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Radiative transitions in charmonium from lattice QCD
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Radiative transitions between charmonium states offer an insight into the internal structure of heavy-
quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form
factors of various multipolarities between the lightest few charmonium states. In addition, we compute the
experimentally unobservable, but physically interesting vector form factors of the �c, J= , and �c0. To
this end we apply an ambitious combination of lattice techniques, computing three-point functions with
heavy domain-wall fermions on an anisotropic lattice within the quenched approximation. With an
anisotropy � � 3 at as � 0:1 fm we find a reasonable gross spectrum and a hyperfine splitting�90 MeV,
which compares favorably with other improved actions. In general, after extrapolation of lattice data at
nonzero Q2 to the photopoint, our results agree within errors with all well-measured experimental values.
Furthermore, results are compared with the expectations of simple quark models where we find that many
features are in agreement; beyond this we propose the possibility of constraining such models using our
extracted values of physically unobservable quantities such as the J= quadrupole moment. We conclude
that our methods are successful and propose to apply them to the problem of radiative transitions involving
hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX
experiment.
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I. INTRODUCTION

Charmonium occupies a valuable intermediate position
within QCD, being neither in the purely nonrelativistic
regime nor the regime where chiral symmetry breaking
dominates the physics. This makes it a relatively clean
system in which to study nonperturbative QCD dynamics,
and indeed QCD-inspired quark-potential models as well
as lattice QCD have been rather successful in describing
the observed features of the spectrum [1]. However, char-
monium cannot be considered to be completely under-
stood; as an example, in recent years a number of new
charmonium resonances have been claimed in experiment
(see [2] for a review), several of which cannot be easily
reconciled with the predictions of simple quark-potential
models.

Unlike the light-quark sector, in charmonium the lightest
state for most JPC’s lies below the threshold for OZI-
allowed decay and consequently these states are rather
narrow. These states have been the subject of many calcu-
lations in lattice QCD which generally reproduce the gross
structure of the spectrum, but are unable to account for all
of the detailed fine structure (such as the 117 MeV J= �
�c splitting), owing to some combination of the approx-
imations inherent in the computations, which can include
the finite lattice spacing, quenching and lack of discon-
nected diagrams.

Masses are not the only well-measured charmonium
observables. Because of the small total width of these
lightest few states, radiative transitions between them con-
stitute large branching fractions and have been measured
address: dudek@jlab.org
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experimentally by a number of groups [3,4]. These quan-
tities have been studied within quark-potential models (and
latterly EFT approaches like pNRQCD) where they are
related to the overlap of meson wave functions with the
photon current operator and as such are an insight into the
internal structure of these states. QCD sum rules have also
been applied with some success [5]. No study of radiative
transitions in charmonium has yet been performed using
lattice QCD—it is this situation that we remedy in this
paper.

This study in the charmonium sector is an ideal test-bed
for our eventual aim of computing photocouplings in the
light-quark sector, in particular, the coupling between a
conventional meson, a photon and a hybrid meson. Such a
coupling drives the photoproduction mechanism proposed
by the GlueX collaboration for their experiment in Hall D
of the upgraded CEBAF at Jefferson Lab [6]. Flux-tube
model calculations [7,8] suggest that these couplings are
not small and that we may expect copious production of
hybrid mesons, but the assumptions underlying such a
model need to be tested in a framework closer to QCD.
This paper will focus on transitions between conventional
charmonium mesons, and we will proceed to transitions to
hybrid mesons in a subsequent work.

In Sec. II we outline the computational details of our
lattice calculation and in section III we present the char-
monium spectrum so obtained. In Sec. IV we explain how
three-point functions extracted from the computation can
be converted into multipole form factors and in Sec. V we
present lattice estimates for the vector form factors of the
lightest three charmonium states and compare with what
one would expect on the basis of simple quark models. In
Sec. VI we consider radiative transitions and discuss the
-1 © 2006 The American Physical Society
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extrapolation from the nonzeroQ2 accessible on our finite-
volume lattice to the relevant case of an on-shell photon.
Finally in Sec. VII we conclude, relegating the details of
Lorentz covariant multipole decompositions and scale set-
ting on anisotropic lattices to appendices.
1Disconnected diagrams will be discussed in Sec. IV.
II. COMPUTATIONAL DETAILS

The computations were performed in the quenched ap-
proximation to QCD, using the Chroma software system
[9]. We employed 300 configurations on a 123 � 48 lattice
generated using an anisotropic Wilson gauge action [10],
with a renormalized anisotropy � � as=at � 3. The tem-
poral lattice spacing obtained from the static quark-
antiquark potential is a�1

t � 6:05�1� GeV.
Anisotropic lattices as applied to charmonium exploit

the fact that while the quark mass scale demands a cutoff
above �1:5 GeV, the internal three-momentum scale is
typically much lower, �500 MeV. On our lattice, we can
have both mcat and j ~pjas reasonably small and a spatial
length * 1 fm without requiring very many spatial lattice
sites. We work on only one volume, Ls � 1:2 fm; previous
charmonium spectrum studies indicate that there are no
significant finite-volume effects for lattices of this size
or larger [11,12]. With this volume and anisotropy
the three-momenta accessible are ~p � 2�

�Lsat
�nx; ny; nz� �

1:06 GeV�nx; ny; nz�.
The quark propagators were computed using an aniso-

tropic version of the domain-wall fermion (DWF) action
[13] with a domain-wall height atM � 1:7, a fifth dimen-
sional extent L5 � 16, and a quark mass atmq. The con-
ventions used for the action are defined in Ref. [14]. In
terms of dimensionless variables � � a3=2

s  and �W� �

a�W�, where a0 � at and ak � as, k � 1, 2, 3. The kernel
of the domain action is the anisotropic Wilson fermion
action [15,16]:

atQ � �atM	 �t �Wt�4 	
�s
�0

X
k

�Wk�k; (1)

where the Wilson operator

W� � r� �
a�
2
����:

The parameter �0 in Eq. (1) is the bare anisotropy which is
determined in the gluonic sector so as to yield the desired
renormalized anisotropy �. The remaining parameters of
the action, mq, �s and �t represent the quark mass, and the
renormalization of the couplings in the spatial and tempo-
ral directions, respectively. The parameters �s and �t are
not independent; we will fix �t � 1 and then tune �mq; �s�
so as to yield the desired quark mass and such that the
speed of light obtained from the meson dispersion relations
be 1.0, as discussed in the next section.

While this computation is performed at only a single
value of the lattice spacing and hence no attempt can be
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made to determine the lattice spacing dependence of the
results, an important benefit to the use of the domain-wall
fermion action is that it is automatically improved to
O�a2�.

We anticipate that the quenched approximation will
not be a serious impediment to this study. In the
sub-D �D-threshold charmonium system we expect (on the
basis of previous lattice studies) that the dominant effect of
light quarks will be to modify the running of the strong
coupling. In the quenched approximation the QCD �
function is not properly reproduced, thus if we set our
lattice scale using a long-distance dominated quantity
(such as the 1P� 1S splitting or some intermediate dis-
tance in the static quark-antiquark potential) then we will
have a weakened coupling at short distances compared to
QCD. Hence within the quenched approximation we can-
not expect to correctly describe such short-distance-
dominated quantities as the hyperfine splitting, or meson
decay constants [17,18]. Our principal interest is with
radiative transitions, which are dominated by long-distance
wave function overlaps, and hence should not be consid-
erably distorted by the quenched approximation.
III. SPECTRUM

Charmonium masses and interpolating field overlap fac-
tors were extracted from fits to the connected two-point
functions,1 ��2�ij � ~p; t� �

X
~x

e�i ~p
 ~xh � �i � ~x; t� � �j �~0; 0�i �
X
N

Z�N�i Z�N��j

2E�N�
e�E

�N�t:

(2)

The fact we used local fermion bilinears as interpolating
fields limits us to the JPC listed in Table I.

In the previous section we discussed the need to have a
rather fine lattice spacing to ensure that charm quarks are
not ‘‘cutoff’’; a related problem arises from the two-
scaledness of the charmonium system. The scale which
dictates our choice of lattice spacing is the typical mass of
a charmonium state �3 GeV, while the level spacing e.g.
J= �  0 �600 MeV, is much smaller. This second scale
indicates how fast, relatively, the excited state exponentials
in Eq. (2) fall off with t, which we see will be rather slow,
so that it is possible at finite times to get contributions from
many excited states. This is not the case with light quarks
where the level splitting is of the same size as the ground-
state mass (e.g. 	�770�, 	�1450�). Because many excited
states can be contributing during the finite temporal-extent
of our lattice, we are unlikely to reach a plateau and as such
extracting the ground-state mass is nontrivial.

We can reduce this problem somewhat if we improve the
overlap of the interpolating field on to the ground state by
-2
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smearing it over space. We do so using a gauge-invariant cubic approximation to a rotationally symmetric Gaussian,

�
1�

3
2

2N

��
1	


2=4N

1� 3
2=2N

X3

i�1

�Ux;i�x;x	î 	U
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�x;x�î


�
N ���!
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2r2=4: (3)
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With the right smearing radius this will resemble the
ground-state wave function and maximize the overlap,
while the excited states, which have radial nodes, will
have a decreased overlap.

We computed two-point functions with smearing radii

 � 0:0, 3.6, 4.0. For the case 
 � 3:6, we attempted to
reduce gauge fluctuations by smearing the gauge links
entering into Eq. (3) using the gauge-invariant procedure
(APE) introduced in ref. [19]. For 
 � 3:6, 4.0 we used
N � 32, 50, and 5, 0 APE smearing iterations.

We display effective mass plots in Fig. 1, where the
oscillations in the first few time slices are an artifact of
the nonlocality of the DWF action in four dimensions. The

 � 3:6 smeared-smeared data has reasonable plateaux, at
least for the �c,  , and �c0.

Our fitting procedure is as follows. Given a set of
interpolating operators fOig, we can construct the matrix
of time sliced correlators

��2�ij � ~p; t� �
X
~x

e�i ~p
 ~xhOi� ~x; t�O
y
j �0�i

�
X
N

Z�N�i � ~p�Z
�N��
j � ~p�

2E�N�
e�E

�N�t; (4)

where

Z�N�i � ~p� � h0jOijN� ~p�i:

If we had computed every element of the ��2�ij , then we
could apply a variational method to diagonalize the system.
However, in general we have an incomplete matrix,
with several sink operators for each source operator.
Thus we employ a ‘‘factorizing’’ fit to this incomplete
matrix of correlators, in which the fitted parameters are
fE�i�; Z�i�j : j � 1; . . . ; Nop; i � 1; . . . ; Nexpg, where there are
TABLE I. Local interpolating fields, � � and extracted char-
monium spectrum, using the determination of the lattice spacing
as described in the text.

� JPC m�0�=MeV m�1�=MeV

�5 0�	 �c 2819(4) 3621(17)
�k 1��  2916(4) 3810(22)
1 0		 �c0 3287(14) 4168(52)
�5�k 1		 �c1 3401(28) 
 
 


�ijk�
i�j 1	� hc 3374(35) 
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Nop operators used in the fit, and we includeNexp states. We
assume that the residues of the fit factorize according to
Eq. (4) and that as demonstrated in Appendix B, the Z’s are
4 6 8 10 12 14 16 18 20 22 24 26
t

0.45

0.475

0.5

γ5

γk

FIG. 1 (color online). Effective mass plots (at ~p � �000�)
using local interpolating fields. Dashed lines and rightmost
data point show the ground-state mass obtained from the multi-
correlator fit. (a) smeared (
 � 4:0)-local (b) smeared
(
 � 3:6)-local (c) smeared (
 � 3:6)-smeared (
 � 3:6).
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FIG. 2 (color online). Data (
 � 3:6� 
 � 3:6)-fit percentage deviation, ��2� � 100data�fit
data . Black points indicate the contribution

of the ground-state to the fit, the red points include both the ground and first excited states. (a) �c��5�, ~p � �000�, (b) �c��5�, ~p �
�100�, (c)  ��k�, ~p � �000�, (d)  ��k�, ~p � �100�, (e) �c0�1�, ~p � �000�, (f) �c0�1�, ~p � �100�, (g) �c1��k�5�, ~p � �000�,
(h) hc��ijk�i�j�; ~p � �000�.

2Consider, in particular, the vector channel where the second
excited state  �3770� is very near to the first  �3686�, although
its 3D1 nature may lead to a reduced overlap with the local
interpolating field.
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real. In practice we include the three smearing combina-
tions shown in Fig. 1 for each JPC and where possible fit to
the ground state plus one excited state. For the �c1 and hc
the noise on the data allowed for only inclusion of the
ground state in the fit.

In order to propagate statistical error due to the finite
number of gauge field configurations through our calcula-
tions we adopt a single-elimination jackknife procedure.
For the two-point function fits we remove from the en-
semble one configuration and average the remaining two-
point functions. The factorizing fit is performed on this
average yielding a value for each of the fit parameters
�Z; E�. This is repeated for each configuration yielding an
ensemble for the fit parameters over configurations. These
are saved for later use in the three-point function
calculations.

Fits are shown in Fig. 2 and Table I.
The ground-state masses extracted are observed to be

systematically around 5% lighter than the experimental
masses—this is a result of imperfect tuning of the quark
mass parameter; for this first study of radiative transitions
we did not attempt a more accurate tuning.

We extract a J= � �c hyperfine splitting of 97(6) MeV.
This is probably 10% larger than it would be if we had
correctly tuned the quark mass, assuming the hyperfine
splitting scales like m�2

c ; with this correction we are in
rather good agreement with the result 88(4) MeV from the
closely related overlap fermion action on an isotropic
lattice at Wilson � � 6:3 [20]. These two results are sig-
nificantly larger than typical results using other improved
actions such as clover. Assuming that there is very little
change in scaling to the continuum this leaves a deviation
from experiment of �30 MeV, which is consistent with
the sort of deviations suggested by unquenching [17,21]
and inclusion of disconnected diagrams [22,23].
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The excited state masses we are able to extract are
clearly too large in comparison with experiment. The
same effect was observed in the anisotropic clover study
of [24] when they set their scale using r0, and to a lesser
extent in the studies of [16,25]. One possible explanation
may be that, as discussed above, several excited states are
contributing at intermediate times and that our fitting is not
able to fully resolve them such that we end up with one
effective excited state ‘‘mocking up’’ the effect of several.2

Including a second excited state into the fit hypothesis did
not produce stable fits.

The multicorrelator fits were performed on the data with
many ~p to determine the dispersion relation for our meson
states. This is particularly relevant on an anisotropic lattice
where parameters in the fermion action must be tuned to
match the gauge sector anisotropy and set the speed of light
c2 � E2� ~p��m2

~p2 equal to one. The results are shown in Fig. 3

where we observe that our tuning was good to the 3% level
on c � 1:032�9�.

A. Charmonium decay constants

Apart from the hyperfine splitting, the only other quan-
tities we consider that might be significantly distorted by
the quenched approximation are decay constants, which
are related to the meson wave function at the origin and are
hence sensitive to short-distance physics. We discussed
above that since we set the scale using long-distance
dominated quantities, we expect distortion of short-
distance quantities owing to the incorrect running of the
-4
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FIG. 3 (color online). Speed of light extracted from meson
dispersion relation: c2 � E2� ~p��m2

~p2 .
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QCD coupling. To be specific, the quenched coupling at
short distances is too small and as such we expect the wave
function at the origin to be depleted and hence the decay
constants to be too small with respect to experiment.

We define the �c and  decay constants via3

h0jA�j�c� ~q�i � h0j � �0����5 �0�j�c� ~q�i � if�cq
�

h0jV�j � ~q�i � h0j � �0��� �0�j � ~q; 
�i � m f �
�� ~q; 
�:

(5)

In the pseudoscalar (P � � �5 ) case we can form the
following object

~f�c �

2ZA
P
~x
hP
� ~x; t�A0i

Z�0�
 �e�m
�0�t � e�m

�0��48�t��
;

where the subscript 
 indicates that the interpolating field
is smeared with radius 
 and where the superscript (0)
indicates the ground state. The renormalization of the local
axial current, ZA, will be discussed in the next section.
Using (5), ~f�c is equal to

f��0�c 	 f��1�c
Z�1�


Z�0�


e�m
�1�t � e�m

�1��48�t�

e�m
�0�t � e�m

�0��48�t�
	 . . . : (6)

We fit the lattice data over the range t � 9� 22 with this
form using the Z�0;1�
 , m�0;1� found in the earlier two-point
function fits and considering f�0;1��c to be free fit parame-
ters—the result for the smearing choice 
 � 3:6 is shown
in Fig. 4(a).

We can perform an analogous fit to the vector two-point
data,
3An alternative definition for the vector decay constant is often
used in lattice simulations.
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~fJ= �

2ZV
P
~x

P
i
hVi
� ~x; t�V

ii

3Z�0�
 �e�m
�0�t 	 e�m

�0��48�t��

� f �0� 	 f �1�
Z�1�


Z�0�


e�m
�1�t 	 e�m

�1��48�t�

e�m
�0�t 	 e�m

�0��48�t�
	 . . . (7)

the resulting fit with
 � 3:6 being shown in Fig. 4(b). The
renormalization of the local vector current, ZV is discussed
in the next section.

Experimentally, the vector decay constants can be ex-
tracted from the leptonic decay widths,4

�� ! e	e�� �
4�
3

4

9
�2

f2
 

m 
;

so that, using the PDG averages [3] we have fJ= �
411�7� MeV and f 0 � 279�8� MeV. The �c decay con-
stants are rather more difficult to measure; the only result
available comes from B! �cK [27] and involves using a
factorization approximation to yield f�c � 335�75� MeV.
It is clear that within errors fJ= � f�c as one would expect
from the nonreltivistic quark model in which the J= and
the�c differ only by v=c suppressed spin-dependent terms.

From our fits we extract (the scale setting on an aniso-
tropic lattice is discussed in Appendix C)

jfJ= j � 399�4� MeV; jf�c j � 429�4��25� MeV

jf 0 j � 143�81� MeV; jf�0c j � 56�21��3� MeV:

The first error is statistical and the second, estimated
systematic error, is of order 5% and accounts for the small
violations of ZV � ZA we find for our domain-wall fermi-
ons, see the following section for details.

The ground-state values are in reasonable agreement
with the experimental extractions, perhaps indicating that
even here, with a short-distance dominated quantity, the
quenched approximation is only impacting at the few
percent level. It is important however to recall that our
charm-quark mass is a little small, and it is possible that the
discrepancy caused by this is approximately canceling the
quenching discrepancy. A further calculation with a
slightly larger quark mass would allow for an interpolation
to the true charm-quark mass and a more precise estima-
tion; since our primary interest is with radiative transitions,
this additional computation has not yet been carried out.

The excited state decay constants extracted are some-
what smaller than one might expect, however we recall that
we were not very successful in extracting the experimental
masses for these states from two-point functions. It is
possible that the excited state exponential is absorbing
the effect of several excited states—a more systematic
Note that we do not include the explicit ‘‘QCD correction’’
factor �1� 16

3��s� [26] under the assumption that all gluon
effects, even hard gluons close to the charm-quark mass scale,
are included in the path integral computed.

-5
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FIG. 4 (color online). Data points and fits (t � 9–22)—see Eqs. (6) and (7). The black line indicates the ground-state contribution,
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study of interpolating fields with the intent of isolating a
field with large overlap on to the first excited state would
clarify the issue.
IV. THREE-POINT FUNCTIONS

The field theoretic quantity that most simply encodes
radiative transitions is the three-point function:

��3�f�i� ~pf; ~q; tf; t� �
X
~x; ~y

e�i ~pf
 ~xe	i ~q
 ~y

� hOf� ~x; tf� � � � ~y; t�Oyi �~0; 0�i: (8)

The Oi;f are interpolating fields chosen to have some
overlap with whatever meson states we are interested in.
The current insertion, � � , in our case is chosen to have
vector quantum numbers so as to attach to an external
photon. If we opt to use fermion bilinears for the meson
interpolating fields, the possible Wick contractions fall into
three classes:
(a) th
(a)

FIG. 5.
tions. (
e connected diagram of Fig. 5(a);

(b) d
isconnected diagrams where an intermediate state

without charm quarks appears, e.g. Fig. 5(b);

(c) d
iagrams in which the photon couples to a closed

fermion loop, e.g. Fig. 5(c).

Disconnected diagrams of the type in Fig. 5(b) should be

small—in charmonium, OZI suppression is believed to be
(b) (c)

Wick contractions for charmonium three-point func-
a) connected, (b) OZI-suppressed, (c) disconnected loop.
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strong, which has at least a partial explanation in QCD
perturbation theory since there the intermediate two or
three gluon state is suppressed as a power of �s (��
mc). We do not calculate diagrams of this type in the
current computation.

Diagrams with the photon coupling to a closed fermion
loop, as in Fig. 5(c), are zero in the case of form factors
(i � f), on the basis of charge-conjugation invariance of
the QCD action [28]. In the case of transitions (i � f),
while the ‘‘C-odd’’ connected two-point function vanishes
in the ensemble average, the inclusion of the ‘‘C-odd’’
disconnected loop acts to compensate leaving a nonzero
quantity. In the light-quark sector such a diagram would be
required to allow ! or � VMD-style processes, although
such disconnected contributions to the QCD vector corre-
lator two-point functions are believed small as evinced by
the small empirical !–� mixing, and hence are unlikely to
contribute much to the transitions under study. In addition,
in the particular case that the vector current is electromag-
netic, we also have a suppression of this disconnected
contribution owing to the sum of u, d, s-quark charges
being zero and there being an approximate SU�3� flavor
symmetry. In our quenched charmonium calculation we
might consider allowing a charm-quark loop, but we expect
the contribution to be small dynamically owing to the large
charm-quark mass and we do not explicitly include it in our
computation.

We are left with the connected diagrams, Fig. 5(a), with
the possibility of light-quark loops removed since we are
working in the quenched approximation. We compute
these diagrams on the lattice using the sequential source
technique [29]. This is simply a lattice technology that
enables computation of the required propagators with
only two inversions of the Dirac matrix and without com-
puting an all-to-all propagator. The connected three-point
function written in terms of fermion propagators
G��
ij �x; y� �  �i �x� � �j �y� is
-6
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��3�f�i� ~pf; ~q; tf; t� � �
X
~x; ~y

e�i ~pf
 ~xe	i ~q
 ~y

� trhG�0; x��fG�x; y��G�y; 0��ii:

In the sequential source technique, this is factorised as

��3�f�i� ~pf; ~q; tf; t� ��
X
~y

e	i ~q
 ~y

� trh�5H
y
�f
�y;0; tf; ~pf��5�G�y;0��i�5i;

with

H�f �y; 0; tf; ~pf� �
X
~x

ei ~pf
 ~xG�y; x��5�yf�5G�x; 0��5:

If the propagator G�y; 0� is computed via an inversion of
the Dirac matrix, Mik

���x; z�G
kj
���z; y� � �ij����xy, then

one can obtain H�f �y; 0; tf; ~pf� via one further inversion
using G�y; 0� in the inversion source,

M�z; y�H�f �y; 0; tf; ~pf� � �tz;tfe
i ~pf
~z�5�yf�5G�z; 0��5:

The cost is that we have specified the momentum
and species of the sink particle and thus we must
perform a new calculation for each new particle or
momentum. For this reason we performed simulations
only with ~pf � �000� and (100). We are able, however,
in this formalism to insert any current, �, with any mo-
mentum, ~q. Our particular interest is with the vector in-
sertions � � ��. In addition, we can insert any meson
source gamma matrix structure �i without further
inversions.

The three-point function can be related to meson matrix
elements of the vector current by inserting complete sets of
states into (8) yielding

RADIATIVE TRANSITIONS IN CHARMONIUM FROM . . .
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��3�f�i� ~pf; ~q; tf; t� �
X
f;i

e�Eftfe��Ei�Ef�t

2Ef� ~pf�2Ei� ~pi�

� h0j � �f �~0; 0�jf� ~pf; rf�i

� hf� ~pf; rf�j � � �~0; 0�ji� ~pi; ri�i

� �h0j � �i �~0; 0�ji� ~pi; ri�i�
�;

so that (in Euclidean space) we have a sum of decaying
exponentials. If t is sufficiently far from 0 and tf the
excited state contributions should have decayed away leav-
ing us with only the ground-state transition matrix element.
The removal of the excited state contributions is assisted by
using the interpolating field smearing choices we made to
improve plateaux in the two-point functions.

In our computation we place the source at t � 0 and the
sink at t � 24 and consider insertions of the vector current
on all time slices. Since we have an antiperiodic lattice of
length 48, this makes the second half of the lattice sym-
metric with the first and in practice we average the two
halves to get our form factor results, thus improving the
statistics.

The energies of meson states and the overlap of the
interpolating fields with given states (Z) are extracted
from the meson two-point functions as described in
section III. This allows us to adopt a fitting method for
extraction of matrix elements from the three-point func-
tions. The procedure involves writing the three-point func-
tion on a given time slice as the sum of products of a
(known) propagation factor P � ZfZi

4EfEi
e�Eftfe��Ei�Ef�t, a

(known) kinematic factor (e.g. K� � �pf 	 pi�� for the
�c���c case) and an unknown form factor, i.e.

��pf; pi; t� �
X
n

P�pf; pi; t� 
 Kn�pf; pi� 
 fn�Q2�:

One can then form a vector of three-point functions that all
have the same Q2 � j ~pf � ~pij2 � �Ef � Ei�2 (i.e. rota-
tionally equivalent momentum combinations and different
combinations of Lorentz indices, labeled here by
a; b; c . . . ) and a matrix with entries PK, to define a linear
system
��a; t�
��b; t�
��c; t�

..

.

266664
377775 �

P�a; t�K1�a� P�a; t�K2�a� . . .
P�b; t�K1�b� P�b; t�K2�b�
P�c; t�K1�c� P�c; t�K2�c�

..

. . .
.

266664
377775

f1�Q
2��t


f2�Q2��t


..

.

2664
3775;
which we can invert with SVD to find the form factors
fn�Q

2��t
.
Single-elimination jackknife is implemented such that

statistical errors are propagated through the inversion pro-
cess. This proceeds by eliminating one configuration and
averaging the remaining three-point function ensemble for
use in the right-hand-side above and computing the propa-
gation and kinematic factors using the equivalent ‘‘single-
elimination bin’’ from the Z, E ensemble extracted from
the two-point function fits. The SVD inversion is then
-7
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spatial data are obviously compatible with this.

0 2 4 6 8 10 12 14 16 18 20 22
t

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

V̂
(Q

2 )[
t]

Q
2
 = 1.06 GeV

2

Q
2
 = 2.06 GeV

2

Q
2
 = 3.00 GeV

2

0 2 4 6 8 10 12 14 16 18 20 22
t

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

^ V
(Q

2 )[
t]

Q
2
 = 0.99 GeV

2

FIG. 6 (color online). Examples taken from J= ! �c�
(a) plateau fits (b) fit by the function (9), parameters are V̂�Q2� �
�1:55�1�, fi � 1:45�3�, ff � �0:42�14�, mi � 0:41�1�, mf �

0:27�7�.

DUDEK, EDWARDS, AND RICHARDS PHYSICAL REVIEW D 73, 074507 (2006)
performed for this ‘‘single-elimination bin.’’ This is re-
peated for elimination of each configuration yielding a
configuration ensemble of solutions ffng.

The form factors fn�Q2��t
 should have no t dependence
once excited states have decayed away—i.e. they have
plateaux. This linear inversion formalism can also include
excited state contributions explicitly, provided their ener-
gies and Z’s have been extracted from the two-point func-
tions—we would simply enlarge the space of the linear
system. In the present analysis we consider only ground-
state contributions—our poor estimation of the mass of
excited states leads us to suspect that we are not able to
isolate purely the first excited state. In a few cases we will
find that an fn�Q2��t
 does not reach a plateau within the
available time, in such cases we fit in a region around t �
12 (away from the domain-wall oscillations near t � 0,
24), with a form

fn�Q
2��t
 � fn�Q

2� 	 fie
�mit 	 ffe

�mf�24�t�; (9)

with fn�Q2�, fi, ff, mi, mf as variables. A typical result of
this fitting is shown in Fig. 6(b). Our lack of control over
the contribution of excited states is demonstrated by the
extracted masses, mi;f, which are typically considerably
larger than expected on the basis of either the true or our
lattice first excited state masses. These fits are rather
successful, suggesting that the single exponential pollution
hypothesis is reasonable even though we expect contribu-
tions from several excited states—a possible explanation
might arise if alternating excited state contributions oscil-
lated in sign (either from the Z-factors or from the excited
state transition matrix elements) [30]. In the following
sections, f�Q2� points extracted in this manner are dis-
played in figures by ghosted shapes while points with a
clear plateau appear with solid lines.

A possible explanation for the large values of mi we
observe comes from an alternate time-ordering allowed by
our antiperiodic lattice. The periodicity implies that there
is an image of the sink at t � �24, such that with the
‘‘current’’ insertion at time slice t > 0 there is a process:
creation of sink particle with �f at t � �24, insertion of a
current �i at t � 0 and annihilation of a vector particle by
�� at t. This process has time dependence e�24Efe�E � ~q�t,
which would correspond in the  � �c case to mi �

E � ~q� � 0:5 in lattice units. A limited computation of
three-point functions with Dirichlet boundary conditions
appears to confirm this hypothesis.

In practice we can access a number ofQ2 values through
projecting various momenta at the sink and the insertion.
At the sink we are limited by the sequential source tech-
nique and only use ~pf � �000�, (100), but at the insertion
we project many momenta, corresponding to ~pi up to
around (211). Higher momenta were calculated but the
signals were increasingly noisy. We used smearing at
both source and sink with 
 � 3:6.
074507-8
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A. Current renormalization

We utilize the simple local vector current, � �x��� �x�,
which is not conserved with a discretised fermion action
and as such gets multiplicatively renormalized by a factor
ZV�a�. We extract ZV using a ratio of two-point and three-
point functions evaluated at Q2 � 0, which in the case of a
temporal vector current is not polluted by excited state
transitions [31]. For the �c and the �c0 we use

Z���V �t� �
p�

E� ~p�

1
2�
�2�
�c�c� ~p; tf � 24�

��3��c���c� ~pf � ~pi � ~p; tf � 24; t�

where the factor of 1
2 accounts for the equal contribution to

the two-point function of the source at time slice 0 and the
image of the source at time slice 48 (recall that we have a
temporally antiperiodic lattice). For the spin-1 particles
�J= ; �c1; hc� we use

Z���V �t� �
p�

E� ~p�

1
2

P
k

��2� k k� ~p; tf � 24�

P
k

��3� k�� k� ~pf � ~pi � ~p; tf � 24; t�
:

Since we are working on an anisotropic lattice the renor-
malization of the spatial and temporal components of the
vector current could, in principle, differ. The extracted ZV
are shown in Fig. 7 where it is clear that there is no
significant dependence upon the particle used in the ex-
traction. The �c extraction is cleanest and gives:

Z�0�V � 1:1803�2�; Z�k�V � 1:130�13�:

Note that these numbers differ by a factor comparable to
the c values extracted in the dispersion relation analysis,
indicating that wherever a three-momentum ~p appears we
should in fact insert an explicit c � 1:032 to account for
the imperfect dispersion. In what follows we will adopt this
prescription for the momentum and use the temporal ZV .

The renormalization factor, ZA, for the four dimensional
axial current operator A� � � ���5 is calculated using
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FIG. 8 (color online). �c form factor (a) typical
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the five dimensional conserved axial current for domain-
wall fermions A� by the relation [32] hA��t�A��0�i �
ZAhA��t�A��0�i. In the limit of L5 ! 1, ZV � ZA.
However, at finite L5 there is a breaking of chiral symmetry
that is characterized by a additive (and positive) quark
mass shift called the residual mass mres. The difference
of ZV from ZA is proportional to this residual mass. The
latter we find to be consistent with isotropic Wilson gauge
calculations at the same spatial lattice spacing [32].

V. CHARMONIUM VECTOR FORM FACTORS

Charmonia, unlike charged or flavored mesons, do not
have radiative form factors owing to them being eigen-
states of charge-conjugation invariance. At the quark level
this comes about through the photon coupling to both the
quark and the antiquark with equal strength. In our lattice
computation we insert the vector current only on the quark
line and are thus able to access its distribution within the
meson. This can be compared to models.

A. �c ‘‘form factor’’

This is defined by the matrix element decomposition

h�c� ~pf�jj
��0�j�c� ~pi�i � f�Q2��pi 	 pf�

�: (10)

In Fig. 8(a) we display some typical f�Q2��t
 as extracted
from our simulation in the manner described in the pre-
vious section. We see clear plateau behavior away from the
source and sink points which is fitted and a value of f�Q2�
obtained. These points are displayed in Fig. 8(b). Also
shown is the expectation of VMD using the J= mass
found in section III, this is seen to give a very poor
description of the data in contrast to what is found in the
light-quark sector for the pion form factor [29]. This is to
be expected on the basis of a dispersion equation ap-
proach—in the light-quark sector, the 	 pole is the nearest
left-hand vector singularity in the complex Q2 plane and
the next nearest (neglecting multipion cuts and isospin
suppressed poles) is the excited 	0�1450� which is rela-
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tively distant. In charmonium the nearest pole is the
J= �3097� and the next nearest the  0�3686� which is not
sufficiently distant as to be negligible. Hence in charmo-
nium it is likely that one needs to sum many vector meson
poles (of unknown residue) to agree with Q2 > 0 data.

We take the more pragmatic approach of fitting the
(Q2 > 0) data to a simple analytic form, exp�� Q2

16�2�1	

�Q2�
. This fit is also shown in Fig. 8(b) where one can see
it faithfully reproduces the data over the entire Q2 range
considered. The fit parameters so obtained are

� � 480�3� MeV; � � �0:046�1� GeV�2:

One can define a squared ‘‘charge’’ radius by hr2i �

�6 d
dQ2f�Q2�jQ2�0 �

6
16�2, which yields

��������
hr2i

p
�

0:255�2� fm, giving some a posteriori justification for
our lattice size being only �1:2 fm.

As mentioned in the introduction, most charmonium
phenomenology is done within the framework of
quark-potential models. These models are usually of the
nonrelativistic Schrödinger equation type, utilising some
phenomenologically justified static potential and incorpo-
rating relativistic corrections to this, such as spin-spin and
spin-orbit terms. By and large these models are successful
so it makes sense for us to compare our lattice results with
them in cases where there is not experimental data.

In the simplest forms of these models we have only
Galilean invariance and not the full Lorentz invariance of
a relativistic theory. This is manifested in the factorization
of the spatial wave function of a charmonium state into
center-of-mass and internal wave functions:

j�c� ~p�i /
Z
d3 ~Rei ~p: ~R

Z
d3 ~r � ~r�;

with  � ~r� independent of the �c momentum ~p, obtained by
solving a Schrödinger equation in the rest frame of the �c.
This poses problems of frame-dependence when one cal-
culates matrix elements. Consider calculating f�Q2� using
Eq. (10) within this model. We want to work in a frame
near to the one in which the �c wave function was calcu-
lated, to minimize the neglected boost effects, two choices
strike us:
(i) t
5Comparing a calculation using full Dirac spinors with the
more typically applied nonrelativistic spinors one obtains just
such a suppression [36].
he rest frame of the initial �c ( ~pi � 0, ~pf � ~q).
Here only the end-state �c could suffer boost dis-
tortion. We have

f
�
Q2 � 2m2

�c

�
�1	

�
1	
j ~qj2

m2
�c

�
1=2
��

/
Z
d3 ~r ��~r�j0

�
j ~qjr

2

�
 �~r�:

With approximate harmonic oscillator wave func-
tions ( � ~r� / e��

2r2
) we obtain
074507-10
fRF�Q
2� ! exp

�
�
j ~qj2

16�2

�

� exp
�
�

Q2

16�2

�
1	

Q2

4m2
�c

��
(ii) t
he Breit frame ( ~pi � �
~q
2, ~pf �

~q
2). Here we share

the possible boost distortion equally between the
initial and final states. The quark-model evaluation
of the matrix element will be essentially identical to
the previous case with the only difference being that
now Q2 � j ~qj2. Hence

fBF�Q2� ! exp
�
�
j ~qj2

16�2

�
� exp

�
�

Q2

16�2

�
and we explicitly see the frame-dependence of the
simplest quark models (fBF�Q2� � fRF�Q2�).
If Q2 is small, all frames will agree, and it is really only
here that we have a unique quark-model form. In [33], a
thorough analysis of these concerns is applied to the case
of the proton form factors.

We note in passing that light-front quark models have
the same sort of problems—although boosts along a given
axis become simple (kinematical), which may admit con-
sistency up to higher Q2, we lose rotational invariance, and
this can lead to extra form factors not present in a picture
with O�3� symmetry [34].

In the quark-model of ISGW [35], form factors have a
dependence near Q2 � 0 of the form exp�� Q2

16�2�2
, with

�� 0:7. The � factor was added by hand to better describe
the pion form factor and certain heavy-quark transitions
and was ascribed an origin in relativistic corrections.5 An
alternative origin might be the effect of gluonic degrees-of-
freedom not considered in the simple potential model
[37,38]. In [39] a Schrödinger equation with a Coulomb
plus linear potential and spin-dependent corrections was
solved using a variational harmonic oscillator basis—they
found for the �c that � � 710 MeV. Hence �� �
500 MeV which is in rather good agreement with our � �
480�3� MeV, suggesting that the potential model, with the
relativistic correction, is capturing at least some of the
Q2 � 0 physics we have on the lattice.

B. J= ‘‘form factors’’

A vector particle has three form factors, a suitable set
being those of definite multipolarity: charge—GC�Q

2�,
magnetic dipole—GM�Q

2� and quadrupole—GQ�Q
2�.

These are defined in terms of the standard Lorentz cova-
riant decomposition
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hV� ~pf; rf�jj
��0�jV� ~pi; ri�i � ��pf 	 pi�

�
�
G1�Q

2���� ~pf; rf� 
 �� ~pi; ri� 	
G3�Q2�

2m2
V

��� ~pf; ri�:pi�� ~pi; ri�:pf

�
	G2�Q2����� ~pi; ri���� ~pf; rf�:pi 	 ���� ~pf; rf��� ~pi; ri�:pf

by

GC � �1	
2
3��G1 �

2
3�G2 	

2
3��1	 ��G3

GM � �G2 GQ � G1 �G2 	 �1	 ��G3;

with � � Q2

4m2. In Fig. 9 we display our lattice points and a
fit to them. The charge multipole is fitted by the same
function we used for the �c with resulting parameters:

�C � 470�7� MeV; � � �0:022�7� GeV�2: (11)

This similarity of these parameters to those extracted for
the �c indicate that these two particles have spatial wave
functions that are rather alike. The magnetic dipole and
quadrupole form factors, displayed in Fig. 10, have fits of
the form G�0� exp� Q2

16�2 which are seen to be successful
and yield

�M � 520�8� MeV; GM�0� � 2:10�3�

�Q � 580�44� MeV; GQ�0� � �0:23�2�:

The quadrupole form factor at Q2 � 0 gives us the quad-
rupole moment of the J= and, via a quark-model inter-
pretation, access to the quark-antiquark D-wave admixture
in the dominantly S-wave J= . The quadrupole moment
operator is [40] Q � r2�3cos2�� 1� � �16�

5 

1=2r2Y0

2��;��.
Then it is clear that hSjQjSi � 0, while hSjQjDi � 0. In
the approximate harmonic oscillator basis, we have

hJ= jQjJ= i � 2
���
3
p
aSaD�

�2;

where aL is the L-wave amplitude in the J= wave func-
tion. Since GQ�0� � m2

J= hQi, using our lattice J= mass
we have hQi � �0:027�3� GeV�2. With the extracted
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FIG. 9 (color online). J= charge form factor.
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quadrupole �Q value, and assuming aS � 1 we find aD �
�2:6�5� � 10�3. This very small value can be used to
constrain the size of any tensor term one might wish to
add to a charmonium model Hamiltonian. We remind the
reader that any contribution from coupled-channel D �D
loops will not be present in our quenched computation.

The magnetic dipole moment, �J= , can be extracted
usingGM�0� � 2MJ= �J= —in units of the J= mass it is
1.05(2). Within the simple nonrelativistic quark model this
quantity can be expressed as

�1	 ����1	 �c�jaSj
2 	 1

4�1� 2�c�jaDj
2
;

where � �
MJ= �2mc

2mc
and �c is the anomalous magnetic

moment of the charm quark. With the D-wave admixture
extracted from the quadrupole moment, the second term in
square brackets is negligible. If one had a way of unam-
biguously setting the charm-quark mass one could use this
expression to extract the charm-quark anomalous magnetic
moment—however this is not possible even in principle—
the quark mass is a renormalisation scheme dependent
quantity. In quark-potential models it is usually tuned
along with other parameters to give a good description of
the spectrum. A conservative interpretation of our ex-
tracted value would be that it could be explained in a model
with a small or zero anomalous quark moment and a
charm-quark ‘‘mass’’ slightly less than half the J= 
mass. This would be interesting application of the EFT
method of pNRQCD [41]—within this picture one has, at
a given order in the power counting, a relationship between
the charm-quark mass and the J= mass in terms only of
the (determined) strong coupling, as such one can deter-
mine, at the same order in the power counting, the anoma-
lous moment �c.

C. �c0 ‘‘form factor’’

This has the same decomposition as does the �c,
Eq. (10). Our lattice three-point functions here are much
noisier than for the �c and J= , but there are sufficiently
clear plateaux to extract the values plotted in Fig. 11. The

data is fitted with the form f�0�e
�
Q2

16�2 giving f�0� �
1:0015�15�, consistent with 1 as it should be, and � �
393�12� MeV, which is roughly consistent with the quark-
model value [39] �� � 340 MeV. That this is smaller than
the �c, J= , � is simply a reflection of the fact that the �c0

is spatially larger due to the centripetal P-wave barrier
between the quark and the antiquark.
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6V̂�Q2� is what would appear if we were computing the 		 !
�	� transition in the isospin limit.
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VI. RADIATIVE TRANSITIONS

A. J= ! �c�M1

The Minkowski space-time matrix element for this tran-
sition can be expressed in terms of a product of one Lorentz
invariant form factor and one Lorentz covariant kinematic
factor:

h�c� ~p
0�jj��0�jJ= � ~p; r�i �

2V�Q2�

m�c 	m 
�����p0�p���� ~p; r�:

(12)

This decomposition is parity invariant and, with V�Q2�
real, time-reversal invariant. The Lorentz invariant matrix
element for J= ! �c���Q2� is the contraction of (12)
with a final-state photon polarization vector:

M r;r� � ���� ~q; r��h�c� ~p
0�jj��0�jJ= � ~p; r�i:

The decay width with an on-shell photon is
074507
��J= ! �c�� �
Z
d�q̂

1

32�2

j ~qj

m2
 

1

3

X
r;r�

jMr;r� j
2; (13)

which contains a sum over the final-state photon polariza-
tion and an average over the initial  polarization.
Explicitly then we have

��J= ! �c�� �
1

4�
j ~qj3

�m�c 	m �
2

4

3
jV�0�j2:

In our lattice computation we couple only to the quark and
not to the antiquark and do not include the quark electric
charge factor. As such we compute V̂�Q2� which is related
to V�Q2� by6

V�Q2� � 2�
2

3
e� V̂�Q2�;

and hence

��J= ! �c�� � �
j ~qj3

�m�c 	m �
2

64

27
jV̂�0�j2: (14)

There is only one direct experimental measurement of
this width [42], �CB�J= ! �c�� � 1:14�33� keV. There
are, in addition, several measurements of the product
branching ratio for the process J= ! �c�! ��� [3]
and one independent measurement of �c ! �� [43].
Taken together these data give ����J= ! �c�� �
2:9�1:5� keV, which is consistent within the large errors
with the Crystal Ball result.

There is an essential ambiguity in how we compare our
lattice results with the experimental data which arises from
-12
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the fact that our lattice charmonia masses do not coincide
exactly with the physical masses. The problem lies in
whether we should use experimental or lattice masses in
Eq. (14). j ~qj is closely related to the hyperfine splitting
which is rather sensitive to details of the lattice calculation
(as discussed in Sec. III), hence we observe considerable
difference in using lattice or experimental masses:
jV̂�0�jexpt:
0 1 2
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FIG. 12 (color online). J
Crystal Ball
3 4 5

Q
 2

 (GeV
 2

)

temp. pf = (10

temp. pf = (10

spat. pf = (000
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We extract V̂�Q2� from three-point functions computing
using the following sequential sources at the sink: �� ~pf �
�0; 0; 0�; �1; 0; 0�
; 	�x;y;z�� ~pf � �0; 0; 0�; �1; 0; 0�
. The val-
ues from different sink particle and momentum choices are
all seen to be consistent suggesting that the sequential
source technique is working correctly. The lattice data
displayed in Fig. 12 is fitted with

V̂�Q2� � V̂�0�e�Q
2=16�2

;

where we find

V̂�0� � 1:85�4�; � � 540�10� MeV:

This agrees reasonably with the Crystal Ball result in the
case of using lattice masses throughout. Without perform-
ing a computation at the correct quark mass and relaxing
approximations sufficiently to duplicate the experimental
hyperfine splitting, we cannot give a more definitive result.

The gaussian fit performed to the data was clearly rather
successful; if we wish we can motivate such a form by
returning to the sort of simple quark models considered in
the previous section. Within these models one performs a
nonrelativistic reduction of the current operator and com-
putes the matrix element of this between the J= and �c
wave functions. This is a magnetic dipole (M1) transition
that occurs through quark spin-flip—the lowest order cur-
6

0)  ηc snk.
0)  J/ψsnk.
)  ηc snk.
)  ηc snk.
)  J/ψsnk.
)  J/ψsnk.
ass
s
ss

factor.
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rent operator (in an expansion in v=c) has the form ~
�
� ~p0q � ~pq�. Computing in any frame (recalling that the
wave functions are assumed to be unchanged under boosts
and that we have the minimal nonrelativistic reduction of
the current) we find

V�Q2� /
Z
r2drR��c�r�j0

�
j ~qjr

2

�
R �r� ! exp

�
�
j ~qj2

16 ��2

�
for harmonic oscillator wave functions. If the �c and J= 
are allowed different �� then ��2 � 1

2�
��2
�c 	

��2
 �. Once

again we encounter the problem that V�Q2� should be
frame independent, but j ~qj is not. In the rest frame of a
decaying J= , a ‘‘natural’’ frame to consider for this
process,

j ~qj2 �
�m2

 �m
2
�c�

2 	 2Q2�m2
 	m

2
�c� 	Q

4

4m2
 

:

At small Q2, j ~qj2 !
�m2

 �m
2
�c �

2

4m2
 
	Q21

2�1	
m2
�c

m2
 
�, which

means the simple quark model with harmonic oscillator
wave functions has the same Q2-dependence as our fit.
Other reasonable frames, in the small Q2 limit, have the
same dependence.

Performing the full calculation (with �c � 0) at Q2 � 0
in a quark model gives an expression like [44,45]

� � �
4e2

c

3m2
c
j ~qj3

��������Z r2drR��c�r�j0

�
j ~qjr

2

�
R �r�

��������2
;

which can be used to evaluate the width provided the wave
functions and the mass of the charm quark are known.
Determining this latter quantity is a tricky issue—it is
usually set at the Schrödinger equation stage along with
the phenomenological potential parameters such that the
mass spectrum is reproduced, however a unique solution is
not easily found and as such this mass parameter can vary
considerably between models, e.g. mc � 1:84 GeV in [44]
while mc � 1:628 GeV in [46] and even mc � 1:479 GeV
in [45]. Given this uncertainty, estimates for the M1 tran-
sitions are rather imprecise, depending as they do, on the
inverse square of the mass.7 In principle we do not have
this problem in our lattice simulations—while we do vary
the quark mass to get agreement with the spectrum (we
have to set the charm-quark mass somehow), we have no
other free parameters to vary. Unfortunately, as discussed
in Sec. III we did not tune the quark mass perfectly and this
7As mentioned earlier, with the pNRQCD EFT approach one
has a method to set the charm-quark mass at a given order in the
power counting so this problem is mollified [41]. A quark mass
sensitivity can also arise in the application of QCD sum-rules to
this process; while this can be lessened it has not proven possible
to accommodate a value for the transition amplitude as low as
experimentally found by Crystal Ball [5].
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is a source of some systematic error on our result for this
transition and may be the reason our result is somewhat too
large (recall that our quark mass is slightly too small).

B. �c0 ! J= �E1;C1

Experimentally it is only possible to access transverse
on-shell (Q2 � 0) photons in this transition and the matrix
0 1 2 3 4 5 6

Q
2
 (GeV

 2
)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

a t
Ê
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FIG. 13 (color online). �c0 ! J= � E1 transition form factor.
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element is purely through the electric dipole (E1). In more
generality, if we allow Q2 � 0 and necessarily also longi-
tudinal photons, there is a second multipole, labeled C1.
The decomposition of the transition matrix element in
terms of these multipoles is derived in the appendix and
we reproduce it here:
hS� ~pS�jj��0�jV� ~pV; r�i � ��1�Q2�

�
E1�Q2����Q2���� ~pV; r� � �� ~pV; r� 
 pS�p

�
VpV 
 pS �m

2
Vp

�
S �


	
C1�Q

2������
q2

p mV�� ~pV; r� 
 pS�pV 
 pS�pV 	 pS�� �m2
Sp

�
V �m

2
Vp

�
S 


�
:

The Lorentz invariant matrix elements for the transition
�c0 ! J= ���Q2� are also given in the appendix:

M �r� � �; r � �� � E1�Q2�

M�r� � 0; r � 0� � �C1�Q
2�:

Hence the analogue of (13) gives for the width at Q2 � 0,

���c0 ! J= �� � �
j ~qj

m2
�c0

16

9
jÊ1�0�j

2;

where the lattice form factor is again related to the physical
one by E1�Q2� � 2� 2

3e� Ê1�Q2�.
The most recent measurement of this decay’s branching

fraction comes from the CLEO Collaboration [4], who
find, using the PDG total width to normalise: ���c0 !
J= �� � 204�31� keV. In addition to this we have the
PDG [3] average/fit to data obtained up to 2005 which
gives ���c0 ! J= �� � 115�14� keV. The next PDG re-
port will likely contain the CLEO value in a new average
which will thus lie between these two values.

In Fig. 13 we display the Ê1�Q
2� extracted from our

lattice simulations. Temporal vector current insertions pro-
duce compatible results but with much larger error bars and
are not shown.

Our simulation data lies at Q2 � 0, but since we are
primarily interested in the photopoint we require some fit
function to allow us to extrapolate back. In the light of the
success of forms motivated by the nonrelativistic quark
model in previous sections we consider using a function
which resembles one that would be derived in such a
model. We opt to use a form

Ê 1�Q
2� � Ê1�0�

�
1	

Q2

	2

�
exp

�
�

Q2

16�2

�
; (15)

which has the gaussian behavior used previously modified
by a polynomial in Q2. In the simple quark model, the
Q2=	2 term could arise from relativistic corrections or
departures from gaussian wave function behavior. Note
that this form is analytic for Q2 > 0 as we would ex-
pect—singularities (as in the VMD case) will occur at
Q2 < 0.

We do not include in the fit the points at Q2 < 0—these
data, corresponding to the case ~pf � ~pi where Q2 �

��Ef � Ei�
2, were extracted from correlators with no
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(a) full range of lattice data (b) zoom to the Q2 � 0 region.
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plateau behavior using the fitting method described in
section IV. It is therefore a rather nontrivial cross-check
that our fit function, constrained by points at Q2 *

1 GeV2, extrapolated to the Q2 < 0 region, overlays these
points.

The fit returns the following parameters:

atÊ1�0� � �0:137�12� � � 542�35� MeV;

	 � 1:08�13� GeV:

The longitudinal photon transition form factor, C1�Q
2�

can also be extracted from lattice three-point functions. We
display our data in Fig. 14. As discussed in the appendix,
C1�Q2�����

q2
p is real for real Q2 � �q2 if time-reversal invariance

holds—thus for Q2 > 0, C1�Q
2� is imaginary. The fit is to

the function i~c
������
Q2

p
e
�
Q2

16�2 which has the required property
that C1�Q

2 ! 0� ! 0 and which is what one would expect
in a simple quark model.

The fit suffers from the large error bars on the data, but
does at least yield a � value compatible with the value
074507
extracted from the E1 fit:

at~c � 1:83�16�; � � 501�33� MeV:
C. �c1 ! J= �E1;M2;C1

With real photons this transition receives contributions
from two multipoles, the dominant electric dipole (E1)
and a much suppressed magnetic quadrupole (M2).
Experimentally the M2 contribution is measured through
the angular distribution of photons—the PDG [3] average
the two extractions performed [47,48], each of which
found a number consistent with zero, to give

M2�0������������������������������������
E1�0�

2 	M2�0�
2

p � �0:002	0:008
�0:017:

Appendix A contains the tools required to derive the
relation connecting the transition matrix element with the
multipole amplitudes:
hA� ~pA; rA�jj
��0�jV� ~pV; rV�i �

i

4
���
2
p

��Q2�
���	
�pA � pV�


�

�
E1�Q2��pA 	 pV�	�2mA���� ~pA; rA� 
 pV
��� ~pV; rV� 	 2mV��� ~pV; rV� 
 pA
���� ~pA; rA��

	M2�Q2��pA 	 pV�	�2mA���� ~pA; rA� 
 pV
��� ~pV; rV� � 2mV��� ~pV; rV� 
 pA
���� ~pA; rA��

	
C1�Q

2������
q2

p ��4��Q2����� ~pA; rA��	� ~pV; rV�

	 �pA 	 pV�	��m2
A �m

2
V 	 q

2����� ~pA; rA� 
 pV
��� ~pV; rV� 	 �m2
A �m

2
V � q

2�

� ��� ~pV; rV� 
 pA
���� ~pA; rA�
�
�
: (16)
In extracting these amplitudes from our lattice three-point
functions we are struck with the problem that our �c1

signal (from the operator �i�5) becomes noisy after rela-
tively few time slices, in fact at roughly the same time that
the two-point function begins to plateau [see Fig. 1(b) and
1(c)]. Because of this it was only possible to extract a
-15
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convincing signal for the �c1 with ~pf � �000�, which
considerably limits the number of three-point functions
available to us for the transition �c1 ! J= �. In addition
the plateaux in the few available correlators are borderline,
so that for the lowest Q2 point a fit of the form (9) was
applied.

In Fig. 15 we show the extracted E1�Q2� and a fit of the
same form as used for �c0 ! J= �E1

. Within the large
extrapolated error we are in agreement with the experi-
mental data. Unfortunately, unlike in the �c0 ! J= �
case, the E1 kinematical factor for ~pf � ~pi where Q2 �

0, is zero, so we cannot directly obtain E1�Q
2 � 0� and the

subsequent cross-check on the extrapolation which gave
parameters,

atÊ1 � 0:312�39� � � 555�113� MeV;

	 � 1:65�59� GeV:

In Fig. 16 we show the extracted M2�Q2�. The fit has the
same functional form as in the E1 case and returns parame-
ters:
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FIG. 17 (color online). �c1 ! J= � C1 transition form factor.
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atM̂2�0� � �0:062�37� � � 617�142� MeV;

	 � 0:93�47� GeV:

The � value is compatible within the large error with the
value extracted from the E1 data.

We observe in Fig. 16 that our lattice data extrapolates
down to a value consistent with zero and hence with
experiment, within large errors, at Q2 � 0.

There are a number of approaches we might consider to
reduce the error bar on the predicted value. The first is
simply brute force; evaluate on a larger number of gauge
field configurations, thus reducing the statistical fluctua-
tions. Another option, which would also require increased
computation time, is to work with a larger spatial volume
(at the same lattice spacing); this allows smaller discrete
three-momenta and hence access to points closer to Q2 �
0, the reduced extrapolation distance then reducing the
error on the extrapolated point. A third possibility, ideally
combined with the previous two, is to enhance the �c1

plateaux by finding an interpolating field with maximal
overlap on to the ground state �c1. This might involve
diagonalizing a matrix of two-point functions in a basis
of different smearings.

Finally we have the longitudinal photon multipole C1

which we display in Fig. 17 along with a fit of same type as
used for the �c0 ! J= � transition. From the fit we extract

at~c � �2:91�26�; � � 502�38� MeV:
D. hc ! �c�E1;C1

The hc, with JPC � 1	�, was only recently observed
with high significance by the CLEO collaboration [49,50].
The reason for the delay of discovery with respect to the
other ground-state charmonia lies in the difficulty of
production—the process eventually utilised was the
isospin violating  �2S� ! �0hc with a subsequent
hc ! �c�. Since only the product branching fraction
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FIG. 18 (color online). hc ! �c� E1 transition form factor.
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TABLE II. Radiative transitions.

E1 �c0 ! J= � �c1 ! J= � hc ! �c�

�=MeV 542(35) 555(113) 689(133)
	=MeV 1080(130) 1650(590) 1

�lat:mass
phys:mass=keV 288�60�

232�41�
600�178�
487�122�

663�132�
601�55�

�PDG
CLEO=keV 115�14�

204�31�
303�44�
364�31� 
 
 


M1 J= ! �c� M2 �c1 ! J= �

�=MeV 540(10) �=MeV 617(142)
�lat:mass

phys:mass=keV 1:61�7�
2:57�11�

M2
E1 �0:199�121�

�PDG
�� =keV 1:14�33�

2:9�1:5� Expt. �0:002� 	8
�17�

C1 �c0 ! J= � �c1 ! J= � hc ! �c�

�=MeV 501(33) 502(38) 545(49)
j~cj=GeV 11(1) 17.6(1.6) 17.5(1.1)
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FIG. 19 (color online). hc ! �c� C1 transition form factor.
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B� �2S� ! �0hc�B�hc ! �c�� is measured, our calcula-
tion of ��hc ! �c�� constitutes a prediction.

The form factor decomposition is identical to the �c0 !
J= � case. Here again we suffer from poor two-point
functions—we were only able to extract a convincing hc
signal in the ~pf � �000� case and as such we can use only
three-point functions with the hc at rest. Despite this
limitation we are able to extract some clean plateaux in a
few cases and in the remaining cases we fit using (9)—we
plot the extracted E1 in Fig. 18. The fit shown (which is to
all points including the one at Q2 < 0) is of the form

Ê 1�0� exp�
Q2

16�2 ;

since the data does not seem to require a Q2

	2 term (	�1 in

such a fit is very small). We find

atÊ1�0� � �0:306�14�; � � 689�133� MeV:

The relation to the width is

��hc ! �c�� � �
j ~qj

m2
hc

16

27
jÊ1�0�j

2;

so that we predict

��hc ! �c�� �
663�132�
601�55�

keV;

where the upper value uses lattice masses and the lower
value physical masses.

TheC1 multipole is displayed in Fig. 19 with the same fit
form used for the �c0 ! J= � transition.

at~c � �2:90�18�; � � 545�49� MeV:
8But note that such effects are not present within our quenched
calculation.
VII. DISCUSSION

We extracted, for the first time, a (limited) charmonium
spectrum using domain-wall fermions on an anisotropic
lattice. While an imperfect quark mass tuning left our
074507
spectrum systematically 5% too light, the gross features
of the S and P levels were correct and notably we found a
rather large hyperfine splitting in contrast to other
quenched improved actions.

By attaching a vector current to only the quark line and
not the antiquark, we avoided the constraint of charge-
conjugation invariance and sampled the vector form factors
of the lightest three charmonium states. The charge form
factors of the �c and J= were similar as expected, and, as
one might anticipate on the basis of dispersion relations,
did not appear to be dominated by a single VMD
mechanism.

For the J= the magnetic dipole form factor was ex-
trapolated back to Q2 � 0 to yield a magnetic dipole mo-
ment that was consistent with there being zero anomalous
charm-quark magnetic moment in a quark-model picture.
Similarly the very small quadrupole moment extracted
indicated minimal D-wave admixture into the J= . The
�c0 form factor displayed a larger charge radius than the
�c, indicating the effect of the centrifugal barrier in the
P-wave state.

In Table II we summarize our results for radiative tran-
sitions, where it is clear that the � values for the P! S
transitions are all compatible with having the same value,
which is in line with quark-model expectations that the
�cJ, hc spatial wave functions should differ only through
small spin-orbit distortions (and perhaps differing closed-
channel effects if these are allowed for [51,52].8) Within
(p)NRQCD one might also have differing color octet con-
tributions [41].

We can also compare the pattern of 	 values for the E1

transitions with the expectations of a simple quark model.
Performing a nonrelativistic reduction of the vector cur-
-17
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rent, the 	 term arises from the spin-dependent correction
( / ~
� ~q) to the dominant convection current / ~p; using
effective harmonic oscillator wave functions one finds [53]

EQM
1 �Q

2� � a
�
1	 r

j ~qj2

4�2
 

�
exp�

j ~qj2

16 ��2
; (17)

where r is related to spin-orbit Clebsch-Gordan coeffi-
cients,

r �
2 �c0

1 �c1

0 hc

:

Working in the �c rest frame at small Q2 we would have

j ~qj2 � j ~qj20 	Q
2�1	 �� where j ~qj0 �

m2
��m2

 

2m�
is the three-

momentum transfer at Q2 � 0 and � � 1
2�
m2
 

m2
�
� 1�. Thus

we can express the quark-model form as

EQM
1 �Q

2� � EQM
1 �0�

�
1	 r

Q2

4�2
 

1	 �

1	 �

�
exp�

Q2�1	 ��

16 ��2
;

(18)

with � � r
j ~qj20
4�2

 
and EQM

1 �0� � a�1	 �� exp�
j ~qj20

16 ��2 . Hence,

to a first approximation we would expect that 	� 1��
r
p so

that 	��c1� �
���
2
p
	��c0� and 	�hc� ! 1. In the same ap-

proximation we have 	��c0� � 2� . Within the large er-
rors on the lattice results, these relations appear to be
satisfied.

Within the quark model, the M2 transition is suppressed
relative to E1 by one power of v=c. It is also rather
sensitive to any charm-quark anomalous magnetic mo-
ment. Some details are worked out in [54], where they
find a value (setting �c � 0) M2�0�=E1�0� � �0:06. Our
data is unfortunately not sufficiently accurate to discrimi-
nate on this level—we outlined earlier in the text some
possible improvements to the calculation to remedy this.

In this first attempt at charmonium radiative transitions
using lattice QCD we have demonstrated that it is possible
to get reasonable agreement with experiment and have
gone some way to justifying certain results of the more
widely applied quark model. Future lattice work in this
direction will have to address the problem of reliable
excited state extraction in order to consider such well-
measured transitions as  0 ! �cJ�.

There is, naturally, a desire to see calculations done
without the quenched approximation, but, as discussed in
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section II, we do not expect unquenching to affect radiative
transitions particularly strongly, except in the sense that it
will improve the lattice state masses and help remove the
phase-space ambiguity we encountered in Sec. VI.
However, an unquenched computation is warranted to
test models which propose a considerable effect from
coupled channels [51].

Our ultimate aim is to study photocouplings of light-
quark hybrid mesons, with this in mind the next step will be
to consider radiative transitions involving charmonium
hybrids—the nonlocal interpolating fields required for
this study will also allow us to access higher spin conven-
tional charmonia such as the �c2.
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APPENDIX A: MULTIPOLE DECOMPOSITION

It is convenient to express radiative transition ampli-
tudes in terms of multipoles. In this appendix we derive
Lorentz covariant decompositions of vector current matrix
elements into multipoles. These decompositions do not
appear to have been explicitly presented previously in the
literature.

Our method involves writing down the most general
Lorentz covariant, current conserving and parity invariant
decomposition of the matrix element of the current in terms
of a number of arbitrary form factors. We then compute the
helicity amplitudes for the decay i! f� by contracting
the current matrix element with a photon polarization
vector. For convenience we work in a particular frame,
but the result is covariant. The relationship between helic-
ity amplitudes and multipoles is prescribed in [55], whence
we eliminate the arbitrary form factors in favor of the
multipole form factors.

We will demonstrate the method with the scalar-vector
transition (0	 $ 1�) relevant to �c0 ! J= �. The most
general Lorentz covariant decomposition is:
hS� ~pS�jj��0�jV� ~pV; r�i � A�q2���	
��	� ~pV; r�pV
pS� 	 P�q2���� ~pV; r�

	 ��� ~pV; r� 
 pS
�B	�q
2��pS 	 pV�

� 	 B��q
2��pS � pV�

�
; (A1)

where the polarization vectors carry a label r which is the z-component of the spin (which is not equal to the helicity in
general).

Parity invariance requires that
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hS� ~pS�jj��0�jV� ~pV; r�i � hS� ~pS�jP�1P j��0�P�1P jV� ~pV; r�i � �P
�
� hS�� ~pS�jj��0�jV�� ~pV; r�i;

where we have used P jS� ~pS�i � jS�� ~pS�i, P jV� ~pV; r�i � �jV�� ~pV; r�i and P�1j�P � P�� j�.9 Hence

A�q2���	
��	� ~pV; r�pV
pS� 	 P�q
2���� ~pV; r� 	 ��� ~pV; r� 
 pS
�B	�q

2��pS 	 pV�
� 	 B��q

2��pS � pV�
�


� �P�� �A�q2���	
��	�� ~pV; r��PpV�
�PpS�� 	 P�q2����� ~pV; r� 	 ���� ~pV; r� 
 �PpS�
�B	�q2��PpS 	 PpV��

	 B��q
2��PpS � PpV��
�:
Properties of the rotation group give that ���� ~p; r� �
�P�� ��� ~p; r� using which one verifies the parity invariance
of this decomposition provided A�q2� � 0.

The conservation of the vector current is an additional
constraint,

0 � @�hS� ~pS�jj��x�jV� ~pV; r�i

� @�hS� ~pS�jeip̂
xj��0�e�ip̂
xjV� ~pV; r�i

� @�ei�pS�pV �
xhS� ~pS�jj��0�jV� ~pV; r�i

) 0 � q�hS� ~pS�jj��0�jV� ~pV; r�i;

whence we eliminate one of the three form factors,
P�q2� � �m2

V �m
2
S�B	�q

2� � q2B��q2�:

Multipole amplitudes are most easily defined in terms of
helicity amplitudes which can be obtained from the decom-
positions of the previous section in a straightforward way.
First we will find the defining relation for multipole am-
plitudes in terms of helicity amplitudes. This is done in
analogy with Durand [55], but rather than working in the
Breit frame we choose to work in the rest frame of the
decaying particle. The results are Lorentz covariant so this
choice of frame is irrelevant.

We can define a vertex function in the rest frame of a
particle of spin-J

���J0
0; J
� � hp0ẑ; J0
0jj�jJ
i � hJ0
0jei�p0K3j�jJ
i;

(A2)

where hp0ẑ; J0
0j is a final state of spin-J0, helicity-
0 in
motion along the positive z-axis with momentum p0, jJ
i
is a similar (initial) state at rest and ei�p0K3 is the unitary
operator effecting the boost from rest to momentum p0ẑ.
The matrix element (A1) discussed in the previous section
is a generalization of this vertex functions to an arbitrary
Lorentz frame, i.e. ���0; 0; 1; 
� � hS�p0ẑ�jj��0�jV�~0; r �

�i . Note that now we are opting to use helicity and not the
z-component of angular momentum. However since we
have chosen the end-state particle to move along the posi-
tive z-direction, we have 
 � r, 
0 � r0.

In this frame the amplitude for the decay �J
� !
�J0
0� 	 ��
�� is
9P�� � g�� � diag�1;�1;�1;�1�.
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M � �����p0ẑ; 
�����J0
0; J
�;

where the polarization vectors for a photon moving along
the (� z)-direction are

����p0ẑ; 
� � �� � �
1���
2
p �0; 1;�i; 0�

����p0ẑ; 
� � 0� �
1�����
q2

p �p0; 0; 0;�
������������������
p02 	 q2

q
�:

We find that

M �
�� � �
;
0�
�c
��
��J0
0; J
�;

where c� � 1, c0 � �

����
q2
p

p0 , and �� � � 1��
2
p ��1 � i�2�.

Returning to the definition of the vertex function (A2),
we assert that ei�p0K3j� can be expressed as a sum of
operators which transform as tensors under the rotation
group—this is the essence of a multipole expansion:
ei�p0K3j� �

P
kT

k
���. The vertex operator is then a sum of

matrix elements of these tensors, each of which satisfies the
Wigner-Eckart theorem, so that, for all spins integral, we
can write

���J0
0; J
� �
X
k

��1�J
0	
0 J0 k J

�
0 � 


� �
hJ0jjTk

���jjJi;

where � � �; 0. j0, and j� are in different representations
of the rotation group, so we will allow different reduced
matrix elements for each. A purely conventional redefini-
tion of the reduced matrix element is hJ0jjTk

���
jjJi �

��1�k
���������������
2k 	 1
p

�Ek
1
2�1 	 ��1�k�P� � Mk

1
2�1 � ��1�k�P�


for the transverse case and hJ0jjTk
�0�jjJi �

p0����
q2
p ��1�k	1�������������������

�2k	 1�
p

Ck
1
2�1	 ��1�k�P� for the longitudinal case.10

�P is the product of initial and final meson parities and
E�M� indicates an electric(magnetic) multipole. After
some manipulation we obtain the multipole decomposition
of the helicity amplitudes,
10These amplitudes are those in [54] and the experimental study
[47].
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M�
� � �� �
X
k

���������������
2k	 1

2J	 1

s
�Ek

1
2�1	 ��1�k�P� �Mk

1
2�1� ��1�k�P�
hk�; J0
� 1jJ
i

M�
� � 0� �
X
k

���������������
2k	 1

2J	 1

s
Ck

1
2�1	 ��1�k�P�hk0; J0
jJ
i:

For the particular case under study, J � 0, J0 � 1; this transition has one transverse multipole—E1 and one longitudinal
multipole—C1.

M �
� � �� � E1�q2� M�
� � 0� � �C1�q2�: (A3)

Contracting the complex conjugate of (A1) with a photon polarization vector yields,

M�
� � �� � �m2
V �m

2
S�B	�q

2� � q2B��q2�

M�
� � 0� � �

�����
q2

p
2mV

��m2
V �m

2
S 	 q

2�B��q2� � �3m2
V 	m

2
S � q

2�B	�q2�
:
(A4)

Solving (A3) and (A4) for B��q2� allows us to write the current matrix element as a multipole expansion.

hS� ~pS�jj
��0�jV� ~pV; r�i � ��1�q2�

�
E1�q

2����q2���� ~pV; r� � �� ~pV; r� 
 pS�p
�
VpV 
 pS �m

2
Vp

�
S �


	
C1�q2������
q2

p mV�� ~pV; r� 
 pS�pV 
 pS�pV 	 pS�
� �m2

Sp
�
V �m

2
Vp

�
S 


�
: (A5)
Note that this is expressed entirely in terms of invariants
and covariant quantities and hence can be used in any
frame. One can check that the tensor coefficients of the
form factors are orthogonal, indicating the independence
of E1, C1. The invariant quantity ��q2� � �pV:pS�2 �
m2
Vm

2
S �

1
4��mV �mS�

2 � q2
��mV 	mS�
2 � q2
, and

takes the simple value m2
Sj ~qj

2 in the rest frame of the
decaying scalar.

The decomposition is further constrained by Minkowski
time-reversal invariance of the matrix element; this is a
symmetry of the system if the meson states are stable.
Time-reversal is implemented as an antiunitary operation
(T ). As such the statement of invariance for the matrix
element of a Hermitian operator is h�jAj�i �
h~�jT AT �1j ~�i � �h ~�jT AT �1j~�i�� where j~�i � T j�i.
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States of definite momentum, spin and z-component of
spin transform as T j ~p; J; ri � ���1�J�rj � ~p; J;�ri,
where � is an arbitrary unphysical phase that we can
choose independently for each particle type [56]. For the
scalar and vector we choose � � 	1—with this the vector
has a real decay constant, fV defined in the standard way:
h0j � �0��� �0�jV� ~q; r�i � mVfV�

�� ~q; r�. Note that to get
a real pseudoscalar decay constant one needs to choose
�P � �1 (see the next appendix).

The vector current transforms as T j�T �1 � P�� j�.
Using the relation ���� ~p; r� � ��1�r	1P�� ���� ~p;�r�
one can show that E1�q2� and C1�q2�����

q2
p are real.

An equivalent procedure for the axial-vector transition
(1	 $ 1�) yields the decomposition
hA� ~pA; rA�jj
��0�jV� ~pV; rV�i �

i

4
���
2
p

��q2�
���	
�pA � pV�


�

�
E1�q2��pA 	 pV�	�2mA���� ~pA; rA� 
 pV
��� ~pV; rV� 	 2mV��� ~pV; rV� 
 pA
���� ~pA; rA��

	M2�q2��pA 	 pV�	�2mA���� ~pA; rA� 
 pV
��� ~pV; rV� � 2mV��� ~pV; rV� 
 pA
���� ~pA; rA��

	
C1�q

2������
q2

p ��4��q2����� ~pA; rA��	� ~pV; rV�

	 �pA 	 pV�	��m
2
A �m

2
V 	 q

2����� ~pA; rA� 
 pV
��� ~pV; rV� 	 �m
2
A �m

2
V � q

2�

� ��� ~pV; rV� 
 pA
�
�
�� ~pA; rA�
�

�
: (A6)
-20



RADIATIVE TRANSITIONS IN CHARMONIUM FROM . . . PHYSICAL REVIEW D 73, 074507 (2006)
APPENDIX B: MINKOWSKI AND EUCLIDEAN
N-POINT FUNCTIONS

We obtained all our Lorentz decompositions in
Minkowski space, but perform lattice computation in
Euclidean; in this appendix we outline a simple way to
effect the mapping between the two and describe some
discrete symmetry constraints.

1. Two-point functions

In Minkowski space the following fermion bilinears are
Hermitian:
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S�x� � � �x� �x� P�x� � � �x�i�5 �x�

V��x� � � �x��� �x� A��x� � � �x����5 �x�

T���x� � � �x�
�� �x�:

(B1)

The transformation of spin-0 and spin-1 fields under time-
reversal can be written

T ’�x�T �1 � ��’’��Px�;

T v��x�T �1 � ��vP
�
� v���Px�;

with arbitrary phases � . The choices in (B1) correspond to

�S � 	1; �P � �1; �V � 	1; �A � 	1;

so that the decay constants defined in (5) are real:
iq�fP��P
�
� �Ph0j � �0����5 �0�jP�� ~q�i�� ��iP��P�	q	f�P�P)fP�f�P;

mVfV��� ~q;r�� �P
�
� �V��1�1�rh0j � �0��� �0�jV�� ~q;�r�i�� ��V��1�1�rmVf�VP

�
� ����� ~q;�r�)fV�f�V:

In addition, the overlap factors Z must be real:

ZP� ~p� � h0j �ui�5d�~0; 0�jP� ~p�i � �h0jT �1T �ui�5d�~0; 0�T �1T jP� ~p�i�� � �h0j��1� �ui�5d�~0; 0��PjP�� ~p�i�� � Z�P�� ~p�;
since for the truly local operator, Z is not actually a
function of ~p and where for a rotationally-invariant
smeared operator Z � Z�j ~pj�.

The mapping between Minkowski and Euclidean space-
times is effected by the transformations,

t! �i~t �0 ! ~�4 �k ! i~�k �5 ! �~�5;

(B2)

where the tilded quantities are Euclidean (e.g. the gamma
matrices satisfy f~��; ~��g � 2���).

Consider as an example the vector two-point function in
Minkowski space,

��2�ij� ~p; t� �
X
~x

ei ~p
 ~xh � �i � ~x; t�� � �j �~0; 0�
yi

�
X
N

�Z�N� �
2

2E�N� 

e�iE
�N�
 t
X
r

�i� ~p; r���j� ~p; r�

�
X
N

�Z�N� �
2

2E�N� 

e�iE
�N�
 t
�
�ij 	

pipj

�m�N� �
2

�
;

where we inserted a complete set of states and used the
Minkowski space completeness expression for polarization
vectors

P
r�
�� ~p; r����� ~p; r� � ��g�� 	 p�p�

p2 �. In the lat-

tice calculation we actually compute a Euclidean quantity:
~� �2�ij � ~p;~t� � �
�X

~x

ei ~p
 ~x trf�~�5G�x; 0�~�5�
y ~�jG�x; 0�~�ig

	

�
X
~x

ei ~p
 ~xh � ~�i � ~x; t� � ~�j �~0; 0�i

� ��i�2��2�ij� ~p;�i~t�

� �
X
N

�Z�N� �
2

2E�N� 

e�E
�N�
 

~t
�
�ij 	

pipj

�m�N� �
2

�
;

where with this derivation it is clear that all energies and
momentum should be interpreted as the usual real
Minkowski variants. All that we had to do was apply the
mapping (B2). Note that we only ever consider polariza-
tion vectors in Minkowski space, where they are easily
defined.

2. Three-point functions

In Minkowski space, inserting two complete sets of
states gives

��3�f�i� ~pf; ~q; tf; t� �
X
f;i

e�iEftfe�i�Ei�Ef�t

2Ef� ~pf�2Ei� ~pi�

� h0j � �f �~0; 0�jf� ~pf; rf�i

� hf� ~pf; rf�j � � �~0; 0�ji� ~pi; ri�i

� �h0j � �i �~0; 0�ji� ~pi; ri�i�
�:
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The Minkowski space-time Lorentz decomposition of the
matrix element was discussed in the previous appendix. We
actually compute the Euclidean variant,

~� �3�f�i� ~pf; ~q; ~tf;~t� � cfc�ci��3�f�i� ~pf; ~q;�i~tf;�i~t�;

where e.g. ~�i � ci�i. As an explicit example consider the
�c form factor where �f � �i � i�5 and � � ��. Then
using (B2) we have

��3�P�
kP� ~pf; ~q;�i~tf;�i~t� � Im~��3�P�kP� ~pf; ~q; ~tf;~t�

��3�P�
0P� ~pf; ~q;�i~tf;�i~t� � �Re~��3�P�4P

� ~pf; ~q; ~tf;~t�:

One should perform the mapping on each transition com-
puted to ensure that one extracts the correct complex
component with the right sign.
APPENDIX C: SCALE SETTING ON ANISOTROPIC
LATTICES

We outline how to set the scale of dimensionful quanti-
ties when one has differing spatial and temporal lattice
spacings. The lattice action, written in terms of dimension-
ful quantities is S �

P
x�a

3
sat � Q . If we scale the fermion

fields by � � a3=2
s  then we get a lattice spacing indepen-

dent action,
P
x�

�� �Q � , if �Q � atQ where the anisotropy
will appear in the spatial derivative operator.

On the anisotropic lattice a bosonic field would have a
mass term in the action proportional to

P
x�a

3
satm

2�2, so
that if we scale the mass as �m � atm (as we must since it
appears in Euclidean correlators like e�mt), then we have to
scale the boson field as �� � �a

3
s
at

1=2�.

If we define the creation/annihilation operators by the
continuum decomposition11

��x� �
Z d3 ~p

�2��3
1

2E~p
��y� ~p�eip
x 	 �� ~p�e�ip
x�;

and use pi �
2�
Lias

ni (3-momenta must scale with as as they
appear in the dimensionless combination ~p 
 ~x) we have

��x� �
����
at
a3
s

q
�� �

X
~np

1

L3a3
s

at
2 �E~p
��y� ~p�eip
x 	 �� ~p�e�ip
x�;

so that the dimensionless creation/annihilation operator is
�� � �ata3

s

1=2�. Then since a single particle state is defined
11if we wished to deal with a particle of integer spin >0 we
would simply include the appropriate dimensionless polarization
tensor and the following logic would not be changed.
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by jN� ~p�i � �yj0i, we define a dimensionless single par-
ticle state by j �N� ~p�i � ��yj0i � �at

a3
s

1=2jN� ~p�i. It is easy to

check that the resolution of the identity takes the following
form

1 �
X
N

Z d3 ~p

�2��3
1

2E~p
jN� ~p�ihN� ~p�j

! L�3
X
N

X
~np

1

2 �E~p
j �N� ~p�ih �N� ~p�j;

which has no dependence on either lattice spacing. One can
then show by insertion of the complete set of states that the
two-point function calculated in a lattice simulation is, as
expected,

�� �2� �
�Z2

2 �E
e��t �E:

The scaling of Z is easily found

Ze�i ~p: ~x � h0j � � �x�jN� ~p�i !
1���������
a3
sat

p h0j �� � � �x�j �N� ~p�i;

so that the dimensionless �Z that appears in the lattice

simulation is �Z �
���������
a3
sat

p
Z.

The pseudoscalar decay constant, fP, has mass dimen-
sion 1 and is defined by

h0j � �0����5 �0�jP� ~q�i � ifPq
�:

Taking the temporal component and scaling to dimension-
less quantities we have

1���������
a3
sat

p h0j �� �0��0�5 � �0�j �P� ~q�i � if �E~qa�1
t ;

so that �fP � �
a3
s
at

1=2fP. Thus to obtain the physical decay

constant from the lattice value we calculate

f � ��3=2a�1
t

�f:

The same formula applies to the vector decay constant.
As an example of setting the scale of a dimensionful

transition form factor factor, consider the scalar to vector
transition:

hS� ~pS�j � �� jV� ~pV; r�i � E1�Q2���� ~pV; r� 	 . . .

The LHS scales to the dimensionless version leaving only
one factor of at in the denominator and hence �E1 � atE1.
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