existing between the p.v. WRHD
amplitudes and the correction term in the p.v. NLHD
amplitudes. In Ref. [18] the correction to the CA commu-
tator term in the p.v. NLHD amplitudes is due to the
�70; 1=2�� intermediate states. In our approach explicit
calculations of the contributions from the individual inter-
mediate states and the subsequent summation are not per-
formed. Instead, we work at the level of the total resulting
contribution. Still, the symmetry properties of the correc-
tion term in Ref. [18] and in this paper are identical in the
appropriate limit. The difference is that in our paper,
076005
instead of calculating the overall size of the correction in
a quark model as the authors of Ref. [18] do, we extract
both its size and sign from WRHD [via SU�2�W and VMD],
thus bypassing many quark model uncertainties.

Our identification of how symmetry should be applied
for a successful joint description of nonleptonic and radia-
tive weak hyperon decays leads to problems elsewhere,
however. Namely, present understanding of nuclear parity
violation (cf. Ref. [10]) is based on symmetry between the
full p.v. weak amplitudes B0 ! BP and B0 ! BV.
According to [10,22] the explanation of data on nuclear
parity violation can be obtained through the dominance of
the weak �-nucleon coupling of the form �uN���5uN��.
Via vector-meson dominance this leads to photon-nucleon
coupling �uN���5uNA

� which entails the violation of
Hara’s theorem [2,8]. Since Hara’s theorem is satisfied, it
follows that either the standard form of VMD is not uni-
versal or our present understanding of nuclear parity vio-
lation is not fully correct.
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[13] P. Żenczykowski, Phys. Rev. D 44, 1485 (1991).
[14] H. Lipkin, Phys. Rev. D 24, 1437 (1981).
[15] S. Eidelman et al. (Particle Data Group), Phys. Lett. B

592, 1 (2004).
[16] M. Gell-Mann, Physics 1, 63 (1964); S. Weinberg, Phys.

Rev. Lett. 16, 879 (1966); Y. Nambu and E. Shrauner,
Phys. Rev. 128, 862 (1962); R. Dashen, Phys. Rev. 183,
1245 (1969).

[17] S. Adler and R. Dashen, Current Algebras (Benjamin,
New York, 1968).

[18] A. LeYaouanc et al., Nucl. Phys. B149, 321 (1979).
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