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What is the discrete gauge symmetry of the minimal supersymmetric standard model
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We systematically study the extension of the supersymmetric standard model (SSM) by an anomaly-
free discrete gauge symmetry ZN . We extend the work of Ibáñez and Ross with N � 2, 3 to arbitrary
values of N. As new fundamental symmetries, we find four Z6, nine Z9, and nine Z18. We then place three
phenomenological demands upon the low-energy effective SSM: (i) the presence of the � term in the
superpotential, (ii) baryon-number conservation up to dimension-five operators, and (iii) the presence of
the seesaw neutrino mass term LHuLHu. We are then left with only two anomaly-free discrete gauge
symmetries: baryon triality, B3, and a new Z6, which we call proton hexality, P6. Unlike B3, P6 prohibits
the dimension-four lepton-number violating operators. This we propose as the discrete gauge symmetry of
the minimal SSM, instead of R parity.
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I. INTRODUCTION

The action of the standard model (SM) [1,2] is invariant
under Poincaré transformations, as well as the gauge group
GSM � SU�3�C � SU�2�W �U�1�Y . When allowing only
renormalizable interactions, baryon and lepton number are
(accidental) global symmetries of the SM.1 However, when
considering the SM as a low-energy effective theory, GSM

allows for nonrenormalizable interactions, which can vio-
late lepton and baryon number. The leading dimension-six
operators are suppressed by two powers of an unknown
mass scale M, which is unproblematic for proton decay if
M * 1016 GeV; see, however, [7,8].

Enlarging the Poincaré group, the action of the super-
symmetric SM (SSM) is invariant under supersymmetry, as
well as GSM [9,10]. The renormalizable superpotential of
the SSM is given by [11–14]

W � hEijLiHd
�Ej � hDijQiHd

�Dj � h
U
ijQiHu

�Uj ��HdHu

� �ijkLiLj �Ek � �0ijkLiQj
�Dk � �00ijk �Ui

�Dj
�Dk

� �iLiHu; (1.1)

where we employ the notation of Ref. [15], and SU�3�C and
SU�2�W indices are suppressed. The fifth, sixth, and eighth
terms violate lepton number, and the seventh term violates
baryon number. Thus, in the SSM, lepton and baryon
number are violated by renormalizable dimension-four
interactions. In particular, LQ �D and �U �D �D together lead
to rapid proton decay. The lower experimental bound on
the proton lifetime [16,17] results in the very stringent
bounds [13,18,19]
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ng into account the sphaleron interactions [3], only
Li � Lj are conserved in the SM. For the effect of
eractions in supersymmetry see, for example,
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;

i � 1; 2; j � 1;

(1.2)

and the SSM must be considered incomplete. In order to
obtain a natural and viable supersymmetric model, we
must extend GSM, such that at least one of the operators
LQ �D or �U �D �D is forbidden.2

The minimal SSM (MSSM) is conventionally taken as
the renormalizable SSM with the superpotential, Eq. (1.1),
additionally constrained by the discrete symmetry R parity,
Rp � ��1�2S�3B�L [22], which acts on the components of
the superfields. Here S is spin, B baryon number, and L
lepton number. Hence the superpotential of the renorma-
lizable MSSM is given solely by the first line of Eq. (1.1),
and baryon and lepton number are conserved. Matter parity
(Mp) [23] acts on the superfields and leads to the same
superpotential as Rp. Our working definition of the MSSM
shall be the SSM constrained by Mp. We return to this in
Sec. VI. Another possibility is to extend GSM by baryon
triality3 (B3) [24,25], leading to the R-parity violating
MSSM [15].

However, due to the unification of the GSM gauge cou-
pling constants in supersymmetry [27–30], and also the
automatic inclusion of gravity in local supersymmetry
[31,32], we expect the SSM, and also the MSSM, to be
low-energy effective theories, embedded in a more com-
plete theory formulated at the scale of grand unified theo-
ries (MGUT � 1016 GeV) [33], or above. Within the SSM,
we must therefore take into account the possible nonrenor-
malizable operators, which are consistent withGSM, within
the MSSM, those which are also consistent with Mp. In
2For an extensive set of bounds on the products of these
operators see Refs. [20,21].

3This was originally introduced as baryon parity in [24,25];
however, it is more appropriately called baryon triality [10,26].
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particular, we are here interested in the dimension-five
baryon- and/or lepton-number violating interactions. In
Eq. (6.1), we list the complete set for the SSM
[11,12,15,25]; a subset is also present in the MSSM.
Even if suppressed by the gravitational scale Mgrav �

2:4� 1018 GeV, these operators are potentially dangerous,
depending on their flavor structure [11,12,34]. Thus, even
though Mp provides the SSM with an excellent candidate
for cold dark matter, it has a serious problem with baryon-
number violation. When considering the (high-energy)
symmetry extension of the SSM, we take into account
the effects on the dimension-four and the dimension-five
operators.

It is the purpose of this paper to systematically inves-
tigate discrete ZN symmetry extensions of GSM without
invoking the existence of new light particles. Since a global
discrete symmetry is typically violated by quantum gravity
effects [35], we focus on an Abelian discrete gauge sym-
metry (DGS): it is a discrete remnant of a spontaneously
broken U�1� gauge symmetry [35,36]. For an explicit
Lagrangian see, e.g., Ref. [37]. Assuming the original
gauge theory to be anomaly-free, Ibáñez and Ross (IR)
determined the constraints on the remnant low-energy and
family-independent DGSs [24,25]. They classified all ZN
DGSs for N � 2, 3 according to their action on the baryon-
and lepton-number violating operators and then deter-
mined which are discrete gauge anomaly-free (see the
end of Sec. II). They found only two such anomaly-free
DGSs which prohibited the dimension-four baryon-
number violating operators and allowed the HdHu term:
matter parity (R2 in their notation) and baryon triality, B3.
The latter has the advantage of also prohibiting the danger-
ous dimension-five operators.

In this paper, we extend the work of IR toZN symmetries
with arbitrary values of N. We first determine all family-
independent anomaly-free DGSs consistent with the first
three terms in Eq. (1.1) (Secs. II, III, and IV). From the
low-energy point of view, where heavy and possibly ZN
charged particles do not play a role, this infinite number of
anomaly-free DGSs can be rescaled to an equivalent finite
set, which we denote as fundamental (Sec. V). We are left
with four Z6, nine Z9, and nine Z18 new symmetries,
beyond the five Z2;3 symmetries of IR. Together these 27
fundamental DGSs comprise a complete set. This is one of
the main results of this paper. Next, we investigate their
effect on the baryon- and lepton-number violating opera-
tors (Sec. VI). There is only one DGS which simulta-
neously allows the HdHu term, prohibits all dimension-
four baryon- and lepton-number violating operators, pro-
hibits the dimension-five baryon-number violating opera-
tors, and allows the dimension-five Majorana neutrino
mass term LHuLHu. This is one of the Z6 symmetries,
R5

6L
2
6, in the notation of IR. We shall denote it proton

hexality, P6. This we propose as the DGS of the MSSM.
Every Z6 is isomorphic to a direct product of a Z2 and a Z3
075007
[38], so it is not too surprising that P6 is isomorphic to the
direct product of Mp and B3. We then investigate the
necessity of heavy fermions in theories with anomaly-
free DGSs (Sec. VII), leading to a different conclusion
than Ref. [39].

In Secs. II, III, IV, V, VI, and VII we take a bottom-up
approach in determining the discrete symmetry. At the
CERN LHC, we will hopefully discover supersymmetric
fields and their interactions. Through the measured and
thus allowed interactions we can infer the discrete symme-
try. From this point of view, two discrete symmetries are
equivalent, if they result in the same low-energy interac-
tions. In Sec. VIII, we instead investigate the top-down
perspective, focusing on the distinct gauge theories leading
to low-energy equivalent DGSs. For demonstrational pur-
poses we finally present a gauged U�1�model, which, after
spontaneous symmetry breaking, leads to an effective SSM
with proton hexality (Sec. IX).

We briefly comment on some related work in the litera-
ture. Throughout, we restrict ourselves to family-
independent DGSs. For examples of family-dependent
DGSs see Refs. [25,40]. We shall, however, in general,
allow for the original gauge symmetry to be family depen-
dent. We do not consider discrete R symmetries. For an
anomaly-free gauged U�1� R symmetry in a local super-
symmetric theory see Refs. [41–43]. This could be broken
to a discrete R symmetry. Since R parity is inserted ad hoc
in the SSM to give the MSSM, there is extensive literature
on ‘‘gauged’’ R parity, i.e. where R parity is the remnant of
a broken gauge symmetry. Martin has considered R parity
as embedded in a U�1�B�L gauge symmetry and classified
the possible order parameters in extended gauge symme-
tries [SO�10�, SU�5�, SU�5� �U�1�, E6], which neces-
sarily lead to R parity [44,45]. Babu et al. [46] combine
DGSs with an attempt to solve the � problem. Chemtob
et al. [47] deal with anomaly-free DGSs of the next to
MSSM (NMSSM). Although not in our systematic context,
some of the anomaly-free DGSs we find are mentioned in
the literature explicitly [46] or implicitly [48]. In particu-
lar, P6 occurs in Ref. [46], and in Refs. [49,50] a related
nonsupersymmetric Z6 is studied.
II. THE LINEAR ANOMALY CONSTRAINTS

In this section, we review the work of IR [24,25] on
DGSs. We focus here on constraints arising from the linear
U�1�X anomalies ACCX, AWWX, and AGGX, where we
adopt the notation of Ref. [51]. For example, the
SU�3�C-SU�3�C-U�1�X anomaly is denoted as ACCX, and
G stands for ‘‘gravity.’’ In Sec. IV, we investigate the
purely Abelian anomalies, i.e. AYYX, AYXX, and espe-
cially the cubic anomaly AXXX.

For the high-energy gauge symmetry, we consider an in
general generation-dependent U�1�X extension of GSM,
with the chiral superfield charges quantized (i.e. the quo-
tient of any two charges is rational) and normalized to be
-2
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integers. We assume it is spontaneously broken by the
vacuum expectation value (VEV), �, of a scalar field �
with U�1�X charge X� 	 N > 1. The mass scale of the
broken symmetry isMX � O��� 
 MW . (We assume here
a single field �, or a vectorlike pair; cf. Sec. IX.) This
leaves a residual, low-energy ZN symmetry, which we
assume to be generation independent4 on the SSM chiral
superfields [35,37]. In the low-energy theory, we restrict
ourselves to the particle content of the SSM, allowing
however for additional heavy fermions with masses
O�MX�. To avoid later confusion, we emphasize here that
theU�1�X charge of � is not necessarily the same N, which
appears in the final ZN we obtain when restricting our-
selves to the so-called ‘‘fundamental’’ DGSs. We discuss
this in more detail in Sec. V.

For the SSM fields, the ZN charges qi are related to the
integer U�1�X charges Xi via a modulo N shift

Xi � qi �miN: (2.1)

Here the index i labels the SSM particle species and qi, mi
are integers. Just like the U�1�X charges, the mi are, in
general, generation dependent, whereas the qi are assumed
to be generation independent. We also allow for Dirac and
Majorana fermions which become massive at O�MX�. For
the former, two fields with U�1�X charges XjD1 and XjD2,
respectively, must pair up, resulting in a Dirac mass term,
after U�1�X breaking. The Majorana fields with charge Xj

0

M
can directly form a mass term. The ZN invariance of these
mass terms requires

XjD1 � X
j
D2 � pjN; pj 2 Z; (2.2)

2 � Xj
0

M � p0j0N; p0j0 2 Z: (2.3)

The indices j and j0 run over all heavy Dirac and Majorana
particles, respectively.

Assuming the initial U�1�X is anomaly-free, IR derive
the resulting constraints on the ZN charges qi of Eq. (2.1).
From the anomaly cancellation conditions ACCX �
AWWX �AGGX � 0, we obtain

X
i�3;�3

qi � �N �
� X
i�3;�3

mi �
X
j�3;�3

pj

�
; (2.4)

X
i�2

qi � �N �
�X
i�2

mi �
X
j�2

pj

�
; (2.5)
4Note that, due to the three nonvanishing mixing angles of the
Cabibbo-Kobayashi-Maskawa matrix, one is forced to work with
generation-independent discrete charges for the quarks.
Concerning the leptons, generation dependence is only possible
if one relies on radiatively generated neutrino masses. See
Ref. [40].
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X
i

qi � �N �
�X

i

mi �
X
j

pj �
X
j0

1

2
p0j0
�
: (2.6)

The sums in Eqs. (2.4) and (2.5) run over all color triplets
and weak doublets, respectively, i.e. we restrict ourselves
to only fundamental representations5 of SU�3�C and
SU�2�W . As all particles couple gravitationally, we sum
over the entire chiral superfield spectrum in Eq. (2.6).

Depending on the charge shifts, mi, of the low-energy
fields, as well as the heavy-fermion particle content, the
square brackets in Eqs. (2.4), (2.5), and (2.6) can take on
arbitrary integer values. In the case of evenN, any half-odd
integer is allowed for the square bracket in Eq. (2.6).
Hence, we can rewrite them symbolically asX

i�3;�3

qi � N � Z; (2.7)

X
i�2

qi � N � Z; (2.8)

X
i

qi � N � Z� � �
N
2
� Z; (2.9)

with � � 0, 1 for N � odd, even, respectively. From the
point of view of the low-energy theory, the various Z’s,
including the two in Eq. (2.9), each represent an arbitrary
and independent integer, which is fixed by the heavy-
fermion content and the choice of mi.

In addition to the anomaly constraints, we obtain con-
straints on theU�1�X charges, by requiring a minimal set of
interaction terms in the SSM superpotential, which are
responsible for the low-energy fermion masses, namely,
the first three terms in Eq. (1.1). In Sec. VI we investigate
the consequences of additionally imposing HdHu invari-
ance. The ZN charge equations corresponding to the first
three terms of Eq. (1.1) are

qL � qHd
� q �E � 0 mod N; (2.10)

qQ � qHd
� q �D � 0 mod N; (2.11)

qQ � qHu
� q �U � 0 mod N: (2.12)

These are three equations for seven unknowns. We can thus
write the family-independent ZN charges of the SSM
SU�M� have a Dynkin index which is an integer multiple of that
of the fundamental M-plet [46,50]. Therefore heavy particles in
higher irreducible representations need not be considered for our
purposes; see Eqs. (2.7), (2.8), and (2.9). Note that in Eqs. (2.4)
and (2.5) we do not consider Majorana particles either, because
all real representations of SU�M� have a Dynkin index which is
an even multiple of that of the fundamental irreducible repre-
sentation; see Refs. [46,53].
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superfields in terms of four independent integers, which we
choose as m, n, p, r � 0; 1; . . . ; N � 1.

qQ � r; q �U � �m� 4r; q �D � m� n� 2r;

qL � �n� p� 3r; q �E � m� p� 6r;

qHd
� �m� n� 3r; qHu

� m� 3r:

(2.13)

In the following, we make use of the integer normalized
hypercharges

Y�Q; �U; �D;L; �E;Hd;Hu� � ��1; 4;�2; 3;�6; 3;�3�:

(2.14)

The choice of integers m, n, p in Eq. (2.13) corresponds to
the notation of IR. The slightly unusual coefficients for the
integer r correspond to the negative normalized hyper-
charge given in Eq. (2.14), and were chosen for the follow-
ing charge transformation: To simplify the upcoming
calculations, we perform a shift of the integer ZN charges
by their integer hypercharges, such that the resulting
charge q0Q is zero,

qi ! qi
0 � qi � Yi � r: (2.15)

In the following, we drop the prime on the charge symbols.
This shift in the ZN charges does not change the effect of
ZN on the renormalizable or nonrenormalizable operators
of the SSM superpotential or D-terms, since these are all
U�1�Y invariant. It also does not affect the anomaly equa-
tions which we consider. However, it does correspond to a
change in the underlying U�1�X gauge theory. The differ-
ence can lead to, in principle, observable effects, for ex-
ample, cross sections which depend on X charges. We
return to this change in Sec. VIII.

The choice of charges where qQ � 0 is the basis in
which IR work. They show that, in this case, any ZN
symmetry gN can be expressed in terms of the product of
powers of the three (mutually commuting) generators RN ,
AN and LN [25]:

gN � RmN � A
n
N � L

p
N; with the exponents

m; n; p � 0; 1; . . . ; N � 1:
(2.16)

The charges of the SSM chiral superfields under the three
independent ZN generators are given in Table 1 of
Ref. [25]. In terms of the powers m, n, p, the generation-
independent ZN charges of the SSM superfields are6

qQ � 0; q �U � �m; q �D � m� n

qL � �n� p; q �E � m� p;

qHd
� �m� n; qHu

� m:

(2.17)

Note that the integers m, n, p here are the same as in
Eq. (2.13). Inserting the charges above into Eqs. (2.7),
6The action of gN on e.g. the chiral superfields �Di is thus given
by �Di ! exp�2�iN �m� n��

�Di.
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(2.8), and (2.9), and assuming the SSM light-fermion con-
tent, we arrive at the conditions7

3n � N � Z; (2.18)

3�n� p� � n � N � Z; (2.19)

3�5n� p�m� � 2n � N � Z� � �
N
2
� Z: (2.20)

Since all Z’s in Eqs. (2.18), (2.19), and (2.20) stand for
arbitrary and independent integers, we can combine these
Diophantine equations to obtain a simpler set,

3n � N � Z; (2.21)

3p� n � N � Z; (2.22)

3�m� p� � N � Z� � �
N
2
� Z: (2.23)

This differs slightly from IR in notation, as we find it more
convenient to retain the arbitrary integers Z on the RHS.
These three equations are the basis for our further study.
DGSs satisfying all three equations will be called
‘‘anomaly-free DGSs,’’ although these constraints are
only necessary but not sufficient for complete anomaly
freedom of the high-energy theory [39,53].

III. SYMMETRIES ALLOWED BY THE LINEAR
CONSTRAINTS

In this section, we go beyond the work of IR and
determine the solutions, �n; p;m;N�, to the Eqs. (2.21),
(2.22), and (2.23) for general values of N, not just N � 2,
3. We separately consider the two possibilities: either N is
not or is a multiple of 3. We employ the notation

�kjN�:, N � 0 mod k;

:�kjN�:, N � 0 mod k:

k 2 N, where N is the set of all positive integers including
zero.
(1) :
The
pluggin
when c
dence

-4
�3jN�: Since n � 0; 1; . . . ; N � 1, Eq. (2.21) re-
quires n � 0. Then Eq. (2.22) similarly gives
p � 0. Finally, Eq. (2.23) then implies

(i) m � 0 for odd N. This is the case of the
trivial symmetry, the identity.

(ii) For even N there are two possibilities, either
m � 0 (trivial) or m � N .
se equa
g Eq.
onsider

does no
2

We conclude that the only nontrivial anomaly-free
DGSs here are

gN � RN=2
N ; N � even: (3.1)
tions are r independent; they result by directly
(2.13) into Eqs. (2.7), (2.8), and (2.9). However,
ing the cubic anomaly in Sec. IV, the r depen-
t cancel.



TABLE I. The list of all DGSs satisfying the linear anomaly constraints of Ibáñez and Ross.N0

and N00 are defined by N � 3N0 � 9N00, where N, N0, N00 2 N. The ‘p � 2 cases are not listed
as they are equivalent to the set of DGSs with ‘p � 1. The last column gives the resulting
number of independent nontrivial DGSs, gN , for fixed N.

ZN category n p m No. of independent gN

:�3jN� N even 0 0 N
2 1

�3jN� N odd 0 �0; 1� � N0 �0; 1; 2� � N0 4
N even 0 �0; 1� � N0 �0; 1; 2; 3; 4; 5� � N

0

2 9

�9jN�
N odd N0 �1; 4; 7� � N00 �2; 5; 8� � N00 9
N even N0 �1; 4; 7� � N00 �1; 4; 7; 10; 13; 16� � N

00

2 18
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The simplest case with N � 2 yields the discrete Z2

charges: qQ � qL � 0, q �D � q �E � qHu
� 1, q �U �

qHd
� �1. This charge assignment is, from the low-

energy point of view, equivalent to standard matter
parity [23]. A reversed hypercharge shift, Eq. (2.15),
back to Eq. (2.13) with r � 1 yields qQ � qL �
q �D � q �U � q �E � 1 mod 2, qHu

� qHd
� 0.
(2) �
3jN�: Here we can define anN0 2 Z, such thatN 	
3N0. From Eq. (2.21) we obtain n � 0, N0, or 2N0:

(i) Focusing first on n � 0, we see that
p � ‘pN0, for ‘p � 0, 1, 2. Concerning
Eq. (2.23), it is again necessary to distin-
guish between odd and even N. Thus we
find a set of anomaly-free DGSs

n � 0; p � ‘pN0;

m �
�
‘mN

0; N � odd;
sm

N0
2 ; N � even;

(3.2)

with ‘p, ‘m � 0, 1, 2 and sm � 0, 1, . . ., 5.
(ii) Inserting n � N0 into Eq. (2.22), we obtain

p � N0
3 � ‘pN

0, again with ‘p � 0, 1, 2. For
p 2 Z, we need �3jN0� or equivalently N0 	
3N00, with N00 2 Z. Taking into account
Eq. (2.23), we now find

n � N0; p � �1� 3‘p�N00;

m �
�
�2� 3‘m�N00; N � odd;
�1� 3sm�

N00
2 ; N � even:

(3.3)

(iii) Analogously, n � 2N0 gives

n � 2N0; p � �2� 3‘p�N00;

m �
�
�1� 3‘m�N

00; N � odd;
�2� 3sm�

N00
2 ; N � even:

(3.4)
8In the case of the non-Abelian linear anomalies ACCX and
AWWX, one encounters a factor proportional to the Dynkin
index instead. This is a common factor for all fields provided
they are all in the fundamental representation of SU�3�C and
SU�2�W , respectively.
The class of DGSs given in (iii) need not be inves-
tigated any further for it is equivalent to the one in
(ii): A ZN symmetry with charges qi is indistin-
guishable from one with charges �qi; therefore
the sets �n; p;m� and �N � n;N � p;N �m� yield
equivalent DGSs. As an example, consider the in-
075007-5
teger p. For every p2 in Eq. (3.4) we require a p1 in

Eq. (3.3), such that p2�
!
N � p1. Inserting Eqs. (3.3)

and (3.4), we obtain �2� 3‘p2
�N00�

!
�9� 1�

3‘p1
�N00, which is solved for ‘p1

� 2� ‘p2
2

f0; 1; 2g. Similarly, the integer m can be treated for
even or odd N. Likewise, some DGSs of Eq. (3.2)
are not independent of the others.
Table I summarizes the anomaly-free DGSs classified by
N and the powers n, p, and m. For example, the two rows
with �3jN� correspond to the DGSs of Eq. (3.2). The last
column shows the number of independent nontrivial gN.
The 4 in the second row arises because there are three
DGSs with ‘p � 1 but only one with ‘p � 0; with p � 0,
the case m � 0 is trivial, whereas m � N0 and m � 2N0

lead to equivalent DGSs. Similarly, we get nine DGSs
instead of 12 for the third row.

IV. THE PURELY ABELIAN ANOMALIES

So far, we have determined the constraints on DGSs
arising from the three linear anomaly conditions of
Eqs. (2.4), (2.5), and (2.6). Next we consider the three
purely Abelian anomalies AYYX, AYXX, and AXXX, re-
spectively.
(1) A
nalogous to Eqs. (2.4), (2.5), and (2.6), we obtain
from AYYX � 0 that

X
i

Y2
i qi � �N

�X
i

Y2
i mi �

X
j

YjD1
2pj

�
: (4.1)

We have used YjD2 � �Y
j
D1 and YjM � 0, as well as

Eq. (2.2). Note that each term, unlike those in
Eqs. (2.4), (2.5), and (2.6), contains a factor of
Y...

2, which is, in general, different for each field.8

Recall that we have chosen the hypercharges to be
integer for all SSM particles; see Eq. (2.14). Thus
the left-hand side (LHS) is integer. However, given



TABLE II. Compatibility of the linear and the cubic anomaly constraints in the case of integer
U�1�X charges for all chiral superfields. For each ZN category, the allowed values of N are given
in the far right column. The DGSs are specified by the set �n; p;m�, in accordance with
Eq. (2.16). We employ the notations N0 	 N=3, N00 	 N=9, and N0, N00 2 N. For special values
of N, all linearly allowed DGSs are compatible with the cubic anomaly condition. However, four
classes of DGSs within the categories �3jN� (rows 3, 5, 6, 7) are possible for less constrained N.

ZN category n p m Possible N

:�3jN� N even 0 0 N
2 2 �N

�3jN� N odd 0 �0; 1� � N0 �0; 1; 2� � N0 9 � �2 �N� 1�
0 N0 N0 3 � �2 �N� 1�

�3jN� N even

0 �0; 1� � N0 �0; 1; 2; 3; 4; 5� � N
0

2 18 �N
0 0 N

2 6 �N
0 N0 N0 6 �N
0 N0 5 � N

0

2 6 �N

�9jN� N odd N0 �1; 4; 7� � N00 �2; 5; 8� � N00 27 � �2 �N� 1�
N even N0 �1; 4; 7� � N00 �1; 4; 7; 10; 13; 16� � N

00

2 54 �N

9We
AYYX
symme
charge
for eac
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this normalization, the hypercharges of the heavy
fermions need not be integer and the quantity in
square brackets need not be in Z. Thus the right-
hand side (RHS) can take on any value within Z.
Therefore Eq. (4.1) poses no constraint.
(2) N
ow we take AYXX � 0. Analogous to Eq. (4.1),
we get

X
i

Yiqi
2 � �N

�X
i

Yimi�miN � 2qi�

�
X
j

YjD1pj�pjN � 2XjD1�

�
: (4.2)

By considering only the YjD1, we see that �. . .� is not
necessarily an integer, just as in the previous case.
Thus Eq. (4.2) is of no use from the low-energy
point of view.9
(3) N
ext, we consider the cubic anomaly AXXX. Here
we do not have a mixture of known and unknown
charges: We do not know any of the U�1�X charges.
We obtain for the anomaly equation
X
i

qi
3 � �

X
i

�3qi
2miN � 3qimi

2N2 �mi
3N3�

�
X
j

�3XjD1
2pjN � 3XjD1pj

2N2 � pj
3N3�

�
1

8

X
j0
p0j0

3N3: (4.3)

If fractional XjD1 were allowed, again no extraction
disagree here with Refs. [24,25] about the reason why
and AYXX do not impose useful constraints on ZN

tries. It is not the (overall) normalization of the Abelian
s, but the fact that these charges are, in general, different
h field.
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of a meaningful constraint is feasible, since in this
case the right-hand side of Eq. (4.3) is not neces-
sarily of the form N � Z. However, as outlined in
Sec. II, we only consider integer X charges here. We
shall investigate the case of fractional X charges for
the heavy fields in Sec. V, since the difference can be
meaningful in cosmology [54–56].
The calculation for the cubic anomaly with only
integer charges is similar to the calculation in
Sec. III, i.e. it involves many case distinctions. It
can be found in the Appendix A. In Table II, we have
summarized the results. We show thoseN, as well as
the powers �n; p;m�, in the case of only integer
X charges, which satisfy the linear anomaly con-
straints of Sec. III (cf. Table I), as well as the cubic
anomaly equation considered here. The main effect
of the cubic anomaly constraint is to reduce the
(infinite) list of possible DGSs. Considering N � 3
for instance, there are four independent gN symme-
tries allowed in Table I. However, only one of these,
namely, the case where �n; p;m� � �0; 1; 1�, com-
plies with Table II. This corresponds to B3, i.e.
baryon triality discussed by IR.
Another example is N � 6. Here we have nine
linearly allowed DGSs, while only three are left
after imposing the cubic anomaly constraint: R3

6,
R2

6L
2
6, and R5

6L
2
6. The first two are physically equiva-

lent to Mp and B3 from the low-energy point of
view. We shall denote P6 	 R5

6L
2
6, as proton hex-

ality. This is a special discrete symmetry, which we
return to in Sec. VI. For N � 9 there are 4� 9
linearly allowed gN , of which only four are
also consistent with the cubic anomaly condition.
N � 27 is the first case for �3jN�, where the cubic
anomaly does not reduce the number of allowed
DGSs.



TABLE III. All fundamental DGSs satisfying the linear and
the cubic anomaly cancellation conditions. The heavy-fermion
charges, Xj, are allowed to be fractional. The three underlined
DGSs can be realized with only integer heavy-fermion U�1�X
charges.

N n p m DGSs

2 0 0 1 R2

3 0 0 1 R3

0 1 (0, 1, 2) L3, L3R3, L3R
2
3

6 0 0 1 R6

0 2 (1, 3, 5) L2
6R6, L2

6R
3
6, L2

6R
5
6

9
3 1 (2, 5, 8) A3

9L9R
2
9, A3

9L9R
5
9, A3

9L9R
8
9

3 4 (2, 5, 8) A3
9L

4
9R

2
9, A3

9L
4
9R

5
9, A3

9L
4
9R

8
9

3 7 (2, 5, 8) A3
9L

7
9R

2
9, A3

9L
7
9R

5
9, A3

9L
7
9R

8
9

18
6 2 (1, 7, 13) A6

18L
2
18R18, A6

18L
2
18R

7
18, A6

18L
2
18R

13
18

6 8 (1, 7, 13) A6
18L

8
18R18, A6

18L
8
18R

7
18, A6

18L
8
18R

13
18

6 14 (1, 7, 13) A6
18L

14
18R18, A6

18L
14
18R

7
18, A6

18L
14
18R

13
18
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V. CHARGE RESCALING

So far, we have assumed that hypercharge shifted dis-
crete symmetries, as in Eq. (2.15), are equivalent and all
chiral superfields have integer U�1�X charges. However,
from the low-energy point of view, this latter assumption is
too restrictive [39,53]. To see this in our analysis, consider
an example from Table II, where N � 18. The powers of
the elementary discrete gauge group generators, Eq. (2.16),
are given by

n � 0; p � 6 � �0; 1�; m � 3 � sm;

sm � 0; 1; . . . ; 5;
(5.1)

which are all multiples of the common factor F � 3. The
charges of the SSM fields, qi �miN, are given in
Eq. (2.17) as linear combinations of n, p, and m, and are
therefore also all multiples of F, in our example. From the
low-energy point of view, with the heavy fields integrated
out, such a charge assignment is indistinguishable from a
scaled one with charges �qi �miN�=F. After the break-
down of U�1�X, the residual DGS is then a ZN=F instead of
a ZN . However, the ZN=F does not necessarily satisfy the
cubic anomaly, with all integer charges. In our example, we
have N=F � 6, which, according to Table II, satisfies the
cubic anomaly only for very special values of �n; p;m�.

This integer rescaling only applies to the charges of the
SSM chiral superfields. For the heavy fermions, it is typi-
cally not possible and leads to fractional charges. From a
bottom-up approach, experiments would determine the
rescaled DGS groupZN=F. When searching for the possible
(low-energy) anomaly-free DGSs, we therefore relax our
original assumption of integer charges and instead allow
fractional charges for the heavy sector only. We then
denote the DGS ZN=F with the maximally rescaled charges
as the fundamental DGS, i.e. F is the largest common
factor of N and all qi �miN. In Table III, we present the
complete list of fundamental DGSs, obtained from
Table II. We see that, after rescaling, the infinite number
of DGSs listed in Table II is reduced to a finite set of 27
fundamental ZN symmetries: one with N � 2, four with
N � 3, four with N � 6, nine with N � 9, and nine with
N � 18.

References [39,53] pointed out that the cubic anomaly
constraint is, in general, too restrictive on low-energy
anomaly-free DGSs due to possible rescalings.
Comparing Table II with Table III presents a classification
within the SSM of the solutions to this problem. As em-
phasized earlier, the cubic anomaly constraint is compat-
ible with all five classes of linearly allowed DGSs
presented in Table I, however only for restricted values
of N. Rescaling the charges, and allowing for fractionally
charged heavy fermions, eliminates the influence of the
AXXX condition on the fundamental DGSs completely. In
other words, all linearly allowed fundamental DGSs are
compatible with the cubic anomaly constraint. Therefore,
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Eq. (4.3) contains only information about whether or not
the heavy-fermion U�1�X charges are fractional or integer.
Of the fundamental DGSs listed in Table III, solely Mp 	

R2, B3 	 R3L3, and P6 	 R5
6L

2
6 are consistent with both

the linear and the cubic anomaly conditions, without in-
cluding fractionally charged heavy particles.
VI. PHYSICS OF THE FUNDAMENTAL DISCRETE
GAUGE SYMMETRIES AND THE MSSM

Now that we have found a finite number of fundamental,
anomaly-free, low-energy DGSs, we would like to inves-
tigate the correspondingly allowed SSM operators. In par-
ticular, we study the effect of the 27 fundamental DGSs
given in Table III on the crucial baryon- and/or lepton-
number violating superpotential and Kähler potential op-
erators [15,25]:

O1 � �LHu�F; O2 � �LL �E�F;

O3 � �LQ �D�F; O4 � � �U �D �D�F;

O5 � �QQQL�F; O6 � � �U �U �D �E�F;

O7 � �QQQHd�F; O8 � �Q �U �EHd�F;

O9 � �LHuLHu�F; O10 � �LHuHdHu�F;

O11 � � �U �D �E�D; O12 � �Hu
Hd

�E�D;

O13 � �Q �UL�D; O14 � �QQ �D�D:

(6.1)

The subscripts F and D denote the F- and D-term of the
corresponding product of superfields. Table IV summarizes
which operators are allowed for each fundamental
anomaly-free DGS. The symbol � indicates that an opera-
tor is allowed. Thus, for example, matter parity (R2) allows
the operators �HdHu�F, but also the dimension-five baryon-
-7



TABLE IV. Physical consequences of the 27 fundamental DGSs. The Higgs Yukawa couplings
LHd

�E, QHd
�D, and QHu

�U are allowed for every DGS we consider by construction. The symbol
� denotes that the corresponding operator is possible for a given DGS. All anomaly-free
fundamental Z9 and Z18 symmetries forbid the operators listed in the left column.

R2 R3L3 R3 L3 R2
3L3 R5

6L
2
6 R6 R3

6L
2
6 R6L

2
6 All Z9 & Z18

HdHu � � � � � � � � �
LHu �
LL �E �
LQ �D �
�U �D �D �
QQQL � � �
�U �U �D �E � � �
QQQHd �
Q �U �EHd �
LHuLHu � � �
LHuHdHu �
�U �D �E �
Hu
Hd

�E �
Q �UL �
QQ �D �
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number violating operators �QQQL�F and � �U �U �D �E�F, as
well as the lepton-number violating operators �LHuLHu�F.
We have included the bilinear operators LHu (unlike IR),
since, even under the most general complex field rotation
[57], they can not be eliminated, when taking into account
the corresponding soft-breaking terms [58].

We now demand the existence or absence of certain
operators on phenomenological grounds and thus further
narrow down our choice of DGSs.
(i) W
e have not included the term ��HdHu�F in the
original list leading to Eqs. (2.10), (2.11), and
(2.12), since, in principle, it can be generated, e.g.
dynamically [59–62]. From a low-energy point of
view we must have � � 0, and it must be of order
the weak scale [63,64]. There are attempts in the
literature to combine the NMSSM or another dy-
namical mechanism to generate � � 0 with an
anomaly-free DGS; see, for example, Ref. [47] or
Ref. [46] (and references therein), respectively.
This is beyond the scope of this paper. If we ex-
plicitly require the ��HdHu�F operator in our the-
ory, then, as can be seen from Table IV, all
fundamental Z9 and Z18 symmetries are excluded.
(ii) C
10It is not possible to generate neutrino masses in the SSM in
the case of R3 or R6. They allow for the lepton-number violating
terms QQQL and �U �U �D �E but conserve B� L.
oncerning proton decay, if we wish to exclude up
to dimension-five baryon-number violating opera-
tors, we are left with the DGSs: R3L3 (B3), R2

3L3,
R5

6L
2
6 (P6),R3

6L
2
6, andR6L2

6. ForR2 (Mp),R3, orR6,
QQQL and �U �U �D �E must be suppressed by some
mechanism due to the stringent bounds on proton
decay; see, e.g., Refs. [34,65]. The DGS L3 is
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significantly constrained by the bounds on �U �D �D
from heavy nucleon decay [18].
(iii) N
ow consider neutrino masses. Without right-
handed neutrinos, we can generate masses at tree
level through the terms LHuLHu and LHu (via
mixing with the neutralinos), or via loop diagrams
involving LL �E or LQ �D [26,66–68]. Hence, the
DGSs R2 (Mp), R3L3 (B3), and R5

6L
2
6 (P6) can

incorporate neutrino masses without right-handed
neutrinos.10 However, right-handed neutrinos can
easily be included as heavy Majorana fermions
obeying Eq. (2.3). If the corresponding U�1�X
charges allow Dirac neutrino mass terms, we obtain
massive light neutrinos via the seesaw mechanism
[69–72]. But, in this case, LHuLHu must be al-
lowed by the ZN symmetry as well: invariance of
the Dirac mass terms for neutrinos as well as the
Majorana mass terms implies a ZN-invariant
LHuLHu term.
If we combine these phenomenological requirements,
we are left with only two DGSs: baryon triality B3, and
proton hexality P6. It is remarkable that these discrete
symmetries also survived in Sec. V, i.e. they are discrete
gauge anomaly-free with integer heavy-fermion charges.
However, we would like to go a step further. In Sec. I, we
defined the MSSM as the SSM restricted by Mp. When
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considering the MSSM as a low-energy effective theory,
the dangerous operators QQQL and �U �U �D �E are allowed.
This is a highly unpleasant feature of the MSSM. IR al-
ready pointed this out as an advantage of the R-parity
violating MSSM with B3, which does not suffer this prob-
lem. Here we propose a different solution: We define the
MSSM as the SSM which is restricted by proton hexality,
P6. The only phenomenological difference from the con-
ventional MSSM with Mp is with respect to baryon-
number violation. However, given the stringent bounds
on proton decay, we find this new definition of the
MSSM significantly better motivated. Note that, in the
language of IR, P6 is a generalized matter parity (GMP).

We conclude this section with some observations:

(1) I
t is interesting to note that, of the nine fundamental

DGSs which allow the HdHu term, those with N �
6 are each equivalent to the requirement of imposing
R2 (i.e. matter parity) along with one of the four
fundamental Z3 symmetries. Explicitly one has

R2 � R3L3 � R5
6L

2
6; () Mp � B3 � P6

(6.2)

R2 � R3 � R6; (6.3)

R2 � L3 � R3
6L

2
6; (6.4)

R2 � R
2
3L3 � R6L

2
6: (6.5)

In the first line we have given the corresponding
isomorphism in terms of matter parity, baryon tri-
ality, and proton hexality. The reason for this is that
the Cartesian product of the cyclic groups Z2 and Z3

is isomorphic to Z6, i.e. Z2 � Z3 � Z6 [38]. This
becomes evident by giving both possible isomor-
phisms Z2 � Z3 ! Z6.

�0; 0�� 0; �0; 1�� 2; �0; 2�� 4;

�1; 0�� 3; �1; 1�� 5; �1; 2�� 1;
(6.6)

�0; 0�� 0; �0; 1�� 4; �0; 2�� 2;

�1; 0�� 3; �1; 1�� 1; �1; 2�� 5:
(6.7)

As an example, we calculate the discrete charges in
the case of Eq. (6.2). Recalling the relations between
qi and the exponentsm, n, and p given in Eq. (2.17),
we find for the Z2 � Z3 charges, where we compute
modulo N [e.g. q �U � ��1;�1� � �1; 2�],

qQ � �0; 0�; q �U � �1; 2�; q �D � �1; 1�;

qL � �0; 2�; q �E � �1; 2�;

qHd
� �1; 2�; qHu

� �1; 1�; (6.8)
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and for the Z6 charges

qQ � 0; q �U � 1; q �D � 5;

qL � 4; q �E � 1;

qHd
� 1; qHu

� 5:

(6.9)

Both charge assignments are related by the isomor-
phism of Eq. (6.6). Similarly, the Z2 � Z3 and the
Z6 charges in Eqs. (6.4) and (6.5) are related by this
isomorphism. In the case of Eq. (6.3) we have to
apply the isomorphism of Eq. (6.7).
(2) I
n Ref. [51], a U�1�X gauge extended SSM was
investigated, where all renormalizable MSSM
superpotential terms have a total X charge which
is an integer multiple of N [cf. Eq. (8.7)]. Then the
conditions on the U�1�X charges were derived, in
order to have a low-energy Mp discrete symmetry.
In Ref. [73], we derive the corresponding conditions
for B3 and P6:

(i) Mp: 3XQ1
� XL1

� 2 � Z,
XHd
� XL1

� 2 � Z� 1,
(ii) B3: 3XQ1

� XL1
� 3 � Z� 1,

XHd
� XL1

� 3 � Z,
(iii) P6: 3XQ1

� XL1
� 6 � Z� 2,

XH � XL � 18 � Z� 3.

d 1
(3) N
ext, we consider domain walls, which pose a se-
vere cosmological problem if they occur [74]. It is
commonly held that a spontaneously broken dis-
crete symmetry leads to domain walls. In particular,
this is expected to occur in the SSM if the Higgs
fields are charged under the ZN symmetry. In con-
trast, we do not expect domain walls if the Higgs’
discrete charges are zero. However, for this reason-
ing the first set of charges below Eq. (3.1) (qHu

� 1,
qHd
� �1) implies the existence of domain walls,

whereas the second set, standard matter parity
(qHu

� 0, qHd
� 0), does not. As stated in Sec. III,

these two symmetries are related by a simple hyper-
charge shift. They have the same low-energy super-
potential and soft terms. Hence the resulting scalar
potentials are identical apart from D-term contribu-
tions. Therefore the two theories have the same
vacuum structure, and either both have or both do
not have domain walls.
If the SSM vacuum f�Hd

; �Hu
g has zero ZN charge,

then it is unique. If it transforms nontrivially under
ZN then there are up to N distinct ground states
f�Hd

; �Hu
g, f�Hd

0; �Hu

0g, f�Hd

00; �Hu

00g, . . ., related
by ZN transformations. In the latter case, however,
there are no domain walls, if the ZN transformation
of the vacuum in a given domain can be compen-
sated by a U�1�Y gauge transformation. Explicitly,
we demand that there exists a combined ZN � Y
transformation T, such that T�Hd;u� � Hd;u, i.e.
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9��x�: exp
�
i
2�
N
� qHd;u

� i��x� �YHd;u

�
Hd;u �Hd;u:

(6.10)

��x� 2 R is the gauge parameter of U�1�Y . This is
equivalent to

2�
N
� qHd;u

���x� �YHd;u
� 2� � Id;u; with Id;u 2 Z:

(6.11)

These two equations can be combined to get

Iu �
1

N �YHd

� �qHu
�YHd

� qHd
�YHu

�N �YHu
� Id�;

(6.12)

��x� �
2�

N � YHd

� �N � Id � qHd
�: (6.13)

The second equation defines the required gauge
transformation. We can simplify the first equation,
using the hypercharge relation YHu

� �YHd
,

N � �Iu � Id� � qHd
� qHu

: (6.14)

This can only be fulfilled if the ZN charges of the
two Higgs, just like their hypercharges, are the
inverse of each other (in the sense of a mod N
calculation).11 This is equivalent to the requirement
that the �-term is allowed by ZN . This is, e.g., the
case for Mp canonically, as the Higgs fields are
uncharged: �qHd

; qHu
� � �0; 0�, R2 �1; 1�, B3 �2; 1�,

and P6 �1; 5�. We stress that this argument does not
rely on U�1�X being nonanomalous (cf. Sec. VIII).
VII. THE HEAVY-FERMION SECTOR

An interesting question to ask is as follows: Given a
DGS in Table III, do I necessarily need heavy fermions in
order to cancel the anomalies? In the case of matter parity,
R2, we can answer the question by considering Eq. (2.23).
Here, the left-hand side equals 3, while the right-hand side
is 2 � Z� � � Z. Recalling that the �-term originates from
heavy Majorana fermions [cf. Eq. (2.6)], we find that the
symmetry R2 is only possible if we include a heavy-
e two Higgs do not have opposite ZN charges, the �-term
idden. This then possibly enables PQ invariance, which
one to repeat the argument above with ��x� � YHd;u

re-
by ��x� � YHd;u

� � � PQHd;u
.
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fermion sector, e.g. one right-handed neutrino for each
generation.

In the case of the other fundamental DGSs of Table III,
let us assume the absence of heavy fermions in what
follows. Under this assumption, the anomaly cancellation
conditions cannot be satisfied. Inserting the discrete
charges of Eq. (2.17) into Eq. (2.6), we obtain

13n� 3p� 3m�N �
�

2mHd
� 2mHu

�
X
k

�6mQk
� 3m �Uk

� 3m �Dk
� 2mLk �m �Ek�

�
; (7.1)

where k is a generation index. For even N, the right-hand
side in Eq. (7.1) is even. However, the left-hand side is odd
for the Z2, Z6, and Z18 DGSs. Therefore heavy fermions
are necessary in these cases.

For the remaining 4� 9 Z3 and Z9 symmetries, the RHS
of Eq. (7.1) can be both, even or odd. We thus employ the
cubic anomaly constraint of Eq. (4.3). For the Z9 symme-
tries, the RHS of Eq. (4.3) is always a multiple of 27. The
LHS of the cubic anomaly condition, given in Eq. (A7), is
�122 � 3� 27 � Z, which is not a multiple of 27. Thus the
fundamental Z9 symmetries also require heavy fermions.

For the four Z3 symmetries, the RHS of Eq. (4.3) is
always a multiple of 9. Equation (A5) shows that the LHS
of Eq. (4.3) is a multiple of 9 only in the case of the R3L3

symmetry. Hence the other three fundamental Z3 symme-
tries require heavy fermions. But, also, R3L3 cannot satisfy
the anomaly constraints without a heavy-fermion sector12:
Although R3L3 is neither ruled out by AGGX � 0 nor
AXXX � 0 alone, it is in conflict when combining the
two conditions; the LHS of Eq. (4.3) for R3L3 yields 18,
[cf. Eq. (A5)], whereas the RHS is a multiple of 27, as we
now show. It is given by

�
X
i

�3qi
2miN � 3qimi

2N2 �mi
3N3�; (7.2)

where i runs over all chiral superfields. The last two terms
within the parentheses are multiples of 27, which is not true
for the first one. However, evaluating the sum and applying
our knowledge of the qi, we find

X
i

3qi
2miN � 3N �

�
2 �mHd

� 2 �mHu
�
X
k

�3 �m �Uk

� 3 �m �Dk
� 2 �mLk � 4 �m �Ek�

�
; (7.3)

where k denotes a generation index. The numerical coef-
ficients inside the brackets are the product of the squared
12Here we disagree with Ibáñez’s conclusion in Ref. [39]. See
also Ref. [75].

-10
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discrete charges and the multiplicity of the particle species.
For example, we have three colors of quark fields �Uk with
q �Uk
� �1, thus 3 � q �Uk

2 � 3. We can now adopt the

gravity-gravity-U�1�X anomaly constraint of Eq. (7.1) to
rewrite Eq. (7.3). Recalling that N � 3, n � 0, and m �
p � 1 for R3L3, we get

X
i

3qi
2miN � �9 �

X
k

�6 �mQk
� 3 �m �Ek�; (7.4)

also a multiple of 27. This completes our proof.
In conclusion, the 27 fundamental DGSs we have found

are only anomaly-free with a U�1�X-charged heavy-
fermion sector.
VIII. A TOP-DOWN APPROACH

As outlined in Sec. I, we have so far discussed a bottom-
up approach to DGSs. However, by definition, a DGS is
inherently connected to the anomaly structure of the under-
lying U�1�X gauge theory. Here, we consider the DGSs
from the latter perspective. We investigate two topics in
detail: (i) the definition of the DGSs via the transformation
of the superfields (superfieldwise) vs the definition via the
transformation of the GSM-invariant operators (operator-
wise); (ii) the hypercharge shifts of Eq. (2.15).

At high energies, we start from a GSM �
U�1�X-invariant Lagrangian, with the X charges scaled to
be integers of minimal absolute value. We leave it open at
the moment whether U�1�X is anomalous or not. Below
MX, U�1�X is assumed to be broken by a single left-chiral
flavon superfield � (or by two left-chiral superfields �, �0

with opposite X charges; see Sec. IX), which is uncharged
underGSM. If in our model, e.g., the operator LiLj �Ek is not
U�1�X invariant, then the nonrenormalizable superpoten-
tial13 operator

���XLi�XLj�X �Ek
�=X� � LiLj �Ek (8.1)

is. However, due to the cluster decomposition principle
(CDP) [76], the Lagrangian exhibits only non-negative
integer exponents of the fields [77,78]. Therefore the above
term is forbidden if �XLi � XLj � X �Ek�=X� is fractional.
After U�1�X breaking, the operator LiLj �Ek is not gener-
ated, since its nonrenormalizable ‘‘parent term’’ is non-
existent. Therefore the constraints of the CDP persist.
Whether an operator is allowed or not in the low-energy
Lagrangian boils down to whether its overall X charge is an
integer multiple of X�. Thus, at low energy, we decompose
the X charges as in Eq. (2.1) and the remaining DGS under
which the superfields transform is a ZjX�j

.

13The following arguments in this section proceed analogously
for the Kähler potential.
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Next consider the operators in the superpotential.
Analogous to Eq. (2.1), the overall X charge, Xtotal, of
any GSM-invariant product of MSSM chiral superfields
satisfies

Xtotal � qtotal �mtotal � jX�j;

with qtotal 	
X
qi; mtotal 	

X
mi: (8.2)

If a certain operator is forbidden by the CDP, then the
jX�jth power of this term has qtotal � 0 mod �jX�j�.
However, the superpotential operators are further restricted
by GSM. Therefore the ZjX�j

charges are possibly such that
a power smaller than jX�j suffices to get qtotal �
0 mod �jX�j�, for all superpotential operators. As an ex-
ample, suppose jX�j � 24 and the superfields obey a Z24.
Because of GSM, it may very well be that for all operators
qtotal is even. Operatorwise we then have a Z12 instead of a
Z24. Furthermore, we can integrate out the heavy particles
below their mass scale. When considering only the super-
fields of the SSM their respective q’s could, e.g., be only
multiples of 3. The SSM superfields alone then obey a
Z24=3 � Z8 symmetry (cf. Sec. V) and the SSM super-
fieldwise Z8 constitutes an SSM-operatorwise Z4.

We now consider a generation-independent U�1�X ex-
tension of the SSM, which is the high-energy origin of the
DGS. We include right-handed neutrinos, �Ni. We demand
that for the U�1�X charge assignments (i) the Yukawa mass
terms QHd

�D, QHu
�U, LHd

�E, and LHu
�N are invariant, and

(ii) the anomalies ACCY , AWWY , AGGY , ACCX, AWWX,
AGGX, AYYY , AYYX, AYXX, and AXXX all vanish. We
can then express the X charges in terms of two unknowns,

X �D � �XQ � XHd
; X �U � �XQ � XHd

;

XL � �3XQ; X �E � 3XQ � XHd
;

X �N � 3XQ � XHd
; XHu

� �XHd
:

(8.3)

Furthermore, we obtain the well-known result thatU�1�X is
necessarily a linear combination of U�1�Y , i.e. hyper-
charge, and U�1�B�L (see, for example, Refs. [79–81]),

Xi �
XB�Li

XB�LQ

� C1 �
Yi
YQ
� C2; (8.4)

where C1;2 are free real parameters, such that the X charges
are integers, as was required earlier. Equation (8.3) can
then be reexpressed in terms of C1;2,
-11
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XQ � C1 � C2; X �D � �C1 � 2C2;

X �U � �C1 � 4C2; XL � �3C1 � 3C2;

X �E � 3C1 � 6C2; X �N � 3C1;

XHd
� �3C2; XHu

� 3C2:

(8.5)

For 2C1 � �5C2, we obtain a theory with SU�5�-invariant
X charges. For C1 � 0, the right-handed neutrinos are
charged and the seesaw mass term �Ni

�Nj is forbidden.
And, of course, for C2 � 0 we obtain U�1�B�L.

At low energy, we performed the hypercharge shift of
the DGS, Eq. (2.15). As we argued, this hypercharge shift
is irrelevant for the structure of the low-energy superpo-
tentials. From the top-down approach, however, a different
choice ofC2 corresponds to a hypercharge shift of the SSM
X charges, which in turn corresponds to a hypercharge shift
of the corresponding ZN . How does this change the high-
energy theory? The gauge boson and fermionic kinetic
terms in the Lagrangian are

L � �
1

4
F2
X �

1

4
F2
Y

�
X

� k�i@� � gXXkA
X
� � gYYkA

Y
��	

� k: (8.6)

Here F2
X;Y are the squared field strength tensors, and AX;Y�

are the corresponding gauge potentials. We see that a
simultaneous orthogonal rotation in the fields �AX�; AY��
and the charges �gXXk; gYYk� leaves the Lagrangian un-
changed. But different choices of C2 in Eq. (8.4), which
correspond to hypercharge shifted (not rotated) theories,
lead to distinct gauge theories in Eq. (8.6). They differ in
their X charges and thus in their scattering cross sections.
They are therefore, in principle, experimentally distin-
guishable at energies

���
s
p
� O�MX�. However, at the

LHC, we can only determine the low-energy DGS. We
cannot determine C2 of Eq. (8.4). When attempting to
interpret the LHC results in terms of an underlying unified
theory it is important to keep this ambiguity in mind.

Let us now focus on the �� SSM sector, i.e. including
the flavon field(s). Using the methods of Refs. [51,73], we
can compute the total X charge of any GSM-invariant
superpotential term and obtain

XSSM
total � Z � �3XQ1

� XL1
� � Z � �XHd

� XL1
�

� Z � �XHd
� XHu

� � Z � jX�j; (8.7)

where Z again denote arbitrary and independent integers.
Using Eq. (2.1), this gives

qSSM
total � Z � �3qQ � qL� � Z � �qHd

� qL�

� Z � �qHd
� qHu

� � Z � jX�j: (8.8)

We have seen that a hypercharge shift of the X charges
leads to a new U�1�X gauge theory. Such a shift is however
only possible for an originally anomaly-free model (see,
075007
e.g., the completely fixed X charges in Ref. [51]) and yields
an alternate anomaly-free model. Plugging the X charges
of Eq. (8.4) into Eq. (8.7), we find

XSSM
total � Z � 3C1 � Z � jX�j; (8.9)

of course independent ofC2 and thus of hypercharge. So all
the results on the operatorwise DGS coming from U�1�X
are solely determined by C1 and jX�j. This characteristic,
which we demonstrated for a simple example, also holds
for all nonanomalous models. This is why we could shift
away r in Sec. II. ForC1 � �C2, i.e. XQ � 0, the fieldwise
and operatorwise definitions of the DGS coincide.

Equipped with the X charges in Eq. (8.4), we now
demonstrate in two examples the emergence of distinct
operatorwise and superfieldwise DGSs from the U�1�X.
(i) C
-12
1 � 1, C2 � 0, supplemented by a vectorlike pair
of flavon superfields, X� � 6, X�0 � �6. Hence
the Yukawa operators have the total X charge
XLHd

�E � XQHd
�D � XQHu

�U � XLHu
�N � XHdHu

� 0,
but XLL �E � XLQ �D � X �U �D �D � XLHu

� �3.
To have, e.g., LL �E generated after U�1�X breaking
would require

�����
�
p
� LL �E, which is not allowed due

to the CDP. With Eq. (2.1) we get a superfieldwise
Z6, with qQ � 1, q �D � q �U � 5, qL � q �E � q �N �
3, qHd

� qHu
� 0. Plugging these into Eq. (8.8),

one finds that any superpotential term has an overall
q charge which is an integer multiple of either 3 or 6.
Thus the actual DGS of the operators is a Z6=3 � Z2

symmetry. This is matter parity, in fact.

(ii) C
1 � 2, C2 � 1 results in XQ � 3, X �D � 0, X �U �
�6, XL � �9, X �E � 12, X �N � 6, XHd

� �3,
XHu
� 3, again supplemented by X� � 6, X�0 �

�6. This leads to qQ � qL � qHd
� qHu

� 3,
q �D � q �U � q �E � q �N � 0. The DGS appears to be
a Z6=3 � Z2. However, inserting the charges into
Eq. (8.8), we find no DGS whatsoever.
Another example, more elaborate and flavor dependent,
is the fourth model in Table 2 in Ref. [82]. It does not cause
any DGS afterU�1�X breaking, as our second example. The
prefactors of the free parameter q (their notation) are
nothing but the usual hypercharges.

The argument that a superfieldwise ZjX�j
causes an

operatorwise ZjX�j=N is independent of whether the
U�1�X has anomalies which are canceled via Green-
Schwarz [83] or whether the U�1�X is nonanomalous.
The anomalous X charges given in Table 7 of Ref. [51]
display a SSM superfieldwise Z300 symmetry, but opera-
torwise constitute a Z2, as can be seen by plugging the
corresponding discrete charges into Eq. (8.8). A priori it is
hence not clear whether, e.g., a superfieldwise Z300 gives
rise to an operatorwise Z300, Z150, Z100, . . ., Z2 or even Z1

(trivial).
In summary, from a top-down point of view, hyper-

charge shifted theories are not equivalent. They are, in
principle, experimentally distinguishable by high-energy
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scattering experiments. If they are anomaly-free, they lead
to equivalent low-energy discrete gauge theories and are
not distinguishable at the LHC. But even a nonanomalous
set and an anomalous set of X charges are equivalent from
the low-energy point of view if they lead to the same
operatorwise DGS.
IX. A GAUGED P6 MODEL

In this section, we explicitly present a generation-
dependent U�1�X gauge model, constructed in collabora-
tion with C. A. Savoy and S. Lavignac. U�1�X is sponta-
neously broken to proton hexality, P6. We consider this a
demonstration of existence, not necessarily an optimized
model. Concerning the origin of the needed nonrenorma-
lizable interaction terms, there are several sources imagi-
nable (see, e.g., [84]): Either the terms occur near the string
scale or they are generated by integrating out heavy vector-
like pairs of GSM charged states (the so-called Froggatt-
Nielsen mechanism [85]). Here we adopt the first view-
point and thus use a simple operator analysis. We assume
the U�1�X breaking superfields to be suppressed by Mgrav;
e.g. Q1Hu

�U1 derives from ���=Mgrav�
8 �Q1Hu

�U1.
We first list in Table V theU�1�X charges of all the chiral

superfields in our model. The GSM singlets �� constitute
the vectorlike pair ofU�1�X breaking superfields with equal
VEVs. The A... are GSM singlets as well but do not acquire
VEVs; we introduce them solely for the sake of canceling
AGGX and AXXX. All the other (mixed) anomalies vanish
within the particle content of the SSM.

The breaking of U�1�X generates the MSSM Yukawa
coupling constants with textures that produce the observed
fermionic mass spectrum as well as acceptable mixing
matrices. Furthermore, U�1�X leaves a Z12 symmetry as a
remnant which, after integrating out the A..., yields P6:
(i) W
TABLE
model.
particle

Genera

1
2
3

XAD1
ith


 	
h��i

Mgrav
� 0:22; (9.1)

we obtain an effective superpotential which con-
V. The U�1�X charges of all chiral superfields in our
�� break U�1�X; the A... are GSM uncharged heavy

s.

X�� � 6, X�� � �6

XHd
� 1, XHu

� �49

tion i XQi
X �Ui

X �Di
XLi X �Ei

�12 13 �25 40 �77
�12 37 �13 40 �17

0 49 �13 40 �53

� � 27
2 , XAD2

� � 45
2 , XA0D1

� 1
2 , XA0D2

� 71
2 , XAM

� 3
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tains the first line of Eq. (1.1) and the mass terms for
the left-handed neutrinos (h�ij=M� � LiHuLjHu),
where

hU �


8 
4 
2


8 
4 
2


6 
2 1

0
BB@

1
CCA;

hD � 
2 �


4 
2 
2


4 
2 
2


2 1 1

0
BB@

1
CCA;

hE � 
2 �


4 
2 1


4 
2 1


4 
2 1

0
BB@

1
CCA;

(9.2)

�� 
8 �M�; h� � 
3 �

1 1 1
1 1 1
1 1 1

0
@

1
A: (9.3)

To get the � term and the neutrino masses of the
correct order of magnitude, we rely on the existence
of intermediate mass scales: M� � 108 GeV
(whose necessity has already been anticipated by
Refs. [82,86] for anomaly-free Froggatt-Nielsen
models without heavy GSM charged matter) and
M� � 1012 GeV. After diagonalization one gets
for the masses of the electrically charged SM fer-
mions mu:mc:mt � 


8:
4:1, md:ms:mb � 

4:
2:1,

me:m�:m� � 

4:
2:1, m�:mb:mt � 


2:
2:1. For the
mixing matrices we get an anarchical Maki-
Nagakawa-Sakata matrix, which is compatible
with experiment (see, e.g., Refs. [87–89]), as well
as a Cabibbo-Kobayashi-Maskawa matrix which
looks like

V CKM �
1 1 
2

1 1 
2


2 
2 1

0
B@

1
CA: (9.4)

Thus we have to rely on some moderate fine-tuning
among the unknown O�1� coefficients to be entirely
satisfactory.
Furthermore, we get the following mass terms for
the heavy fields:


6 �MgravAD1AD2; 
6 �MgravA0D1A
0
D2;


 �MgravAMAM:
(9.5)
(ii) A
fterU�1�X breaking we are left with an overall Z12

DGS, since jX��j � 6 and all SSM particles’ X
charges are integers and the A...’s X charges half-
odd integers. But as can be seen above, the A... are
quite heavy, so that they all can be integrated out at
around 
6Mgrav � 1014 GeV, leaving the fundamen-
tal (in the sense of Sec. V) DGS P6.
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X. SUMMARY

In summary, we have systematically investigated dis-
crete gauge symmetries ZN , for arbitrary values of N. We
have classified the anomaly-free theories, depending on
whether the necessary (see Sec. VII) heavy fermions are
restricted to integer X charges or not. Through a rescaling
of the X charges, we have, for a low-energy point of view,
reduced this infinite set to a finite fundamental set: All
theories related by rescaling lead to the same low-energy
superpotential. For this fundamental set we have investi-
gated the phenomenological properties in detail. We have
found two outstanding DGSs, the second of them being
beyond IR: (i) baryon triality, B3, which allows for low-
energy lepton-number violation, but no dimension-five or
lower proton decay operators, and (ii) proton hexality, P6.
The latter has a renormalizable superpotential which con-
serves lepton and baryon number and prohibits nonrenor-
malizable dimension-five proton decay operators. This is
one of the main results of this paper and we propose P6 as
the new discrete gauge symmetry of the MSSM, instead of
matter parity. Both baryon triality and proton hexality are
free of domain walls.
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Bajc, and especially Carlos A. Savoy for helpful discus-
sions, correspondence, or comments. C. L. thanks the SPhT
at the CEA-Saclay and M. T. the Physikalisches Institut,
Bonn, for hospitality. M. T. greatly appreciates funding
from the Alexander-von-Humboldt-Foundation. This
project is partially supported by the RTN European
Program No. MRTN-CT-2004-503369.
APPENDIX: THE CUBIC ANOMALY

In this appendix, we explicitly derive Table II. We thus
restrict ourselves to integer charges for all chiral super-
fields [24,25] and investigate the resulting consequences of
the cubic anomaly constraint on possible DGSs. Using
Eq. (2.17), we can express the LHS of Eq. (4.3) in terms
of n, p, and m,

LHS � �n � �13n2 � 18np� 21nm� 18p2 � 21m2�

� p � ��3p2 � 9pm� 9m2� � 3m3; (A1)

where we have made use of the fact that there are only three
generations in the SSM. Even when disregarding the re-
strictions on the heavy-particle content arising from the
linear constraints, the RHS of Eq. (4.3) cannot take on
arbitrary integer values. We shall denote it as RHS 	
RHS1 � RHS2 � RHS3, with a term for each line in
Eq. (4.3). We now investigate these terms individually.
(i) R
HS2: Factoring N, we see that the term RHS2

contributes a multiple of N to the RHS. However,
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it cannot necessarily take on every possible mul-
tiple of N, regardless of what the choice of heavy
particles is. For �3jN�, we can again write N � 3N0

(N0 2 N), and rewrite the last term as p3
jN

3 �
3p3

jN
2N0. We can thus factor 3N and therefore the

term RHS2 can take on at most values 2 3N � Z.
By adding appropriate sets of heavy Dirac particles
with simple charges, it is straightforward to show
that any multiple of 3N can be obtained. For DGSs
with :�3jN�, any element2 N � Z can be obtained.
(ii) R
HS3: For odd N, p0j0 has to be even [see Eq. (2.3)],
so that the term RHS3 is an element of N3 � Z. For
even N, RHS3 can take on all values 2 �N2�

3 � Z.

(iii) R
HS1: The first two terms in RHS1 are multiples of

3N, which is included in (i), above. Similarly, the
third term is a multiples ofN3 and therefore already
included in (ii).
Summarizing, the RHS of Eq. (4.3) can only take on
values obeying

RHS � 3N � Z�
�
N3 � Z; N � odd;
�N2�

3 � Z; N � even;
for �3jN�;

(A2)

�

8><
>:

9N0 � Z; �3jN�; N � odd;
9N
0

2 �Z; :�12jN�;
9N0�Z; �12jN�;

�
N � even;

(A3)

where N0 � N=3, as before. Furthermore

RHS � N � Z�
�
N
2

�
3
� Z; N � even; for :�3jN�:

(A4)

Now consider the LHS, while taking the linear con-
straints of Sec. II into account. Again, we investigate the
cases :�3jN� and �3jN� separately.
(1) :
�3jN�: The DGSs of Eq. (3.1), satisfying the linear
constraints, require n � p � 0 and m � N

2 . Thus
the LHS becomes 3 � �N2�

3 [cf. Eq. (A1)].
Comparing with Eq. (A4), we see that the cubic
anomaly cancellation condition can be satisfied for
all anomaly-free DGSs of Table I with :�3jN�, i.e.
the cubic anomaly results in no new constraint.
(2) �
3jN�: We consider the remaining four categories of
Table I in turn.

(i) �3jN�, N � odd: Eq. (A3) shows that the
RHS must be a multiple of 9N0. Therefore
the LHS must also be a multiple of 9N0.
From the corresponding row in Table I, we
see that in this case n � 0, p � ‘pN0, and
m � ‘mN

0. Inserting this into the LHS as
given in Eq. (A1) yields

LHS � ��3‘p
3 � 9‘p

2‘m � 9‘p‘m
2

� 3‘m
3� � N03: (A5)
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For the case where ‘p � ‘m, we can
satisfy the condition �9N0jLHS� for all N,
which are subsumed in this category, i.e. any
N 2 6 �N� 3. The remaining cases of
Table I, where ‘p � ‘m, require �3jN02�,
and hence N � 18 �N� 9.

(ii) �3jN�, N � even: From Table I we have in
this case n � 0, p � ‘pN

0, and m � sm
N0
2 .

The LHS then becomes

LHS � ��24‘p3 � 36‘p2sm

� 18‘psm2 � 3sm3� �

�
N0

2

�
3
: (A6)

Because of the form of the RHS for :�12jN�
[cf. Eq. (A3)], we need �9 N0

2 jLHS�. This
leads to three nontrivial possibilities for ar-
bitrary N in this category (N � 12 �N� 6):
�‘p � 0 ^ sm � 3�, �‘p � 1 ^ sm � 2�, and
�‘p � 1 ^ sm � 5�. All DGSs can satisfy the
cubic anomaly constraint if �3jN02�, hence if
N � 36 �N� 18.
Considering the case �12jN� yields exactly
the same three sets �‘p; sm� for nontrivial
possible DGSs with arbitrary N 2 12 �N.
All DGSs are allowed if �3jN02�, i.e. for N �
36 �N.
Combining the results for :�12jN� and
�12jN�, we find that for each N 2 6 �N
there are three allowed nontrivial DGSs.
Taking N 2 18 �N, any DGS satisfying the
linear constraints is compatible with the cu-
bic constraint.

(iii) �9jN�, N � odd: From Table I we obtain in
this case n � N0, p � �1� 3‘p�N

00, and
m � �2� 3‘m�N

00. Inserting this into
Eq. (A1) gives
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LHS � ��27‘p
3 � 27‘p

2��5� 3‘m�

� 9‘p��23� 18‘m � 9‘m
2�

� ��122� 18‘m � 108‘m
2

� 27‘m3�� � N0 � N002: (A7)

As 122 is not a multiple of 9, whereas
the other coefficients in the square brackets
are, �9N0jLHS� [which is necessary due
to Eq. (A3)] requires �9jN002�. Thus we
need N to be an odd multiple of 27, i.e.
N � 54 �N� 27. For such N, all linearly
allowed DGSs are consistent with the cubic
anomaly condition.

(iv) �9jN�, N � even: From Table I we have in
this case n � N0, p � �1� 3‘p�N00, and
m � �1� 3sm�

N00
2 . The LHS then becomes

LHS � ��216‘p3 � 108‘p2��13� 3sm�

� 18‘p��119� 18sm � 9sm2�

� ��1291� 585sm � 297sm2

� 27sm3�� �
N0

2
�

�
N00

2

�
2
: (A8)

1291 is not a multiple of 9 (it is actually a
prime), whereas the remaining coefficients
in square brackets are multiples of 9.
Therefore the LHS is not a multiple of 9 N0

2
in the case of :�12jN�, respectively 9N0 in
the case of �12jN� [cf. Eq. (A3)], unless
�9jN002�. Thus the cubic anomaly constraint
requires N 2 54 �N in this category. All
linearly allowed DGSs are possible for these
values of N.
Table II in Sec. IV summarizes the results of this
appendix.
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