
PHYSICAL REVIEW D 73, 074504 (2006)
Two-flavor QCD thermodynamics using anisotropic lattices
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Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD
thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from
calculations with two flavors of dynamical staggered fermions, where all bare parameters and the
renormalized anisotropy are kept constant and the temperature is changed in small steps by varying
only the number of time slices. Including results from zero-temperature scale-setting simulations, which
determine the Karsch coefficients, allows for the calculation of the equation of state at finite temperatures.
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I. INTRODUCTION

Lattice calculations provide a method to study the prop-
erties of the quark-gluon plasma (QGP), which is consid-
ered to be the phase matter existed in at the extreme range
of temperatures microseconds after the big bang. To under-
stand the basic character of the QGP we need to determine
the equation of state (EOS) for the system in a regime of
strong gauge coupling for which a nonperturbative scheme
for calculation is most adequate. Currently in the lattice
formulation of QCD two different approaches to that prob-
lem could be adopted. One of them is the derivative (op-
erator) method which requires the knowledge of the
asymmetry coefficients, or Karsch coefficients [1,2].
These coefficients have been evaluated only perturbatively
[3,4] since their nonperturbative values are not trivial to
calculate in practice [5]. The second method is the integral
method [6,7], which does not require the values of the
Karsch coefficients, but has the disadvantage that for a
given quark mass at a single temperature a number of
different simulations are required, and in addition, there
exist the problems of scaling violation. In our study we
avoid these disadvantages by choosing the derivative
method implemented for anisotropic lattices in combina-
tion with a fixed parameter scheme described below.

The anisotropic formulation of lattice QCD has certain
advantages regarding the study of the equation of state at
various finite temperatures. Finite temperature field theory
has a natural asymmetry which makes the anisotropic
approach useful to reduce the lattice spacing errors asso-
ciated with the transfer matrix at less cost than is required
for the full continuum limit [8]. Through the introduction
of anisotropy on the lattice one can make the temporal
lattice spacing, at, sufficiently small so that by varying the
number of time slices, Nt, the temperature can be changed
in small discrete steps.

To study the thermodynamic properties of the quark-
gluon system, we simulate QCD with two flavors of dy-
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namical staggered fermions on anisotropic lattice. The
fixed parameter scheme we employ to avoid scaling viola-
tions is the following. All the bare parameters of the
simulation are kept constant and only the temperature is
changed by varying Nt (from 4 to 64). This approach
separates temperature and lattice spacing effects and keeps
the underlying physics scales (i.e. the lattice spacings in
temporal and spatial directions, respectively at and as)
fixed.

The calculation of EOS of the quark-gluon system in-
volves derivatives of the bare parameters with respect to
the physical anisotropy � � as=at and the spatial lattice
spacing as. These are the already mentioned above Karsch
coefficients, which can be obtained nonperturbatively as a
by-product of the zero-temperature calculations needed to
choose the bare parameters. In our scheme, once calcu-
lated, the Karsch coefficients can be used for all tempera-
tures since they depend only on the intrinsic lattice
parameters and not on Nt. This allows a straightforward
determination of the temperature dependence of the energy
and pressure, again at fixed lattice spacing. With two or
more slightly different values for at, a high-resolution
sampling of temperatures can be investigated.

This paper is organized as follows. In Sec. II, we define
the anisotropic staggered action and derive analytic ex-
pressions for the energy and pressure for the studied sys-
tem. In Sec. III we describe the scale-setting techniques.
Section IV investigates the phase transition for the stag-
gered fermions as we change the temperature in small
steps. In Sec. V we present the technique used to calculate
the Karsch coefficients and the numerical results for them.
Section VI contains the numerical results for the EOS for
two anisotropies, � � 4:0�1� and � � 4:8�3�. In Sec. VII
we examine our data for evidence for improvement of the
flavor symmetry, when due to the anisotropy at becomes
sufficiently small. Our conclusions are given in Sec. VIII.
II. ACTION AND GENERAL ANALYTIC
FRAMEWORK

In this section we define the action we use and derive the
analytical form of the EOS using the derivative method.
-1 © 2006 The American Physical Society
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We work with an asymmetric lattice in Euclidean space
with notation for the spatial lattice spacing as and temporal
lattice spacing at. Our calculations are based on the QCD
action S � SG � SF, where the gauge part is the standard
anisotropic Wilson action [9]:

SG � �
�
Nc

�
1

�o

X
x;s>s0

Re Tr�Pss0 �x��

� �o
X
x;s

Re Tr�Pst�x��
�
; (1)

and the fermion part is the standard staggered action [10]
with anisotropy introduced in the spirit of [9]:

SF �
X
x

� �x�
�
mf � �t 6Dt �

�s
�o

X
s

6Ds

�
 �x�: (2)

In the above definitions Pss0 and Pst are the space-space
and space-time plaquette variables. The bare anisotropy
parameter �o � � at the tree level. 6Dt and 6Ds are the
temporal and spatial parts of the staggered Dirac operator,
�t and �s are the bare speed of light parameters andNc � 3
is the number of colors.

After integrating out the fermion fields in the path
integral explicitly, the fermion action effectively becomes:

SF � �
Nf
4

Tr�lnM�; (3)

where Nf � 2 is the number of fermion flavors and M is
the fermion matrix which has the form:

M � mfI � �t 6Dt �
�s
�o
6Ds: (4)

We choose �s � 1 at the expense of rescaling the quark
fields and in an actual simulation �t is tuned so that the
relativistic properties of the action are restored.

To determine the energy density "�T� and pressure p�T�
as functions of the temperature T we use the thermody-
namic identities:

"�T� � �
1

Vs

@ lnZ
@�1=T�

��������Vs

(5)

p�T� � T
@ lnZ
@Vs

��������T
; (6)

where the partition function is Z �
R
�d d � dU� exp��S�,

the volume is Vs � N3
s a3

s and 1=T � Ntat. Ns and Nt are,
respectively, the number of spatial and temporal lattice
sites. This way we have:

"�T� � �
�

N3
sNta3

sat

�
@S
@�

��������as

�
(7)

p�T� � �
as

3N3
sNta3

sat

�
@S
@as

��������at

�
; (8)
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where the angle brackets denote averaging over the gauge
ensemble.

The physical anisotropy is defined as � � as=at. It is
convenient to choose � and as to be the independent
variables in this relation. This allows Eq. (7) and (8) to
be written only in terms of derivatives of them via the
transformations:
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t
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��������as

(9)
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Thus the expression for the pressure p�T� becomes:
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: (11)

To simplify the analytic expressions, in the explicit form of
the derivatives of the action S we use the following nor-
malization notations:

hRe Tr�Pss0 �i �

h
P

x;s>s0
Re Tr�Pss0 �x��i

3N3
sNtNc

(12)

hRe Tr�Pst�i �

h
P
x;s

Re Tr�Pst�x��i

3N3
sNtNc

(13)

h �  i �
hTr�M�1�i

NcN
3
sNt

(14)

h � 6Dt i �
hTr� 6DtM

�1�i

NcN
3
sNt

(15)

h � 6Ds i �
hTr� 6DsM

�1�i

NcN3
sNt

: (16)

The equations for the energy density and pressure at a
given temperature, Eq. (7) and (11), are not corrected for
the zero-temperature divergent contribution, which simply
should be subtracted. This subtraction is trivial and from
here on the formulas will assume that "�T� and p�T� have
that correction. Dividing Eq. (7) and (11) by T4 (i.e. multi-
plying them by N4

t a4
t ) and using the notations from above

we obtain the following final formulas:
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In order to be able to calculate numerically Eq. (17) and
(18) we need to measure all the lattice observables in the
above equations and to determine the values of the Karsch
coefficients @�

@� jas ,
@�o
@� jas ,

@mf

@� jas ,
@�t
@� jas ,

@�
@as
j�, @�o@as

j�, @mf

@as
j�

and @�t
@as
j�.

III. SIMULATIONS AND SCALE SETTINGS

For the purpose of our simulations we implement the R
algorithm [11] with step-size �t � 0:005 and stopping
condition 10�6. Figure 1 shows that our choice for the
step-size allows us to measure physical quantities with an
error due to finite step-size smaller than 2%, and that we
are running in the stable regime of the R algorithm. For the
FIG. 1 (color online). Dependence of physical quantities on
the step-size �t for volume 83 � 32, � � 5:35, �o � 3:5,
�dyn
t � �val

t � 1:0 and mf � 0:006. Trajectories per point about
900. We simulate at �t � 0:005.

074504
spectrum measurements we use box sources of size 2 and
local sinks for all runs.

Our simulations examine the phase transition and the
thermodynamic properties of QCD for volumes, tempera-
tures, spatial lattice scales and quark masses similar to the
already used in the Nt � 4, 2-flavor thermodynamic stud-
ies on isotropic lattices [5]. We adjusted the bare parame-
ters in the action so that the resulting physical anisotropy
� 	 4, while as 	 0:3 fm and m�=m� 	 0:3, which al-
lowed the critical Nt 	 16.

Another important step in tuning the bare parameters is
choosing �t such that the relativistic properties of the
anisotropic staggered action are restored. The velocity of
light cts is defined through the meson dispersion relation:

E2
t;phys�Ps;phys� �

E2
t;lat�0�

a2
t
� c2

tsP2
s;lat

1

a2
s
;

where E and P are the energy and the momentum of the
meson, subscripts ‘‘lat’’ and ‘‘phys’’ refer to a quantity in
lattice or physical units, and s and t whether it is measured
in the spatial or temporal direction. We tune �t, so that the
velocity of light cts�Ps;phys� 	 1. The velocity of light is
calculated for the � propagating in the temporal direction
with a nonzero momentum for three valence values of this
parameter, �val

t � 0:8, 1.0 and 1.2 (the dynamical value is
�dyn
t � 1:0). Figure 2 demonstrates that the choice of
�val
t � 1:0 gives a velocity of light closest to 1.0 for the

set of bare parameters � � 5:3, �o � 3:0 and mf � 0:008.
In Table I we compare masses measured in the temporal

and spatial directions for various combinations of �dyn
t and
FIG. 2 (color online). Tuning of the velocity of light cts using
the dispersion relation in section III for �. The run parameters
are � � 5:3, �o � 3:0, mf � 0:008, �dyn

t � 1:0; Measurements
are done at �val

t � 0:8, 1.0 and 1.2. Square of the spatial
momentum in lattice units asPs;phys is plotted on the horizontal
axis. The choice of �val

t � 1:0 gives velocity of light closest to
unity for that set of parameters.
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TABLE I. Meson masses for run 1 and 2, Table II, measured
with different valence and dynamical �t’s. The comparison
shows that the main contribution to the masses comes from
�val
t . Notations S and T stand for spatial and temporal directions

of measurement.

run �dyn
t �val

t m�, T m�, S m�, T m�, S

1 1.0 1.0 0.313 09(28) 0.578 46(83) 0.6853(63) 1.218(29)
2 1.2 1.0 0.310 23(42) 0.576 77(46) 0.6897(54) 1.257(15)
2 1.2 1.2 0.267 61(35) 0.582 99(49) 0.6030(43) 1.232(32)

FIG. 3 (color online). Potential matching technique applied to
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�val
t . This shows that a 20% change in �dyn

t has only a small
effect compared to a similar change in �val

t . For the masses
we measure the essential contribution comes from �val

t .
Table II, III, and IV list all the zero-temperature scale-

setting runs and the finite temperature runs that we have
done. The anisotropy � for each of the zero-temperature
TABLE III. Parameters of finite temperature calculations with
� � 4:0�1�. All runs have �dyn

t � 1:0.

run volume traj. � �o mf

1 163 � 24 8000 5.3 3.0 0.008
2 163 � 20 9800 5.3 3.0 0.008
3 163 � 16 21600 5.3 3.0 0.008
4 163 � 12 9100 5.3 3.0 0.008
5 163 � 8 5500 5.3 3.0 0.008
6 163 � 4 25900 5.3 3.0 0.008

TABLE II. Parameters of zero-temperature calculations. All
runs except run 2 have �dyn

t � 1:0. Run 2 has �dyn
t � 1:2.

run volume traj. � �o mf

1 163 � 32 5800 5.425 1.5 0.025
2 162 � 24� 32 5100 5.425 1.5 0.025
3 162 � 24� 64 1300 5.695 2.5 0.025
4 162 � 24� 64 1400 5.725 3.44 0.025
5 162 � 24� 64 3400 5.6 3.75 0.025
6 162 � 24� 64 4300 5.286 3.427 0.003 94
7 162 � 24� 64 3200 5.3 3.0 0.008
8 162 � 24� 64 3000 5.29 3.4 0.0065

static potentials measured from Wilson loops in the �z; x� and the
�z; t� planes for run 5, Table II. On this plot they are shown after
they are made to match by dividing the abscissa for the potential
measured from the �z; x� loops by the anisotropy � 	 5, so that
Vz��atn� � Vz�asn�.

TABLE IV. Parameters of finite temperature calculations with
� � 4:8�3�. All runs have �dyn

t � 1:0.

run volume traj. � �o mf

1 163 � 24 1400 5.29 3.4 0.0065
2 163 � 20 2700 5.29 3.4 0.0065
3 163 � 16 8900 5.29 3.4 0.0065
4 163 � 12 6200 5.29 3.4 0.0065
5 163 � 8 3600 5.29 3.4 0.0065

074504
runs is calculated from the ratio of the � masses in the
spatial and temporal directions. For runs 1–5 and 7,
Table II, � is determined from the matching of the static
potentials as well (Fig. 3 illustrates the matching technique
[9]). The comparison between the two methods can be
done examining Fig. 4, which shows that they give reason-
ably close results.

The quality of our data for all runs from Table II can be
judged by studying the effective mass plots for� and �. On
FIG. 4 (color online). Scatter plots for zero-temperature runs
1–5 and 7, Table II. The renormalized anisotropy � is calculated
both from the � mass ratio in the spatial and temporal directions
and from static potential matching. The two methods give the
same anisotropy but the errors for the potential matching results
are larger.
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FIG. 5 (color online). Effective mass plot for � propagating in
temporal direction. Run parameters are as in Table II and data is
measured at the dynamical value of �t.

FIG. 7 (color online). Effective mass plot for � propagating in
temporal direction. Run parameters are as in Table II and data is
measured at the dynamical value of �t.
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Fig. 5 through Fig. 8 we show some typical effective mass
plots. The effective mass at a given time or space slice is
calculated from the values of the correlators at 2 neighbor-
ing points for � and 4 for �, in order to determine all the
parameters in the respective one and two cosh fitting forms.
Ideally after some minimal time or space slice the effective
mass plots should exhibit a plateau. For some effective
mass plots determined from the spatial correlators the
quality of the plateau is not high, especially for the runs
with very coarse lattice spacing, which means that for
those runs there are larger errors on the meson masses
determined from the fits to all data points.

All the data which we used in the Karsch coefficients
and the EOS determination is given in Table V.
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FIG. 6 (color online). Effective mass plot for � propagating in
spatial direction. Run parameters are as in Table II and data is
measured at the dynamical value of �t.
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IV. PHASE TRANSITION

The finite temperature runs from Table III and IV cor-
respond to two sweeps through the phase transition for two
different anisotropies � � 4:0�1� and � � 4:8�3�, with cor-
responding as of 0:34�1� fm, and 0:354�9� fm and
�m�=m��

temporal of 0:33�1� and 0:325�8�, respectively.
For each sweep through the transition region the tem-

perature is changed only by changing Nt, while all other
parameters are kept constant. We want to stress the fact that
there are no scale changes between the different finite
temperature runs from a group with a given anisotropy
and that the scales change minimally between the two
groups of runs belonging to the two different anisotropies.

Figure 9 shows the temperature dependence of h �  i in
the critical region. From the data we can estimate Tc 	
150–160 MeV. An interesting observations is that the
FIG. 8 (color online). Effective mass plot for � propagating in
spatial direction. Run parameters are as in Table II and data is
measured at the dynamical value of �t.
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TABLE V. All zero-temperature data used to determine the Karsch coefficients from fits to Eq. (19)–(22). The run index in the first
column corresponds to the run number of Table II, which lists the run parameters. Notations S and T stand for spatial and temporal
directions of measurement. Rt and Rst are defined in Sec. V.

run �val
t � m�, T m�, S m�, T m�, S Rt Rst

1 1.0 1.778(46) 0.313 09(28) 0.578 46(83) 0.6853(63) 1.218(29) 0.2087(39) 1.080(56)
2 0.8 1.495(21) 0.370 50(41) 0.567 94(39) 0.8227(69) 1.230(14) 0.2028(33) 1.051(29)
2 1.0 1.822(24) 0.310 23(42) 0.576 77(46) 0.6897(54) 1.257(15) 0.2023(32) 1.041(28)
2 1.2 2.043(56) 0.267 61(35) 0.582 99(49) 0.6030(43) 1.232(32) 0.1970(28) 1.137(62)
3 0.8 2.767(41) 0.2451(10) 0.6710(50) 0.3144(34) 0.870(11) 0.608(12) 0.979(27)
3 1.0 3.637(80) 0.1925(26) 0.6774(48) 0.2547(39) 0.926(13) 0.571(16) 0.936(37)
3 1.2 3.273(76) 0.2094(39) 0.6732(47) 0.2716(54) 0.889(13) 0.594(12) 0.966(31)
4 0.8 3.722(41) 0.2048(11) 0.7643(24) 0.2481(28) 0.9235(58) 0.681(16) 1.005(23)
4 1.0 4.295(54) 0.178 11(84) 0.7699(24) 0.2210(23) 0.9493(62) 0.649(14) 1.013(27)
4 1.2 4.888(70) 0.159 55(89) 0.7786(23) 0.1980(22) 0.9680(65) 0.649(14) 0.997(28)
5 0.8 3.990(34) 0.204 66(65) 0.8456(27) 0.2706(18) 1.0796(74) 0.5721(80) 1.072(18)
5 1.0 4.658(35) 0.176 61(76) 0.8540(20) 0.2382(13) 1.1096(88) 0.5497(80) 1.078(16)
5 1.2 5.260(46) 0.156 37(69) 0.8624(22) 0.213 74(99) 1.1242(90) 0.5352(74) 1.099(21)
6 1.0 4.60(21) 0.074 13(25) 0.364 10(77) 0.2811(39) 1.294(51) 0.0695(20) 1.14(10)
7 0.8 3.57(30) 0.132 73(42) 0.474 88(42) 0.3777(51) 1.35(11) 0.1235(33) 1.00(17)
7 1.0 4.03(14) 0.112 80(51) 0.476 82(38) 0.3274(39) 1.320(49) 0.1187(29) 1.099(77)
7 1.2 4.903(75) 0.098 00(44) 0.479 50(36) 0.2857(34) 1.401(15) 0.1177(28) 0.996(30)
8 1.0 4.80(28) 0.095 17(39) 0.461 21(58) 0.2821(56) 1.354(57) 0.1138(45) 1.02(10)
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shape of the transition is comparable in sharpness with the
phase transition obtained in previous isotropic calculation
[12,13] also shown on the same figure. The isotropic data is
from a dynamical staggered calculation with two fermion
flavors on 163 � 4 volume andmf � 0:025. The scale used
to calculate the temperature in the isotropic case is from
[5]. The differences between our anisotropic result and the
isotropic one we attribute to the scaling violations in the
latter which we have avoided in our fixed parameter
scheme.
FIG. 9 (color online). The temperature dependence of h �  i in
the region of Tc. Points from anisotropic runs with a common
symbol have the same anisotropy and physics scales. The iso-
tropic data is shown for comparison. From the critical region we
estimate Tc 	 150–160 MeV.
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V. KARSCH COEFFICIENTS

To determine the EOS we need to know the Karsch
coefficients which are involved in the analytic expressions
Eq. (17) and (18). The values of these derivatives can be
calculated using the physical quantities that we measure
for each zero-temperature run: as, �, Rt � �m2

�=m
2
��

temporal

and Rst � �m2
�=m2

��
spatial=�m2

�=m2
��

temporal. We consider
the bare parameters �o, �, mf and �t to be functions of
the above physical quantities, which allows those functions
to be expanded in Taylor series around the physical quan-
tities of a selected zero-temperature run as follows:

��o��; as; Rt; Rst; fcig� � c1��� c2�as � c3�Rt

� c4�Rst � 
 
 
 (19)

����; as; Rt; Rst; fdig� � d1��� d2�as � d3�Rt

� d4�Rst � 
 
 
 (20)

�mf��; as; Rt; Rst; feig� � e1��� e2�as � e3�Rt

� e4�Rst � 
 
 
 (21)

��t��; as; Rt; Rst; ffig� � f1��� f2�as � f3�Rt

� f4�Rst � 
 
 
 ; (22)

where ��o � �o � �
0
o, �� � �� �0, �mf � mf �m

0
f,

��t � �t � �0t, �� � �� �0, �as � as � a0s, �Rt �
Rt � R0t, �Rst � Rst � R0st. In the last definitions the
primed quantities refer to the selected run around whose
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physical quantities the Taylor expansion is done. The derivatives ci, di, ei and fi, i � �1; . . . ; 4�, are defined as:

c1 c2 c3 c4

d1 d2 d3 d4

e1 e2 e3 e4

f1 f2 f3 f4
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1
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@�t
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���������;Rt;Rst

@�t
@Rt

���������;as;Rst

@�t
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BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: (23)
The Karsch coefficients, which are involved in the EOS,
are the first two columns of the matrix of derivatives above.
We assume that we can make linear fits to Eq. (19) through
Eq. (22) for each zero-temperature run and minimize the
�2
i , i � �1; . . . ; 4�, for all of the zero-temperature runs at

the same time. The �2
i ’s for the four fits are:

�2
1�fcig� �

X
r

���ro���ro��r;ars;Rrt ;Rrst; fcig��
2=�2

r���ro�

(24)

�2
2�fdig� �

X
r

���r���r��r;ars;R
r
t ;R

r
st; fdig��

2=�2
r���

r�

(25)

�2
3�feig��

X
r

��mr
f��mr

f��
r;ars;R

r
t ;R

r
st;feig��

2=�2
r��m

r
f�

(26)

�2
4�ffig� �

X
r

���rt ���rt ��r; ars; Rrt ; Rrst; ffig��
2=�2

r���rt �:

(27)

In the above expressions the sums are over r, which labels
each zero-temperature run and the bare parameters and
physical quantities associated with it. This labeling is not
the same as the numbering of the runs in Table II, where
each run number refers to a specific set of dynamical bare
parameters. Here the subscript r labels a specific set of bare
parameters which instead of �dyn

t has the valence value of
that parameter, since as we already showed, the �val

t has the
dominant contribution to the measured physical quantities.
Hence in all formulas in this section the notation �t stands
for the valence value of that parameter.

All expansions are taken around a given selected run,
whose label is not shown. The minimization of �2

1 for the
first fit, Eq. (19) for example, leads to a matrix equation of
the form

AC � V; (28)

where
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V �

P
r

��ro��r

�2
r ���ro�P

r

��ro�ars
�2
r ���ro�P

r

��ro�Rrt
�2
r ���ro�P
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;

C �

c1

c2

c3

c4

0
BBB@

1
CCCA;

which we solve for C. In a similar way we find matrix
equations for the rest of the derivatives from Eq. (20)–(22).

To apply statistical analysis on our data from the zero-
temperature runs, we divide the data into a set of jackknife
blocks. The numerical procedure for the minimization of
the �2

i functions can not be applied straightforwardly for
the equations Eq. (24) through Eq. (27) since the standard
deviations of the bare parameters, �2

r�. . .�, are not known
from the beginning. Instead we employ an iterative scheme
which consists of the following steps:
(1) S
-7
tart by guessing initial values for all �2
r�. . .�’s.

(a) Determine the Karsch coefficients by solving
the matrix equation: Eq. (28), and the similar
equations derived from minimizing Eq. (25)
through Eq. (27).

(b) Using the values of the Karsch coefficients
from step 1 calculate numerically the linear
part of the functions Eq. (19) through Eq. (22)
on each jackknife block of data and by sta-
tistically analyzing them find new values for
all �2

r�. . .�’s.

(2) R
epeat steps (a) and (b) until the numerical result for

the Karsch coefficients converges.



TABLE VII. Karsch coefficients from fitting the data to the
liner part of the Taylor expansion around run 8, Table II, with
� � 4:8�3�. The order of the coefficients is the same as in the
matrix in Eq. (23). Each row is obtained from the fitting
procedure independently from the other rows and the �2’s per
degree of freedom for each fit is 1.4, 0.7, 2.3 and 0.9.

0.59(6) 9.2(6.2) 2.2(1.0) 0.7(1.8)
�0:015�6� �1:0�4� 0.58(8) 0.02(8)
�0:0050�8� 0.11(7) 0.05(1) 0.02(2)

0.06(3) �5:0�4:1� �0:8�7� 0.8(1.2)

TABLE VI. Karsch coefficients from fitting the data to the
liner part of the Taylor expansion around run 7, Table II, with
� � 4:0�1�. The order of the coefficients is the same as in the
matrix in Eq. (23). Each row is obtained from the fitting
procedure independently from the other rows and the �2’s per
degree of freedom for each fit is, respectively, 1.7, 1.0, 1.8 and
0.7.

0.61(6) 9.6(6.2) 2.0(1.1) 0.3(2.0)
�0:017�7� �1:5�1:1� 0.5(2) �0:03�28�
�0:0062�4� 0.18(5) 0.068(4) �0:003�15�

0.04(5) �5:6�4:8� �0:7�8� 1.1(1.4)

FIG. 10 (color online). Energy in units of the Stefan-
Boltzmann limit and a comparison with the free lattice theory
(squares). The Stefan-Boltzmann law for a relativistic ideal gas
for SU�Nc� color with Nf quark flavors in the continuum is "SB

T4 �
�2

15 �N
2
c � 1� 7

4NcNf� 	 12:1725 for Nc � 3 and Nf � 2. Points
with a common symbol share the same anisotropy and the same
physics scales at all temperatures.
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The success of this scheme depends on how well the
functions Eq. (19) through Eq. (22) can be approximated
by the linear part of the Taylor expansion, which is a
measure of how ‘‘close’’ the physical quantities measured
from each run are to the quantities of the selected run
around which the expansion is made. To trust the consis-
tency of the iterative scheme we checked the two step
procedure with variety of random initial guesses for the
�2
r�. . .�’s, which reproduced the same final results.
The numerical results for the Karsch coefficients from

expansion around runs 7 and 8 from Table II, obtained via
the method described above, are summarized in Tables VI
and VII. The quoted errors are calculated using the jack-
knife method. Our results show larger errors on the Karsch
coefficients which are derivatives with respect to as than
the errors on those coefficients that are derivatives with
respect to �. A possible explanation of that difference
could be that the specific parameter space that we explored
in our zero-temperature runs does not allow a better reso-
lution of some of the Karsch coefficients either because it
is too limited (we need more runs and more statistics on
each of them to improve the quality of mass fits) or because
the ‘‘points’’ in that space (the zero-temperature runs) are
not distributed in a favorable way around the run around
which we are making the expansion, or both.

VI. EQUATION OF STATE

In the previous section we described the procedure
which allows us to calculate the Karsch coefficients needed
to determine the QCD equation of state (Eq. (17) and (18)).
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As stressed before in Section IV we have two groups of
finite temperature runs listed in Tables III and IV, for each
of which we are changing the temperature by only varying
Nt and keeping the underlying physics scales fixed.
Figs. 10 and 11 show the numerical results for the energy
density and pressure for both groups of runs corresponding
to anisotropies � � 4:0�1� and 4.8(3). The data is normal-
ized to the continuum Stefan-Boltzmann values of the EOS
for an ideal relativistic gas for SU�Nc� color with Nf quark
flavors, which are

"SB

T4 �
�2

15

�
N2
c � 1�

7

4
NcNf

�
	 12:1725

and

pSB

T4 �
"SB

3T4 :

The errors on the pressure are significantly larger than
the errors on the energy due to the large errors on those of
the Karsch coefficients which are derivatives with respect
to as and are involved only in Eq. (18) for the pressure. The
comparison with the free lattice theory (squares) gives an
explanation of the prominent drop off of " and p in the high
temperature sector—simply a consequence of the lattice
high momentum cutoff. The high momentum mode con-
tribution to the EOS becomes dominant with the increase
of the temperature, which means that at a coarse lattice
spacing a high proportion of relevant modes are simply
excised. Including improvements to the spatial parts of the
staggered fermion action would be a natural step to reduce
those lattice artifacts for high temperatures.

Our results for the EOS are comparable with the iso-
tropic case [14] in the temperature region up to 0.3 GeV for
-8



FIG. 11 (color online). Pressure in units of the Stefan-
Boltzmann limit and a comparison with the free lattice theory
(squares). The Stefan-Boltzmann law for a relativistic ideal gas
for SU�3� color with Nf � 2 quark flavors in the continuum
gives pSB

T4 �
"SB

3T4 . Points with a common symbol share the same
anisotropy and the same physics scales at all temperatures.
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which the cited reference has data. The errors on the energy
density are comparable with the errors in that isotropic
study, or smaller with enough statistics, on the other hand
the errors on pressure are larger due to the reasons stated
above.
TABLE VIII. The second local staggered pion
the zero-temperature runs with parameters given
corresponds to the run number of Table II. Nota
directions of measurement. For large values of the
significantly smaller than the corresponding valu
consistent with zero.

run �val
t � m�2

, T

1 1.0 1.778(46) 0.4605(37)
2 0.8 1.495(21) 0.5803(75)
2 1.0 1.822(24) 0.4729(54)
2 1.2 2.043(56) 0.3996(31)
3 0.8 2.767(41) 0.2484(18)
3 1.0 3.637(80) 0.1948(18)
3 1.2 3.273(76) 0.2115(40)
4 0.8 3.722(41) 0.2071(11)
4 1.0 4.295(54) 0.179 31(97)
4 1.2 4.888(70) 0.1598(10)
5 0.8 3.990(34) 0.208 53(83)
5 1.0 4.658(35) 0.179 54(77)
5 1.2 5.260(46) 0.158 77(75)
6 1.0 4.60(21) 0.0956(14)
7 0.8 3.57(30) 0.1693(14)
7 1.0 4.03(14) 0.1410(11)
7 1.2 4.903(75) 0.1213(13)
8 1.0 4.80(28) 0.1142(14)
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VII. NOTE ON FLAVOR SYMMETRY
IMPROVEMENT

In the continuum and chiral limits the spontaneous
symmetry breaking of SU�4�A � SU�4�V in the staggered
action, yields 15 Goldstone pions. On the lattice the vio-
lation of the flavor symmetry leaves us with the remnant
U�1�A �U�1�V and only one true Goldstone pion. The
local pions in the staggered formulation, which fall into 7
irreducible representations, are not degenerate any more
due to the O�a2� flavor symmetry breaking. However the
introduction of anisotropy on the lattice makes the lattice
spacing in the temporal direction much smaller than the
spatial one and hence we expect to see an improvement in
the flavor symmetry.

We choose �� � �m�2
�m��=m�, where �2 is the

second local staggered pion, as a quantitative measure of
the flavor symmetry breaking in the spatial and temporal
directions. The data in Table VIII shows that in the tem-
poral direction for all runs �� is smaller than its value in
the spatial direction, which means that we are seeing
improvement of the flavor symmetry as at becomes finer.
Especially for run 4, the � and �2 look virtually
degenerate.

We expect that the anisotropy has a similar effect on the
rest of the pions, although we have not investigated nu-
merically how the various mass splittings between them
are affected by the decrease of at.
masses m�2
and �� � �m�2

�m��=m� from
in Table II. The run index in the first column
tions S and T stand for spatial and temporal
anisotropy �, �� in the temporal direction is

e in the spatial direction, for some runs even

m�2
, S ��, T ��, S

1.109(25) 0.2151(45) 0.436(24)
1.243(92) 0.2551(89) 0.549(79)
1.17(12) 0.2359(75) 0.475(95)
1.119(32) 0.2188(54) 0.435(27)
0.7462(75) 0.0106(56) 0.0864(87)
0.779(11) 0.0091(65) 0.110(10)
0.7592(80) 0.008(11) 0.0967(89)
0.8379(71) 0.0094(42) 0.0797(77)
0.8418(66) 0.0054(47) 0.0757(70)
0.8594(69) 0.0011(59) 0.0834(71)
0.9962(78) 0.0143(29) 0.1395(68)
1.0125(79) 0.0123(31) 0.1428(70)
1.0380(84) 0.0112(33) 0.1562(74)
0.58(11) 0.0762(53) 0.168(85)
1.30(36) 0.0969(42) 0.61(26)
1.24(16) 0.0861(42) 0.58(12)
1.181(79) 0.0816(54) 0.501(56)
1.54(21) 0.0674(54) 0.80(16)
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VIII. CONCLUSIONS

We have studied the thermodynamic properties of full
QCD with 2-flavors of staggered fermions on anisotropic
lattices. In our calculations we have employed a fixed
parameter scheme in which we keep the bare parameters
constant and change the temperature by varying only the
number of the temporal slices Nt. This allowed us to study
the phase transition for staggered fermions with fixed
physics scales. It appears to be comparably as sharp as
the transition in the isotropic case.

We have calculated nonperturbatively the Karsch coef-
ficients from series of zero-temperatures runs and applied
them in the determination of the EOS. Those of the Karsch
coefficients which are derivatives with respect to as have
significant errors which are most probably due to the
limited set of data used in their determination. They,
respectively, give rise to large uncertainties in the calcu-
lation of the pressure.

The high temperature behavior of the quark-gluonic
system was found to be strongly influenced by the under-
lying lattice cutoff, which gives a maximum temperature at
which our anisotropic EOS should represent continuum
physics. However the fixed parameter scheme combined
with a spatially improved anisotropic staggered action
might give a much better result in the high temperature
region.
074504
The anisotropic approach naturally reduces the finite
lattice spacing errors associated with at and accounts for
an improvement of the flavor symmetry for particles prop-
agating in the temporal direction.

It is interesting to mention that our results do not show a
pronounced negative pressure problem in the confined
phase as it has been found in previous EOS calculations
using the derivative method with perturbatively calculated
Karsch coefficients. However, considering the generally
large statistical errors on the pressure in our calculation,
we could not entirely exclude the possibility of such a
problem being unveiled at low temperatures in a calcula-
tion with reduced statistical errors.
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