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The semileptonic process, B! �l�, is studied via full QCD lattice simulations. We use unquenched
gauge configurations generated by the MILC Collaboration. These include the effect of vacuum
polarization from three quark flavors: the s quark and two very light flavors (u=d) of variable mass
allowing extrapolations to the physical chiral limit. We employ nonrelativistic QCD to simulate the b
quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the
form factors f��q

2� and f0�q
2� in the chiral limit for the range 16 GeV2 � q2 < q2

max and obtainRq2
max

16 GeV2 �d�=dq2�dq2=jVubj2 � 1:46�35� ps�1. Combining this with a preliminary average by the
Heavy Flavor Averaging Group (HFAG’05) of recent branching fraction data for exclusive B semileptonic
decays from the BABAR, Belle and CLEO Collaborations leads to jVubj � 4:22�30��51� 	 10�3.
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I. INTRODUCTION

A major achievement of the B factories in recent years
has been the observation of CP violation in the neutral B
system [1,2]. The emphasis since then has been on over-
constraining the unitarity triangle and checking for con-
sistency with, or deviations from, the three family standard
model. The goal is to independently measure not only the
three angles but also the lengths of the sides of the triangle
and thereby determine � ��; ���, the apex of the unitarity
triangle, in as many ways as possible. In order to fix the
sides of the unitarity triangle, the magnitudes of several
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements are
required and the accuracy is currently limited mainly by
theoretical uncertainties in two of them, jVtdj and jVubj.
Theory input for these quantities involves hadronic matrix
elements of several electroweak operators and these in turn
require good control over nonperturbative QCD. This ar-
ticle reports on significant recent progress in lattice QCD
determinations of form factors relevant for the CKM ma-
trix element jVubj.
jVubj can be determined from studies of either inclusive

or exclusive B meson semileptonic decays. The first deter-
minations relied on inclusive measurements. However,
recent impressive progress in measurements of branching
fractions for exclusive decays by CLEO [3], Belle [4,5],
and BABAR [6–8] have started to make exclusive determi-
nations competitive [9,10]. In either approach, errors are
now dominated by theory errors, and which method will
eventually win depends on how well the theoretical un-
certainties in shape functions (for the inclusive approach)
or form factors (in the case of the exclusive approach) can
be brought under control. Lattice QCD provides a first
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principles nonperturbative QCD method for calculating
form factors in exclusive semileptonic decays. The first
lattice calculations were carried out in the quenched ap-
proximation that ignored vacuum polarization effects [11–
15]. For some period these pioneering results were the only
ones available and experimentalists, e.g. the CLEO
Collaboration, used them to extract some of the earliest
exclusive jVubj results [3]. In the summer of 2004 the first
preliminary unquenched results for the B! �l� form
factors were presented by the Fermilab/MILC [16] and
HPQCD [17] Collaborations. These calculations employed
the MILC Collaboration Nf � 2� 1 unquenched configu-
rations, the most realistic gauge configurations to date with
vacuum polarization from 2 flavors of very light quarks and
from strange quarks [18]. Furthermore, the good chiral
properties of the improved staggered quark action used
for the light sea and valence quarks allowed for investiga-
tions much closer to the chiral limit than in the earlier
calculations. Hence, Refs. [16,17] constitute a major step
forward in lattice QCD determinations of semileptonic
form factors. These preliminary results have been incorpo-
rated by Belle and BABAR into their recent B semileptonic
analysis [4–8] and used by other theorists in their extrac-
tions of jVubj [19–21].

References [16,17] are part of a growing list of recent
lattice calculations that use the MILC unquenched con-
figurations. The creation of these configurations became
feasible on present day computers due to the development
of highly improved staggered light quark actions [22].
There is one well-known drawback of staggered actions,
namely, that each flavor comes in four types, called
‘‘tastes.’’ To simulate just one taste of sea quark per flavor,
a fourth root of the quark determinant is used and the
-1 © 2006 The American Physical Society
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TABLE I. Simulation details. mf (mq) denotes sea (valence)
quark masses and ms is the strange quark mass. A y means the
lattice spacing was determined through r1. For all other ensem-
bles the � 2S-1S splitting was used. u0 � �plaq�1=4 is the link
variable that enters into the MILC Collaboration’s convention
for normalization of quark masses.

N3
s 	 Nt a�1 (GeV) Nconf u0amf u0amq mq=ms

Coarse
243 	 64 1:623�32�y 399 0.005 0.005 0.125
203 	 64 1:622�32�y 397 0.007 0.007 0.175
203 	 64 1.596(30) 568 0.010 0.005 0.125

0.010 0.250
0.020 0.500

203 	 64 1.605(29) 486 0.020 0.020 0.500

Fine
283 	 96 2.258(32) 465 0.0062 0.0062 0.200
283 	 96 2.312(31) 496 0.0124 0.0124 0.400
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validity of this procedure has not yet been rigorously
proven. All tests undertaken to date to study the fourth
root procedure, however, have led to encouraging results
[23]. There are no indications of problems or any devia-
tions from continuum QCD behavior beyond small and
expected discretization errors that can be systematically
improved upon. A recent review of the fourth root issue is
given in [24]. The MILC unquenched configurations and
the heavy and light quark actions currently in use have also
been tested repeatedly by calculating a large set of well-
measured quantities such as light hadron spectroscopy,
light meson decay constants, quarkonium, and B meson
spectroscopy. Agreement between experiment and lattice
calculations is found to be excellent within the few percent
errors in the lattice results [25–29]. More impressively,
these same gauge configurations have led to some recent
predictions from lattice QCD that have been confirmed
subsequently by experiment [30–32]. Most relevant for
B semileptonic decays is the successful calculation by
the Fermilab/MILC Collaboration of D meson semilep-
tonic form factors and the agreement of their q2 depen-
dence with experiment [32]. All this should boost
confidence in results for B meson semileptonic decays
that are now emerging from lattice QCD calculations.

In this article we make several further improvements on
the preliminary calculations of Ref. [17] and finalize our
form factor results. Some of these improvements have been
reported in [33]. Among the improvements, we have now
included all the dimension 4 current corrections through
O��s=M� and O�a�s� to the temporal and spatial compo-
nents of the heavy-light electroweak currents relevant for
B! �l� semileptonic decays. Our previous results in-
cluded currents only at lowest order in 1=M and through
O��s�. We now have simulation data from several MILC
ensembles, whereas in Ref. [17] results were at a single
fixed light sea quark mass and only the valence quark mass
was varied. Another development since Ref. [17] is that we
now employ the formulas of staggered chiral perturbation
theory (SChPT) [34–36] simultaneously to both partially
quenched and full QCD results to extrapolate in the light
quark mass to the physical pion. Previously we used linear
chiral extrapolations to our partially quenched data.

So, the list of improvements in our semileptonic decay
studies since the work of Ref. [17] is quite substantial.
Nevertheless, we will see that changes in the final results
for the form factors f��q2� and f0�q

2� are almost negli-
gible. The individual contribution from each higher dimen-
sion current correction is found to be small, mainly due to
small one-loop matching coefficients. There is also some
cancellation between the many terms. The difference be-
tween linear chiral extrapolations of our previous partially
quenched data and results from staggered chiral perturba-
tion theory fits to the new full data set also turns out to be a
small effect. With all the improvements now in place, our
semileptonic form factor calculations are at the same level
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as recent B meson decay constant determinations by the
HPQCD Collaboration [37,38]. Those latter calculations
are crucial for determinations of the CKM matrix elements
jVtdj and jVtsj.

In the next section we provide some details of the
simulation parameters and of the lattice actions employed.
We also summarize formulas for the relevant form factors.
In Sec. III we discuss matching of the lattice heavy-light
currents used in our simulations to their continuum QCD
counterparts. One-loop matching coefficients for the tem-
poral components V0 and A0 were published in Ref. [39]
and have been used already in our decay constant determi-
nations [37,38]. Matching of the spatial components Vk
was completed as part of the current project. Section IV
describes how we extract the form factors fk and f? from
numerical simulations. The more commonly used form
factors f� and f0 can be expressed as simple linear combi-
nations of fk and f?. Section V focuses on chiral extrap-
olations of fk and f?. In Sec. VI we summarize our final
results for f��q2� and f0�q2� in the physical chiral limit.
We also present tables of partially integrated differential
decay rates (divided by jVubj2) in several q2 bins. In
Sec. VII we combine the results of Sec. VI with experi-
mental data on B! �l� branching fractions to estimate
jVubj. We then conclude with a summary section.

II. SIMULATION DETAILS AND FORM FACTOR
FORMULAS

Most of our simulations were performed on the MILC
Collaboration ‘‘coarse’’ ensembles with lattice spacing
around 0.12 fm and with light sea quark masses in units
of the strange quark mass, mf=ms, ranging between 0.125
and 0.5. We have also carried out some checks using MILC
lattices with finer lattice spacings. We refer to the original
papers by the MILC Collaboration for details of how their
lattices were generated [18]. Some specifications for the
-2
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ensembles are given in Table I. The highly improved
staggered action, the AsqTad action, is used for both the
sea and valence light quarks. The leading discretization
errors in this formalism are O�a2�s�. To simulate the b
quark inside the Bmeson we use the same highly improved
nonrelativistic QCD (NRQCD) action employed in recent
studies of the � system on the same MILC ensembles
[28,40]. In terms of the two-component Pauli spinor �
one has

LNRQCD �
X
x

�
�yt �t ��yt

�
1�

a�H
2

�
t

�
1�

aH0

2n

�
n

t
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Uyt �t� 1�

�
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�
; (1)

where n is a stability parameter introduced to control high
momentum modes of the b propagator [28]. H0 is the
nonrelativistic kinetic energy operator,

H0 � �
��2�

2M0
; (2)

and �H includes relativistic and finite-lattice-spacing cor-
rections,
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���2��2

8M3
0
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ig

8M2
0

�r 
 ~E� ~E 
 r�
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g

8M2
0
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 �~r	 ~E� ~E	 ~r� � c4
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� 
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� c5
a2��4�

24M0
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a���2��2
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0

: (3)

M0 is the bare b quark mass, ��2� the lattice Laplacian, r
the symmetric lattice derivative and ��4� the lattice discre-
tization of the continuum

P
iD

4
i . Expressions for the im-

proved ~E and ~B fields are given in [28]. All derivatives are
tadpole improved. As in [28] we set the ci’s to their tree
level value, ci � 1. These coefficients will be modified by
radiative corrections at higher order. For heavy-light sys-
tems the most important radiative corrections will be to c4.
All other ci’s are multiplied by additional factors of 1=M or
a. Based on the discussions in [28] we estimate the effect
from radiative corrections to c4 on B semileptonic form
factor calculations to be less than 1%.

Just as in continuum QCD, our lattice actions include a
small number of parameters that can only be fixed via
experimental input. These are the bare quark mass parame-
ters and the scale (or coupling). For the present case of
heavy-light simulations the action parameters have already
been fixed for us via simulations of quarkonium and light
quark systems using the same MILC configurations. We
use lattice spacings determined by the � 2S-1S splitting
[28]. For two of the MILC ensembles (denoted by a y in
Table I), � simulations have not yet been carried out. On
the other hand, the MILC Collaboration has measured the
heavy quark potential parameter r1=a (in lattice units) for
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these ensembles [26]. In Ref. [28], using MILC ensembles
on which both r1=a and the � 2S-1S splittings were
calculated, we could use the experimental 2S-1S splitting
to determine r1 � 0:321�5� fm. This physical value for r1

was combined with the MILC Collaboration’s r1=a to fix
the scale for the above two ensembles. The b quark mass is
also fixed by our � studies. Studies of pions and kaons
have fixed the u and dmasses (which we take to be equal to
each other) and the s quark mass, respectively [26,27].
Hence by the time one gets to the B system there are no
adjustable parameters left in our QCD action.

To study the process B! �l�, one needs to evaluate the
matrix element of the charged electroweak current between
the B and the � states, h�j�V � A��jBi. Only the vector
current V� contributes to the pseudoscalar-to-pseudoscalar
amplitude and the matrix element can be written in terms
of two form factors f��q2� and f0�q

2�. These depend only
on the square of the momentum transferred between the B
and the �, q� � p�B � p

�
� .

h��p��jV
�jB�pB�i � f��q

2�

�
p�B � p

�
� �

M2
B �m

2
�

q2 q�
�

� f0�q2�
M2
B �m

2
�

q2 q�: (4)

If one neglects the mass of the charged lepton in the final
state, only the form factor f��q2� contributes to the decay
rate ��B! �l��. Nevertheless, it is useful to keep track of
the form factor f0�q

2� as well since, as we shall see, it helps
in our interpolations and extrapolations of simulation data.
In our data analysis another pair of form factors, fk and f?,
turns out to be more convenient.

h��p��jV
�jB�pB�i �

����������
2MB

p
�v�fk � p

�
?f?�; (5)

with

v� �
p�B
MB

; p�? � p�� � �p� 
 v�v
�: (6)

In the B rest frame (in this article we only consider B
mesons decaying at rest) the temporal and spatial parts of
(5) become

h�jV0jBi �
����������
2MB

p
fk; h�jVkjBi �

����������
2MB

p
pk�f?: (7)

Hence, one sees that one can separately determine fk or f?
simply by looking at either the temporal or spatial compo-
nent of V�. These two form factors have the additional
advantage that they have simpler heavy quark effective
theory scaling properties and chiral perturbation theory
(ChPT) is carried out in terms of them rather than for f�
and f0. After carrying out the chiral extrapolations for fk
and f?, we convert back to obtain f� and f0 for the
physical theory using

f� �
1����������

2MB
p fk �

1����������
2MB
p �MB � E��f?; (8)

f0 �

����������
2MB
p

�M2
B �m

2
��
��MB � E��fk � �E

2
� �m

2
��f?�; (9)
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TABLE II. Matching coefficients for the spatial currents Vk.
Where errors are not indicated explicitly, they are of order one or
less in the last digit. aM0 is the bare heavy quark mass in lattice
units and n a parameter in the NRQCD action. The three selected
values for aM0 correspond to the b quark on the MILC extra-
coarse, coarse and fine lattices, respectively [28].

aM0 n ~��0�k ��1�k ��2�k ��3�k ��4�k 	10;k

4.00 2 0.256 0.484(3) 0.340(6) 0.244(3) �0:137�3� 0.041
2.80 2 0.270 0.349(3) 0.169(6) 0.218(4) �0:029�4� 0.055
1.95 2 0.332 0.232(3) 0.121(8) 0.161(4) 0.063(3) 0.073
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FIG. 1 (color online). The ratio hJ�1�0 i=hJ
�0�
0 i for one ensemble

(u0amf � u0amq � 0:01) versus the pion energy E�. The lower
points are before power law subtraction and the upper points are
after power law subtraction (i.e. hJ�1�;sub

0 i=hJ�0�0 i).
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where E� is the pion energy in the B rest frame. From these
formulas one sees that f� will be dominated by f?, i.e. by
the matrix element of Vk, and f0 by fk or the matrix
element of V0.

Our goal is to evaluate the hadronic matrix elements
h�jV0jBi and h�jVkjBi via lattice simulations. There are
several steps in the calculation. First, one must relate the
continuum electroweak currents, V0 and Vk, to lattice
operators written in terms of the heavy and light quark
fields in our lattice actions. In the second step the matrix
elements of these lattice current operators must be eval-
uated numerically and the relevant amplitude, i.e. the
matrix element between the ground state B meson and
the ground state pion with appropriate momenta, must be
extracted. This will give us, via Eqs. (7), the form factors
fk and f? as functions of the light quark mass and the pion
momentum. Finally, in step 3 these numerical results must
be extrapolated to the physical pion. In the next three
sections we describe each of these three steps in turn.

III. MATCHING OF HEAVY-LIGHT CURRENTS

Matching of heavy-light currents between continuum
QCD and a lattice effective theory with two-component
nonrelativistic heavy quark fields � and four-component
light quarks q�x� is discussed in Ref. [41]. Since staggered
light quarks can be written in terms of four-component
‘‘naive’’ AsqTad quark fields the formalism developed
there carries over unchanged to the present calculation.
Introducing also a four-component notation for the heavy
field, Q�x� � ��; 0�, one finds that through
O��s�QCD=M;�s=�aM�; �sa�QCD� the following current
operators in the effective theory are required.

Temporal:

J�0�0 �x� � �q�x��0Q�x�;

J�1�0 �x� �
�1

2M0
�q�x��0� 
 rQ�x�;

J�2�0 �x� �
�1

2M0
�q�x�� 
 r

 

�0�0Q�x�:

(10)

Spatial:

J�0�k �x� � �q�x��kQ�x�;

J�1�k �x� �
�1

2M0
�q�x��k� 
 rQ�x�;

J�2�k �x� �
�1

2M0
�q�x�� 
 r

 

�0�kQ�x�;

J�3�k �x� �
�1

2M0
�q�x�rkQ�x�;

J�4�k �x� �
1

2M0
�q�x�r

 

kQ�x�;

(11)

where �� can be either �� or �5��, and M0 is the bare
heavy quark mass in the NRQCD action. One sees that
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there are two dimension 4 current corrections to the tem-
poral components and four such corrections to the spatial
components. To the order that we are working, one has

hV0i � �1� �s~��0�0 �hJ
�0�
0 i � �1� �s�

�1�
0 �hJ

�1�;sub
0 i

� �s�
�2�
0 hJ

�2�
0 i (12)

and

hVki � �1� �s~��0�k �hJ
�0�
k i � �1� �s�

�1�
k �hJ

�1�;sub
k i

� �s�
�2�
k hJ

�2�
k i � �s�

�3�
k hJ

�3�
k i � �s�

�4�
k hJ

�4�
k i: (13)

We introduce the combination J�1�;sub
� � J�1�� � �s	10;�J

�0�
� .

This subtracts out power law contributions to the matrix
elements of the higher dimension operator J�1�� through
O��s=�aM�� [42]. J�1�� enters the matching already at tree
level and after the subtraction one is left with the physical
O��QCD=M� contribution that is a relativistic correction to
the leading order term. Power law subtractions of the other
dimension 4 current corrections come in as O��2

s=�aM��
effects and are only partially included here. The one-loop
coefficients ��j�� and 	10;� for � � 0 are given in Ref. [39].
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FIG. 2 (color online). The ratio hJ�2�k i=hJ
�0�
k i for two ensembles

versus the pion energy E�. Squares are for u0amf � 0:01 and
circles for u0amf � 0:02.
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FIG. 4 (color online). Same as Fig. 2 for hJ�4�k i=hJ
�0�
k i.

B MESON SEMILEPTONIC FORM FACTORS FROM . . . PHYSICAL REVIEW D 73, 074502 (2006)
The results for � � k have not been published before and
are summarized in Table II. In Ref. [17] only the contri-
butions from the first terms in Eqs. (12) and (13) were
taken into account, i.e. J�0�0 and J�0�k matched through
O��s�.

As mentioned in the Introduction, the effects of all the
dimension 4 current corrections turn out to be very small.
In Fig. 1 we show results for hJ�1�0 i=hJ

�0�
0 i for one of our

ensembles with and without the power law subtraction.
One sees that, although the unsubtracted hJ�1�0 i=hJ

�0�
0 i is at

the �6% level, the physical hJ�1�;sub
0 i=hJ�0�0 i is � 1%. In

Figs. 2–4 we give further examples of hJ�j�k i=hJ
�0�
k i for j >

1. These get multiplied by factors of ���j�k �s� in Eq. (13).
Using �s 
 �V�2=a� � 0:32 [43] and Table III, one finds
��s factors between 0.01 and 0.11, which leads to contri-
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FIG. 3 (color online). Same as Fig. 2 for hJ�3�k i=hJ
�0�
k i.
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butions from higher order currents that are at most 1%. For
instance, the largest current correction is J�4�k (Fig. 4), but
��4�k �s � �0:029�s � �0:0009, and the contribution
from this current is negligible. In comparing Figs. 1–4
one sees that the size of the matrix elements grows with
the pion energy E� for J�2�k and J�4�k and seems much less
sensitive to E� for the other two currents. This reflects the
fact that J�2�k and J�4�k have derivatives acting on the light
quark field that is part of the final state pion and therefore
knows about its momentum.

IV. SIMULATION RESULTS FOR FORM FACTORS
fk AND f?

The starting point for calculations of the hadronic matrix
elements h�jJ�j�� jBi is the 3-point correlator

C�3�� ~p�; ~pB; t; TB� �
X
~z

X
~y

h���0�J
�j�
� �~z; t��yB� ~y;�TB�i

	 ei ~pB
 ~yei� ~p�� ~pB�
 ~z; (14)

where �B and �� are interpolating operators for the B
meson and the pion, respectively. All results here have the
B meson three momentum, ~pB, set equal to zero. For
simplicity, the pion operator �� was always placed at
the origin. The B meson was then created at time slice
�TB and the electroweak current, J�k�� , that converts the b
quark into a u quark was inserted at times 0 � t � �TB.
We have also simulated the time-reversed process, which
then has the electroweak current inserted between �TB �
t � 0 and �B acting on time slice�TB. By looking at both
forward and time-reversed processes and verifying that
they lead to consistent results (within statistical errors),
we were able to increase statistics and at the same time
provide some check on our codes. For most of our simu-
lations we used TB=a � 16 on the coarse MILC lattices
-5



FIG. 5 (color online). Fit result for hJ�0�0 �t�i 	 e
MBt 	 eE��T�t�

versus t for pion momentum �0; 1; 1� 2�
Nsa

. The horizontal time

axis has been rearranged so that the Bmeson source is at t=a � 1
and the pion source at t=a � T � 16.
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and TB=a � 24 on the fine lattices. On one of the coarse
lattices we also ran with TB=a � 20 and verified that
results for form factors were independent of TB. Making
TB too large is not helpful since statistical errors grow with
TB. On the other hand, making TB too small limits the
number of data points available and gives us less flexibility
in our fits.

In constructing the interpolating operators �B and ��
we have found it convenient, just as in the currents of
Eqs. (10) and (11), to work with four-component naive
fields q�x� rather than one-component staggered fields

�x�. Hence in Eq. (14) we use

�yB � �Q�5q; �� � �q�5q: (15)

The relation between naive and staggered fermion propa-
gators is given by [44]

Gq�x; y� � ��x��y�y�G
�x; y� (16)

with

��x� �
Y3

��0

����x� : (17)

In our simulations we first calculate staggered propagators
G
, since they are cheaper, and then convert to naive
propagators Gq using Eq. (16) before evaluating 3-point
correlators. The naive AsqTad theory has 16 tastes of quark
per flavor and hence one could form 16 different heavy-
light pseudoscalar bound states. However, as discussed in
Ref. [44] these exactly degenerate 16 Bmesons do not mix
and the 2-point correlator h�B�x��

y
B�y�i, for instance,

receives contributions from only one of these possible B
mesons. Similarly one can argue that in Eq. (14) only one
type of Bmeson is involved and that it connects to only one
of the 16 true Goldstone pions of the naive light quark
theory (out of a total number of 256 pions). In other words,
both Eq. (14) and the �B 2-point correlator have the same
normalization as in a theory with undoubled light and
heavy quarks, such as continuum QCD. The one correlator
where adjustment of normalization is required is the �� �
�� correlator. Using naive fields as in Eq. (15) brings in an
extra factor of 16 due to the trace over a 16	 16 taste
matrix and this factor of 16 must be divided out. If one
works with conventional staggered light quarks one would
have an extra factor of 4 rather than 16 relative to a pion
correlator in a theory with undoubled fermions.

To extract the matrix elements h�jJ�j�� �t�jBi, the 3-point
correlators must be fitted to

C�3�� ~p�; ~pB; t; TB� !
XN��1

k�0

XNB�1

l�0

��1�k�t

	��1�l��TB�t�A�j��;lke
�E�k�� te�E

�l�
B �TB�t�:

(18)
074502
With this ansatz every second exponential (k or l odd)
corresponds to an oscillatory (in time) contribution to the
correlator, a characteristic feature of staggered fermions.
We use Bayesian fitting methods [45] and in most of our
fits we kept N� � 1 and let NB vary between 3 and 9. In
order to avoid contamination from excited pions we
dropped 5 to 8 points close to the pion source and made
certain that within errors fit results did not depend on the
number of points omitted. We have also tried some fits with
N� � 2 or 3. For some light quark masses and pion mo-
menta one obtained results consistent with the N� � 1 fits;
in other cases, however, it was not possible to get very
stable (with respect to NB) fits. Hence, for our final results
we rely on the N� � 1 fits. Since oscillatory contributions
are much more significant in the B channel than for pions,
it was more important to allow NB to increase at fixed N�
rather than the other way around. For priors in our
Bayesian fits we use central values corresponding to en-
ergy splittings of about 400 MeV allowing, however, for
large�100% widths. As priors for the amplitudes we allow
for ranges typically between about �10	 A00 and �10	
A00, where A00 is the ground-state amplitude. Fit results for
ground-state energies and amplitudes were very insensitive
to choices for priors. In Figs. 5 and 6 we show examples of
fit results for hJ�0�� �t�i for pion momentum 2�

Nsa
�0; 1; 1� on

one of the coarse ensembles. For comparison we show in
Fig. 7 results for a fit to the B correlator that was done
simultaneously with the fit to the 3-point correlator.
-6



TABLE IV. Same as Table III for the form factor f? in
GeV�1=2.

u0amf u0amq p� � �001� (011) (111)

0.005 0.005 1.543(205) 0.703(44) 0.515(39)
0.007 0.007 1.082(31) 0.606(31) 0.433(48)
0.010 0.005 1.128(37) 0.662(36) 0.413(38)
0.010 0.010 1.235(90) 0.657(37) 0.449(43)
0.010 0.020 1.029(21) 0.611(19) 0.423(23)
0.020 0.020 1.097(140) 0.597(24) 0.397(20)FIG. 6 (color online). Same as Fig. 5 but for hJ�0�k �t�i.

TABLE III. Results for the form factor fk in GeV1=2 from
coarse MILC lattices. Errors are statistical errors coming from
Bayesian bootstrap fits.

u0amf u0amq p� � �000� (001) (011) (111)

0.005 0.005 1.486(34) 1.326(36) 1.221(38) 1.127(78)
0.007 0.007 1.538(32) 1.328(33) 1.185(49) 1.013(115)
0.010 0.005 1.582(37) 1.322(37) 1.201(60) 1.053(121)
0.010 0.010 1.584(44) 1.322(39) 1.212(52) 1.064(138)
0.010 0.020 1.581(30) 1.372(29) 1.253(37) 1.117(72)
0.020 0.020 1.508(48) 1.378(43) 1.264(47) 1.121(83)
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The main goal in all our fits is to extract the ground-state
amplitudes A�j��;00 which lead directly to the form factors fk
and f? via Eq. (7).

fk �
A00�V0������������
	�	B
p

���������
2E�

p
; f? �

A00�Vk������������
	�	B
p

pk�

���������
2E�

p
: (19)

Here A00�V�� includes contributions from all currents with
FIG. 7 (color online). Fit results for the B meson correlator.
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appropriate matching factors as dictated by Eqs. (12) and
(13). 	� and 	B are the ground-state amplitudes from the
pion and B meson correlators, respectively. 	� is correctly
normalized as in continuum QCD. Results for the form
factors fk and f? for the different ensembles and pion
momenta are summarized in Tables III and IV.

V. CHIRAL EXTRAPOLATIONS

The form factors listed in Tables III and IV are for an
unphysical world with u and d quark masses larger than in
reality. They need to be extrapolated to the physical chiral
limit. In Ref. [17] linear extrapolations were performed on
the three points with u0amf � 0:01, the only simulation
data available at that time. Here we carry out this important
step in several different ways: (1) linear extrapolation with
only the full QCD (mf � mq) data, (2) SChPT with full
QCD data, (3) continuum ChPT with full QCD data, and
(4) SChPT simultaneously to both full QCD and partially
quenched data. We use the last, most involved chiral ex-
trapolation for our final answer, but make certain that the
other methods give agreement within quoted errors.

The formulas of chiral perturbation theory for heavy-
light form factors have the general form

fk=? � c0�1� �fk=? � c1mq � c2�2mf �ms� � . . .�:

(20)

�fk and �f? are the chiral log terms and they have been
determined at lowest order in 1=M for continuum,
quenched and partially quenched QCD [46,47] and also
specifically for staggered light quarks [34–36]. We use the
-7
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0 5 10 15 20 25
q

2
 (GeV

2
)

0

0.5

1

1.5

2

2.5

3

v0
20

,m
01

0

BZ fit χ2
= 2.4

BK fit χ2
=22

f
+

f
0
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formulas of Aubin and Bernard [36] that include ‘‘taste
symmetry breaking’’ lattice artifact terms that come in at
O�a2�. �fk and �f? are functions of E� (more generally of
v 
 p�, with v� equal to the B four velocity and p�� the
pion momentum) and also depend on the B�B� coupling
gB�. A possible source of concern in using ChPT may be
the presence of pions with E� > 2m� in our system.
Higher order terms in continuum heavy-light ChPT are
discussed, for instance, in Ref. [48]. There it is argued
that, for some processes, effects of higher order terms can
be taken into account by allowing for a correction to gB�
linear in E�. In our fits to SChPT and to continuum ChPT
formulas we will let gB� vary as one goes from one E�
value to another, together with c0, c1 and c2.

The discussion in the previous paragraph shows that
chiral extrapolations are most conveniently carried out at
fixed values of E�. In order to do so, one needs to inter-
polate the data of Tables III and IV to fixed common values
of E� for each light quark mass. We have explored several
different ways to perform the interpolations. We take ad-
vantage of various ansaetze that have been developed in the
literature to model the q2 dependence of form factors
f��q

2� and f0�q
2�. The Appendix summarizes commonly

used ansaetze [19–21,49–52]. The formulas given there
refer to form factors in the real world, i.e. when using
physical values for pion, B and B� masses. We use them
here also as guides for sensible interpolations even at
unphysical meson masses. We caution, however, that quan-
tities such as q2

max � �MB �m��
2, M2

B� � q
2
max or the B�

threshold �MB �m��
2 are sensitive to the pion mass. A

particular ansatz may not work as well with unphysical
masses compared to in the chiral limit, or vice versa. For
instance, we find that away from the chiral limit, i.e. when
we are interpolating the data of Tables III and IV, the most
popular 3 parameter Becirevic-Kaidalov (BK) ansatz [49]
often fails to accommodate our data. After the chiral
extrapolation the BK ansatz works well, however. On the
other hand, we were often (though not always) able to fit
data away from the chiral limit using just a simple single
pole ansatz for both f0 and f�, but, as expected, a single
pole ansatz does not work for f��q2� in the physical limit.
The ansatz that works best both away from and at the chiral
limit is one due to Ball and Zwicky (BZ) [50], which
actually is the same as the 4 parameter BK parametrization
(see the Appendix). Examples of fits used in the interpo-
lations are given in Figs. 8 and 9. So, for each �mf;mq� we
first convert the results for fk and f? of Tables III and IV to
f0 and f�, interpolate using the BZ ansatz and finally
convert back to fk and f? at fixed values of E�. These
are then extrapolated to the chiral limit using the SChPT
formulas described above. One advantage of carrying out
interpolations for f0 and f� rather than directly in fk and
f? is that the kinematic constraint f0�0� � f��0� is easily
incorporated into the ansaetze and one can use the f0 data
to constrain the normalization of f� as well.
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In Figs. 10 and 11 we show chiral extrapolations for fk
and f?, respectively, for several values of E�. We compare
results from simple linear extrapolations of full QCD data
and from using the SChPT formulas simultaneously for
both full QCD and partially quenched QCD data. One sees
that the difference between the two ways of performing the
chiral extrapolations is small. For fk the central values at
the chiral limit differ only by 0.1%–2.4%. For f? the
differences are again <2:4% for E� > 0:7 GeV. For E� �
0:7 GeV (not shown in Fig. 9) linear and SChPT extrap-
olations of f? can differ by 4%–6%. On the other hand,
this is the kinematic region where statistical (and interpo-
lation) errors are large for some combinations of mf and
mq (see third column in Table IV) and it is not possible to
disentangle statistical and chiral extrapolation errors. f? at
small E� translates into f� at large q2. One can speculate
that the large statistical errors we are finding in this kine-
-8
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matic region may be due to the proximity of the MB� pole.
This, however, for reasons we do not understand, was not
evident in the partially quenched data of Ref. [17].

For the SChPT extrapolations, as mentioned above, we
have let gB� float and be one of the fit parameters. We find
that the ‘‘effective’’ g2

B� ranges between 0.0 and 0.2 and
decreases with E�, although within large errors. In Fig. 12
we show a comparison of fits with and without the O�a2�
corrections in the ChPT theory formulas, i.e. a comparison
between continuum and staggered full QCD ChPT. Again
the differences are very small. In summary, for most of our
data points, different ways of carrying out the chiral ex-
trapolation, including using no input from ChPT at all, lead
to a spread in extrapolated results of only 2.5% or less. This
indicates that contributions we have neglected in the ChPT
formulas, such as 1=M corrections, higher order (in pion
momentum) terms, finite volume effects etc., are not im-
portant. We take as central values for the form factors fk
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FIG. 11 (color online). Same as Fig. 8 for f?.
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and f? in the chiral limit, the results coming from the
SChPT extrapolation using both full QCD and partially
quenched data. The combined statistical and chiral ex-
trapolation errors are discussed in the next section.

In Fig. 13 we compare results from one of the MILC fine
lattice ensembles with the coarse lattice data discussed so
far. For this comparison both the coarse and fine data points
include only the hJ�0�� i contributions through O��s�, i.e. the
first terms in Eqs. (12) or (13), respectively. Since we have
shown that the higher order currents have minimal effect,
we believe meaningful scaling tests can be carried out with
just hJ�0�� i. For f?, which is the main contributor to the
phenomenologically relevant form factor f��q2�, one sees
that the fine lattice point falls nicely on the fixed E� curve
0 0.1 0.2 0.3 0.4 0.5
m

q
/m

s

0
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1.5 fine lattice
f
||
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FIG. 13 (color online). Comparison of coarse lattice data with
some results from one of the fine MILC ensembles. Shown are
results for f? and fk at E� � 0:79 GeV.
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TABLE V. Form factors f��q2� and f0�q
2� in the chiral limit.

Errors shown are combined statistical and chiral extrapolation
errors.

q2 �GeV2� f��q
2� f0�q

2�

15.23 0.649(63) 0.475(26)
16.28 0.727(64) 0.508(25)
17.34 0.815(65) 0.527(25)
18.39 0.944(66) 0.568(24)
19.45 1.098(67) 0.610(24)
20.51 1.248(97) 0.651(25)

EMEL GULEZ et al. PHYSICAL REVIEW D 73, 074502 (2006)
determined by coarse lattice data. Our statistical error is
large currently for the fk point from the fine lattice. Within
these large errors there is consistency between the coarse
and fine lattices for fk as well. We conclude from this
exercise that there are no indications of large discretization
effects in the form factor calculations on MILC coarse
lattices. Such errors are smaller than current statistical
errors. Eventually it would be desirable to carry out a
more thorough scaling test, once more data on fine lattices
at several light sea quark masses become available.
21.56 1.554(156) 0.703(26)
VI. RESULTS FOR FORM FACTORS f��q2� AND
f0�q

2� IN THE CHIRAL LIMIT

We convert the chirally extrapolated fk�E�� and f?�E��
to the form factors f��q2� and f0�q

2� in the physical limit.
These are shown in Fig. 14 and tabulated in Table V. For
comparison we also plot in Fig. 14 the data presented in
Ref. [17]. One sees that changes are minimal in spite of all
the improvements included in our new results. This indi-
cates that the approximations that were made previously
and that we are systematically improving upon, such as
partial quenching, linear chiral extrapolations, working
with currents at lowest order in 1=M, did not drastically
affect the theory. The solid curves in Fig. 14 are fits to our
new results using the BZ [50] parametrization of f� and
f0. We have also tried fits to other parametrizations, de-
scribed in the Appendix, including the BK [49], Richard
Hill (RH) [20] and a series expansion (SE) [19,21,51,52]
parametrization. The RH parametrization fit is essentially
indistinguishable from the BZ fit. The BK fit is also a good
fit to our data although not quite as good as the first two.
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FIG. 14 (color online). Form factors f��q2� and f0�q
2� in the

chiral limit. The black squares and triangles are the new and final
results for f� and f0, respectively. For comparison, the data from
Ref. [17] are also shown as circles. The full black curves follow a
BZ parametrization fit (see text) to the new data. Errors are
combined statistical and chiral extrapolation errors.
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This should not be surprising, since the BK fit has only
three parameters to tune whereas the BZ and RH fits are
both 4 parameter fits. Any further parameters, however, are
very poorly determined and do not help in the fit. Another
class of fit ansatz, the SE fits, are discussed in the
Appendix. The main reason we are interested in obtaining
a good analytic parametrization of the form factors is to
facilitate partial integration of differential decay rates, as
discussed below. These parametrizations can also be used
to try and extrapolate to lower q2 where lattice data are
currently not available.

The statistical plus chiral extrapolation errors for f��q2�
lie between 7% and 10% depending on q2. They are
smaller for the form factor f0�q2�. For q2 � 16 GeV2,
the range we will be focusing on, the average error for
f��q2� comes out to be �8%. In Table VI we list this
average statistical plus chiral extrapolation error together
with estimates of systematic errors from other sources.
These other systematic errors are dominated by the �9%
uncertainty in higher order matching of the heavy-light
currents.

The differential partial decay rate for B! �l�, ignoring
the charged lepton mass, is given by

d�

dq2 �
G2
F

24�3 p
3
�jVubj2jf��q2�j2 (21)

where GF is the Fermi constant and p� the magnitude of
the pion three momentum in the B rest frame. Knowing
f��q2� then allows us to evaluate �1=jVubj2��d�=dq2� and
also integrate this quantity over different q2 bins. We take
our best fit, the BZ fit shown in Fig. 14, and integrate to
TABLE VI. Estimate of percentage errors in f��q2� for q2 >
16 GeV2.

Source of error Size of error (%)

Statistics � chiral extrapolations 8
Two-loop matching 9
Discretization 3
Relativistic 1

Total 12
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TABLE VII. Partially integrated differential decay rates and
f��0� using several parametrizations. The first error reflects
statistical and chiral extrapolation uncertainties. The second
error is due to remaining systematic errors.

Fit f��q2 � 0�
R d�
dq2 =jVubj2 �ps�1�

0 � q2 � q2
max 16 GeV2 � q2 � q2

max

BZ 0.27(2)(4) 6.00(96)(1.68) 1.46(23)(27)
BK 0.26(2)(4) 6.03(96)(1.69) 1.31(21)(25)
RH 0.27(2)(4) 5.99(96)(1.68) 1.45(23)(27)
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obtain

1

jVubj
2

Z q2
max

16 GeV2

d�

dq2 dq
2 � 1:46�23��27� ps�1: (22)

The first error is the combined statistical plus chiral ex-
trapolation error and the second the sum of all other
systematic errors added in quadrature. Equation (22) is
the main result of this article. It serves as the basis for
determinations of the CKM matrix element jVubj. Similar
integrals using other parametrizations and over other q2

ranges are summarized in Table VII together with f��0�
from the different fits. The second error for f��0� and for
the integrated rate over the entire q2 range includes an
additional 10% systematic uncertainty in f��q2� which is
not part of Table VI and which comes from the extrapola-
tion into the low q2 region.

VII. ESTIMATING jVubj

In this section we combine the lattice results of the
previous section with experimental input for B! �l�
branching fractions and extract an estimate for jVubj. In
order to do so, we use results from the Heavy Flavor
Averaging Group (HFAG) [53] and rely on its analysis of
the current experimental uncertainties. The HFAG gives
preliminary averages of BABAR, Belle and CLEO results
(as of the conferences of Summer 2005) for the integrated
branching fraction BfB0 ! ��l��g. They quote �1:35�
0:08� 0:08� 	 10�4 for 0 � q2 � q2

max and �0:40�
0:04� 0:04� 	 10�4 for q2 � 16 GeV2. Combining this
with Eq. (22) and a B0 lifetime of 1.536 ps [54] leads to

jVubj � 4:22�30��51� 	 10�3; q2 � 16 GeV2 (23)

where the first error is experimental (7%) and the second is
the total lattice error (12%). The result (23) is consistent, at
the one � level, with the preliminary value 3:78�25��52� 	
10�3 obtained by the Fermilab/MILC Collaboration using
the same HFAG branching fraction averages [55].

VIII. SUMMARY

We have completed a determination of the B meson
semileptonic form factors f��q2� and f0�q2� using state-
of-the-art lattice QCD methods. Our calculations employ
074502
unquenched gauge configurations, created by the MILC
Collaboration, that incorporate vacuum polarization effects
from two very light flavors plus strange sea quarks. Both
the sea and the valence light quarks are simulated using a
highly improved staggered quark action. This action allows
us to work close enough to the chiral limit, so that chiral
extrapolations to physical pions are mild and do not in-
troduce large uncertainties. Our results for f��q2� can be
combined with experimental branching fraction data to
extract the CKM matrix element jVubj. This quantity is a
crucial ingredient in tests of the unitarity triangle and in
solidifying our understanding of CP violation in the stan-
dard model.

The total lattice error in the f��q
2� form factor pre-

sented here, and hence also in jVubj, is at the �12% level.
This error is dominated by uncertainty in higher order
perturbative matching of heavy-light currents and by sta-
tistical errors. One of the goals of the HPQCD
Collaboration is to carry out higher order matching for
heavy-light, light-light and heavy-heavy currents and
four-fermion operators [56]. It has become increasingly
obvious that such calculations are necessary for accurate
lattice determinations of form factors, decay constants and
mixing parameters at the �5% level. For form factor
calculations, more work is also required to reduce statisti-
cal errors. One approach that helped significantly in the
HPQCD Collaboration’s fB determination [37] is to ex-
plore different smearings of sources and sinks in correla-
tors. We plan to investigate this in the future.

Lattice results for f��q2� exist at the moment only for
q2 � 16 GeV2 and this forces us to use only part of the
available experimental branching fraction data. In order to
take advantage of all the experimental data and thereby
reduce experimental errors in jVubj, other methods such as
sum rules approaches are currently employed [50,57] to
cover the low q2 region. A lattice approach to f��q2�
determinations at low q2, ‘‘moving NRQCD,’’ was intro-
duced many years ago and work is in progress to imple-
ment this method using our highly improved quark and
gauge actions [58,59]. We can look forward to the next
major improvement in lattice determinations of jVubj once
two-loop matching, reduction in statistical errors and con-
trol over the entire q2 range have been achieved.
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TABLE VIII. Partially integrated differential decay rates using
the SE parametrization for different choices of t0. No error
estimates have been made.

t =q2
R d� =jV j2 �ps�1�
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0 max dq2 ub

0 � q2 � q2
max 16 GeV2 � q2 � q2

max

0.0 5.78 1.32
0.2 5.78 1.33
0.4 5.79 1.33
0.6 5.80 1.33
0.8 5.79 1.33
1.0 5.79 1.33
APPENDIX: PARAMETRIZATION OF FORM
FACTORS

Most parametrizations start from a dispersive represen-
tation of the form factors.

f��q
2� �

r1

�1� ~q2�
�

1

�

Z 1
t�
dt

Im�f��t��

t� q2 � i�

!
r1

�1� ~q2�
�

r2

�1� �~q2�
; (A1)

f0�q2� !
r1 � r2

�1� ~q2=
�
(A2)

where ~q2 � q2=M2
B� and t� � �MB �m��

2. The kine-
matic constraint f��0� � f0�0� is automatically satisfied.
This is a 4 parameter parametrization of f� and f0, some-
times called the ‘‘4 parameter BK parametrization’’
(Becirevic and Kaidalov) [49]. Examples of generaliza-
tions and special cases developed in the literature are given
below. They differ only in the parametrization of f�.

3 parameter BK [49]:

f��q2� �
f��0�

�1� ~q2��1� �~q2�
; (A3)

f0�q
2� �

f��0�

�1� ~q2=
�
: (A4)

4 parameter BZ [50]:

f��q
2� �

f��0�

�1� ~q2�
�

r~q2

�1� ~q2��1� �~q2�
: (A5)

4 parameter RH [20]:

f��q2� �
f��0��1� � 
 ~q2�

�1� ~q2��1� ~q2=��
: (A6)

Another class of parametrizations, advocated in [19,51,52]
and also discussed in [21], is based on a series expansion of
f��q

2� around some q2 � t0. For better convergence of the
series it is customary to convert to a new variable z�q2; t0�,
where, following [19,21], we take

z�q2; t0� �

�����������������
t� � q2

p
�

���������������
t� � t0
p

�����������������
t� � q

2
p

�
���������������
t� � t0
p : (A7)

We refer to the literature for further discussion of the
merits of this transformation. The form factor f��q2� can
then be expanded as a power series in z�q2; t0�,
074502
f��q2� �
1

P�q2���q2; t0�

Xkmax

k�0

ak�t0��z�q2; t0��k: (A8)
The ‘‘Blaschke’’ factor P�q2� must take into account any
isolated poles below the B� threshold at q2 � t�. We set
P�q2� � z�q2;M2

B� � to take care of the B� pole. For
��q2; t0� we take the expression given in Ref. [19] (with
simplified 
�0�). We combine the ansatz (A8) for f��q2�
with kmax � 2 together with (A4) for f0�q2� to get another
(and our last) 4 parameter ansatz,

Series expansion:
f��q2� �
a0 � a1z�q2; t0� � a2z2

z�q2;M2
B� ���q

2; t0�
: (A9)
We have explored the SE parametrization but not because
we needed a better analytic expression to cover the range
q2 � 16 GeV2 of our lattice results. Rather, we did so to
assess how reliable the information is on the shape of the
form factors at lower q2 that we are getting from the BK/
BZ/RH type parametrizations. We find that good fits to the
simulation data can be obtained with the SE parametriza-
tions as well and that they are insensitive to the value of t0.
Table VIII gives results for integrated differential decay
rates. Not surprisingly, agreement is found with Table VII
for q2 � 16 GeV2. Results are systematically slightly
lower than in Table VII if one includes the entire q2 range.
One can summarize by saying that we do not have evidence
for any strong dependence on the choice of ansatz em-
ployed to extrapolate lattice data to lower q2 values.
Nevertheless, we believe it is important to look for addi-
tional information on the form factors at q2 < 16 GeV2,
either from experiment or from theoretical models, if one
wants to discuss the entire q2 range at the present time.
This has already been done in the recent literature
[19,21,50]. Alternatively, getting lattice results directly in
the low q2 regime using, for instance, moving NRQCD
would also solve this problem.
-12
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