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Extracting F� from small lattices: Unquenched results
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We calculate the response of the microscopic Dirac spectrum to an imaginary isospin chemical
potential for QCD with two dynamical flavors in the chiral limit. This extends our previous calculation
from the quenched to the unquenched theory. The resulting spectral correlation function in the �-regime
provides here, too, a new and efficient way to measure F� on the lattice. We test the method in a hybrid
Monte Carlo simulation of the theory with two staggered quarks.
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I. INTRODUCTION

A primary challenge for lattice gauge theory is the
numerical determination of the low-energy constants of
QCD with nearly massless u and d quarks. The chiral limit
is a notoriously difficult problem on the lattice.
Furthermore, one also has to face the issue of finite-volume
effects, a problem that is compounded by the light quarks.
A situation like this is best tackled head-on by means of
finite-size scaling techniques, as is routinely done when the
correlation length becomes comparable to the system size
(such as near continuous phase transitions). Unfortunately,
exact finite-size scaling functions for the chiral limit are
not easy to come by. One notable exception is the so-called
�-regime of QCD [1]. It has been known for more than a
decade [2] that this makes possible precise measurements
of the infinite-volume chiral condensate � � h �  i from
simulations on small lattices. By definition, in the �-regime
the linear extent L of the box is smaller than the Compton
wavelength 1=m� of the pions, but much larger than
1=�QCD. It is in this sense that the lattice required is small:
Rather than demanding that the pion be contained by the
lattice, one requires precisely that the lattice be too small
for the pion.

In the �-regime the leading term of the effective partition
function is a known function that is determined uniquely
by the flavor symmetries and their spontaneous breaking.
While this leads to an equally computable analytical ex-
pression for the condensate h �  i that can be compared to
lattice measurements [3], a far more precise estimate
comes from extracting � from the analytical expressions
for the distributions and correlations of the smallest eigen-
values of the Dirac operator. The universal predictions for
different eigenvalue distributions according to the topo-
logical index � and gauge group representation of the
quarks [4] have been checked in detail for both staggered
and overlap fermions in a variety of studies with different
color representations, mainly in quenched calculations
(see, e.g., Refs. [2,5] for a partial list), but also with
dynamical fermions [6,7].
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Here we will consider the computation of the low-energy
constant F�, associated with the decay of pions. In the
conventional approach F� is measured in a regime where
the Compton wavelength of the pion is much smaller than
the lattice size (see [8] for some recent quenched and [9]
for some recent dynamical calculations of F�). We have
recently presented a new method for extracting the pion
decay constant F� from Dirac operator eigenvalues in the
�-regime [10]. In our first paper the focus was on quenched
QCD. In this article, we extend this method to QCD with
two dynamical light flavors, the physical u and d quarks.

In principle, all low-energy constants of QCD can be
determined numerically from the spectrum of the Dirac
operator. To leading order the spectrum depends only on
the infinite-volume chiral condensate �, but higher order
terms (in the counting of the �-expansion for the chiral
Lagrangian [1]) give rise to measurable deviations. The
idea of the improved method proposed in Ref. [10] is to
make use of an enlarged set of couplings provided by
external fields. In particular we introduce a constant
Abelian field that couples with opposite sign to the u and
d quarks. This can be interpreted as an imaginary isospin
chemical potential [11]. Such a source turns out to have a
dramatic effect on a certain spectral correlation function of
the Dirac operator. It is this effect which allows for a very
precise determination of F�.

An alternative method is to use a real baryon chemical
potential to extract the F�-dependence of the microscopic
spectral density. Recently quenched results based on this
method have been reported [12]. The analytical predictions
for this method were derived in Refs. [13,14]. The advan-
tage of our method is that the Dirac operator eigenvalues
remain real, while a baryon chemical potential makes them
(and the determinant) complex. The pion decay constant
has also been measured from meson correlation functions
in the �-regime (see e.g. [15]).

The outline of the paper is as follows. We first present
the analytical result for the spectral correlation function
whose dependence on F� is the backbone of our method.
-1 © 2006 The American Physical Society
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We then compare this prediction to the results of numerical
simulations of QCD with two dynamical flavors, and use
this to extract the value for F�.

II. TWO LIGHT FLAVORS: THE ANALYTICAL
RESULT

An imaginary isospin chemical potential leads us to
consider two distinct Dirac operators and their eigenvalues
for a given gauge potential A:

D� 
�n�
� � � 6D�A� � i�iso�0� 

�n�
� � i��n��  

�n�
� ; (1)

D� �n�� � � 6D�A� � i�iso�0� �n�� � i��n��  �n�� : (2)

Since the operatorsD� are anti-Hermitian, the eigenvalues
��n�� and ��n�� lie on the real axis. This justifies the otherwise
artificial use of an imaginary isospin chemical potential.
Viewed in terms of external gauge potentials it is actually
the natural choice, corresponding to a constant real Abelian
gauge potential A0 � �iso.

We consider the mixed two-point spectral correlation
function of the Dirac operators D�. The formulae for the
quenched theory were given in Ref. [10]; here we briefly
present the corresponding expressions for two dynamical
flavors. The mixed two-point function, which depends on
the two light masses mu and md and on �iso, is defined as

��2����; ��; mu;md; i�iso�

�

�X
n

���� � �
�n�
� �

X
l

���� � ��l�� �
�

�

�X
n

���� � �
�n�
� �

��X
l

���� � ��l�� �
�
; (3)

where the brackets denote the average over the QCD
partition function with two flavors and �iso � 0,

Z2�mu;md; i�iso� �
Z
�dA	� det�D� �mu�


 det�D� �md�e�SYM�A�: (4)

The index � on the measure indicates that this is the
partition function in a sector where the gauge fields have
topological charge �. Keeping fixed the scaling variables

	� � ���V; m̂u;d � mu;d�V;

�̂iso � �isoF�
����
V
p

;
(5)

as V ! 1, we define the microscopic two-point correla-
tion function

��2�s �	�; 	�; m̂u; m̂d; i�̂iso�

� lim
1

�2V2 �
�2�

�
	�
�V

;
	�
�V

;
m̂u

�V
;
m̂d

�V
; i

�̂iso

F�
����
V
p

�
: (6)

This spectral correlation function ��2� can be obtained from
the mixed ‘‘partially quenched’’ scalar susceptibility,
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�m�; m�; mu;md; i�iso� �

�
tr
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D� �m�
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1
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�

�

�
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�




�
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1

D� �m�

�
; (7)

which possesses the spectral representation


�m�;m�;mu;md;i�iso��
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X
l

1

i��l�� �m�
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l

1
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�
: (8)

The desired correlation function follows from the double
discontinuity across the imaginary axis [16],

��2����; ��; mu;md; i�iso�

�
1

4�2 Disc
�m�; m�; mu;md; i�iso�jm��i��
m��i��

(9)
�
1

4�2 lim
�!0�
�
�i�� � �; i�� � �;mu;md; i�iso�

� 
�i�� � �; i�� � �;mu;md; i�iso�

� 
�i�� � �; i�� � �;mu;md; i�iso�

� 
�i�� � �; i�� � �;mu;md; i�iso�	:

(10)

The power of the �-regime is that this function, ��2�, can be
expressed in closed analytical form.

The mixed scalar susceptibility (7) involves two addi-
tional fermion species, with mass m� and m�, coupled as
well to the external field �iso. This quantity thus has to be
evaluated in a theory with four fermion species, of which
only two become physical (the u and d quarks), while the
remaining two are quenched away and serve as sources for
the two eigenvalues involved in the two-point correlation
function. In order to do this we will use the replica method
(see, e.g., [17]). We have


�m�; m�; mu;md; i�iso�

� lim
n!0

1

n2 @m�@m� logZ2n;2�m�; m�; mu;md; i�iso�; (11)

where the generating functionals Z2n;2 have 2n replica
flavors besides the two flavors of mass mu and md,
-2
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Z2n;2�m�; m�; mu;md; i�iso� �
Z
�dA	��det�D� �m��


 det�D� �m��	
n


 det�D� �mu�


 det�D� �md�e�SYM�A�:

(12)
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Half of the replica flavors have mass m� and chemical
potential �i�iso while the other half have mass m� and
chemical potential �i�iso.

In the �-regime the leading terms of the effective parti-
tion functions satisfy a string of Toda lattice equations
which can be used to extract the replica limit [18,19].
Specifically [14],
m̂�@m̂�m̂�@m̂� logZ2n;2�m̂�; m̂�; m̂u; m̂d; i�̂iso� � 4n2�m̂�m̂��
2



Z2n�2;2�m̂�; m̂�; m̂u; m̂d; i�̂iso�Z2n�2;2�m̂�; m̂�; m̂u; m̂d; i�̂iso�

�Z2n;2�m̂�; m̂�; m̂u; m̂d; i�̂iso�	
2 :

(13)

where we have defined m̂� � m��V. Taking the replica limit (11) of this Toda lattice equation we get


�m̂�; m̂�; m̂u; m̂d; i�̂iso� � 4m̂�m̂�
Z2;2�m̂�; m̂�; m̂u; m̂d; i�̂iso�Z2;�2�m̂u; m̂djm̂�; m̂�; i�̂iso�

�Z2�m̂u; m̂d; i�̂iso�	
2 : (14)

We need three different effective partition functions to evaluate the right-hand side of this equation. Of these, the two that
involve only positive numbers of flavors are of the form

Z2n;2�m̂�; m̂�; m̂u; m̂d; i�̂iso� �
Z
U2U�2n�2�

dU det�U��e�1=4�VF2
��2

iso Tr�U;B	�Uy;B	��1=2��V Tr�MyU�MUy�; (15)

where B � diag�1n�1;�1n�1� and M � diag�m�; . . . ; m�; mu;m�; . . . ; m�; md�. In particular,

Z2�m̂�; m̂�; i�̂iso� � e�2�̂2
iso

Z 1

0
dt te2�̂2

isot
2
I��tm̂��I��tm̂��; (16)

while an explicit analytical expression for Z2;2 can be obtained from Ref. [20],

Z2;2�m̂�; m̂�; m̂u; m̂d; i�̂iso� �
1

�m̂2
� � m̂

2
u��m̂2

� � m̂2
d�

��������Z2�m̂�; m̂�; i�̂iso� Z2�m̂�; m̂d; i�̂iso�

Z2�m̂u; m̂�; i�̂iso� Z2�m̂u; m̂d; i�̂iso�

��������: (17)

The remaining partition function Z2;�2 on the right-hand side of Eq. (14) is the most difficult part. It involves two
fermion species (the two physical u and d quarks) and in addition �2 flavors, i.e., two bosons. The resulting effective
partition function is an integral over a graded group. Deferring the technical discussion of this to a forthcoming paper [21],
we quote the final result,

Z2;�2�m̂u; m̂djm̂�; m̂�; i�̂iso� �

�������� �m̂
2
u � m̂

2
��Z2�m̂u; m̂d; i�̂iso� Z1;�1�m̂djm̂��

�Z1;�1�m̂ujm̂�� �m̂2
d � m̂

2
��Z�2�m̂�; m̂�; i�̂iso�

��������: (18)

In Eq. (18) the (�-independent) partition function with one fermion and one boson is given by

Z1;�1�x̂jŷ� � x̂I1�x̂�K0�ŷ� � ŷK1�ŷ�I0�x̂�; (19)

and the partition function with two bosons is

Z�2�x̂; ŷ; i�̂iso� � e2�̂2
iso

Z 1
1
dt te�2�̂2

isot
2
K��tx̂�K��tŷ�; (20)

where x̂ � x�V and ŷ � y�V.
We can finally compute the required two-point correlation function (6) by means of the discontinuity (9). The result is
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��2�s �	�; 	�; m̂u; m̂d; i�̂iso� � 	�	�

�Z 1

0
dt te2�̂2

isot
2
I��tm̂u�I��tm̂d�

�
�2
�Z 1

0
dt te2�̂2

isot
2
J��t	��J��t	��



Z 1

0
dt te2�̂2

isot
2
I��tm̂u�I��tm̂d� �

Z 1

0
dt te2�̂2

isot
2
I��tm̂u�J��t	��



Z 1

0
dt te2�̂2

isot
2
J��t	��I��tm̂d�

��Z 1

0
dt te2�̂2

isot
2
I��tm̂u�I��tm̂d�



Z 1

1
dt te�2�̂2

isot
2
J��t	��J��t	��

�
�m̂uI��1�m̂u�J��	�� � 	�J��1�	��I��m̂u�	�m̂dI��1�m̂d�J��	�� � 	�J��1�	��I��m̂d�	

�	2
� � m̂

2
u��	

2
� � m̂

2
d�

�
:

(21)

For a numerical evaluation it is advantageous to rewrite the improper integral appearing in the fourth line as

Z 1
1
dt te�2�̂2

isot
2
J��t	��J��t	�� �

1

4�̂2
iso

exp
�
�
	2
� � 	

2
�

8�̂2
iso

�
I�

�
	�	�
4�̂2

iso

�
�
Z 1

0
dt te�2�̂2

isot
2
J��t	��J��t	��: (22)
In exact analogy to the quenched case [10], the correlation
function (21) changes dramatically when �iso is made
nonzero. A fit to Monte Carlo data with �iso � 0 using
Eq. (21) will then readily produce a measurement of F�.

III. NUMERICAL RESULTS

We demonstrate our method by applying it to the eigen-
value correlation function calculated for SU(3) lattice
gauge theory with two staggered fermions of equal mass
mu � md � m. The gauge action is the standard plaquette
action and unimproved staggered operators are used
throughout. This theory has an exact U�2� 
 U�2� symme-
try; while it represents eight tastes in the continuum limit,
we work far from the continuum limit, at a strong coupling
� � 4:2, in order to stay on the confining side of bulk and
finite-temperature phase transitions [22]. In addition, and
since we only aim at illustrating the method here, this
rather strong coupling provides us with an unambiguous
number of pseudo-Goldstone modes. At the coupling con-
sidered, two staggered fermions give rise to spontaneous
chiral symmetry breaking of the form U�2� 
 U�2� !
U�2�. The staggered theory at this coupling thus appears
to be ‘‘insensitive’’ to gauge field topology (see for in-
stance [23]): The additional U(1) factor in the coset dic-
tates that we must compare our numerical results with
� � 0 in Eq. (21).

We ran the exact Hybrid Monte Carlo algorithm [24] on
lattices with volume V � 44 and 64, setting �iso � 0:0125
TABLE I. Run parameters for the

V m Trajectories dt S

44 0.01 4000 0.0067
44 0.025 4000 0.0125
64 0.002 27 960 0.001
64 0.005 5 135 0.001
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and 0.0055, respectively, in order to keep constant the
scaling variable �̂iso. We studied the cases m � 0:01 and
0.025 for the smaller volume, and correspondingly m �
0:002 and 0.005 in the larger volume. Note that the scaling
variable m̂ � m�V is fixed and m�L & 1. An idea of the
size of the simulation can be gotten from the run parame-
ters listed in Table I. We note that our method requires very
small quark masses and hence many conjugate gradient
(CG) iterations (typically 104 for the smaller mass in V �
64, restarting every 500) for inverting the fermion matrix;
the restriction to small volume, while allowing easy repli-
cation of the simulation for many processors, precludes
gaining any advantage from true parallel computation.

As discussed in [10], when extracting physical observ-
ables we must keep in mind that the continuum theory
describes 4 tastes of quark. Therefore, to determine the
values of F� and � from the staggered eigenvalue spec-
trum we must replace V in the analytical predictions by 4V.

We begin with our main numerical result, the pion decay
constant F�. In order to improve the statistics we consider
the integrated correlation function

��2�int �x� �
Z 	max

	min

d	��2�s �	� x; 	; m̂u; m̂d; i�̂iso�: (23)

In Fig. 1 we show this integrated correlation function as
measured on our 64 ensemble, for both masses. The curves
are fits to Eq. (23) via Eq. (21), see Table II. The weighted
Hybrid Monte Carlo simulations.

teps/trajectory Trajectories/measurement

150 1
80 1

100 5
200 5
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TABLE II. Results of the data analysis. To extract the ratio
m�=F� we used the GOR-relation m2

�F
2
� � 2m�.

V m F� � m�=F� m�L

64 0.002 0:3379� 0:0018 0:3200� 0:0005 0.3133 0.6354
64 0.005 0:3384� 0:0025 0:3212� 0:0012 0.4949 1.005
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FIG. 1 (color online). The integrated correlation function (23) with ~	min � 5 and ~	max � 55 for the ensembles with V � 64 and
�iso � 0:0055. Left: m � 0:002. The curve is the result of a fit with � � 0:3200� 0:0005 and F� � 0:3379� 0:0018, with

2=dof � 1:33. Right: m � 0:005. The fit parameters are � � 0:3212� 0:0012 and F� � 0:3384� 0:0025, with 
2=dof � 1:13.
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averages of the fit parameters for the two data sets are � �
0:3204� 0:0004 and F� � 0:3381� 0:0010, in lattice
units. There are a number of other ways to determine �
from the eigenvalue densities and correlations; we will see
0 2 4 6 8
ξ+

−0.1

0

0.1

0.2

0.3

ρ s(2
) (ξ

+,
4;

iµ
is

o)

m=0.002
m=0.005
mΣV=infinity6

4
  m=0.002

FIG. 2 (color online). The correlation function (6), with 	� fixed
Right: m � 0:005. The curves are Eq. (21) with m � 0:002 (solid l
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that the value just obtained is consistent with other features
of the spectra.

We now proceed to study the sensitivity of the correla-
tion function to the mass. Since the mass affects mainly
low-lying eigenvalues, this sensitivity is greatest when the
correlation function is not integrated. We show in Fig. 2 the
measured correlation function with one eigenvalue fixed at
	� � 4. For each data set we compare to theoretical curves
[Eq. (21)] with masses corresponding to the two chosen
values of m in the simulation, as well as to infinitely high
mass (the quenched theory). We set � and F� to the values
obtained in the fits shown in Fig. 1, for each mass sepa-
0 2 4 6 8
ξ+

−0.1

0

0.1

0.2

0.3

ρ s(2
) (ξ

+,
4;

iµ
is

o)

m=0.002
m=0.005
mΣV=infinity

6
4
  m=0.005

at 4, measured in the ensembles with V � 64. Left: m � 0:002.
ine), 0.005 (dashed line), and 1 (dotted line).
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FIG. 3 (color online). The eigenvalue density of the 24 lowest eigenvalues measured for the smaller scaled mass: V � 44, m � 0:01
(left) and V � 64, m � 0:002 (right). The horizontal line in each case is at �s � 1=�. For V � 44 the eigenvalue density only remains
briefly at the height 1=� whereas for V � 64 all of the first 24 eigenvalues are within this plateau.
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rately. It is clear that the effect of the mass in the analytical
prediction is consistent with the data and inconsistent with
the quenched result. It would take, however, a somewhat
greater number of configurations to get a precise test of the
mass dependence.

The scaling properties of the � regime can be studied by
comparing distributions for the two volumes. We begin
with the eigenvalue density shown in Fig. 3. For the larger
volume (right-hand figure) the density as expected rises to
a constant level (by convention the value reached should be
1=� as indicated by the horizontal line). The falloff around
0 2 4 6 8
ξ+

−0.1

0

0.1

0.2

0.3

ρ s(2
) (ξ

+
,4

;i
µ is

o)

m=0.010
m=0.025
mΣV=infinity

4
4 
 m=0.01

FIG. 4 (color online). The correlation function (3), with 	� fixed at
andm � 0:025 (right) to be compared with the dashed curve. The cur
The dotted curve indicates the quenched result.
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the value 	 � 80 occurs since only the lowest 24 eigen-
values have been computed. On the other hand the eigen-
value density in the smaller volume (left-hand figure) only
briefly remains at the plateau of height 1=�. Thus it is not
advisable to consider the integrated correlation function
over the entire range of the 24 eigenvalues computed. In
Fig. 4 we consider rather the correlation function with 	�
fixed at the value 4. Since we have chosen the quark masses
such that mV is fixed, the analytical curves shown are
identical to those in Fig. 2. The general agreement confirms
the expected scaling behavior.
0 2 4 6 8
ξ+

−0.1

0

0.1

0.2

0.3

ρ s(2
) (ξ

+
,4

;i
µ is

o)

m=0.010
m=0.025
mΣV=infinity

4
4 
 m=0.025

4, for V � 44; m � 0:01 (left) to be compared with the full curve
ves are obtained from (21) with � and F� as determined in Fig. 1.

-6



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
x

−0.11

−0.09

−0.07

−0.05

−0.03

−0.01

0.01

0.03
ρ in

t(x
;i

µ is
o=

0)
6

4
 888 configs µiso=0

FIG. 5. The integrated correlation function at �iso � 0, for
V � 64; m � 0:002. The delta function at x � 0 is not shown.
The comparison with the analytic curve uses the value of �
determined in Fig. 1.
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Finally we take a brief look at the case where � � 0. In
this case the operators D� and D� are identical and the
correlation function consequently has a delta-function
peak at equal arguments. In Fig. 5 we show the integrated
correlation function at �iso � 0 as obtained on the 64

lattice at mass m � 0:002 along with the analytical pre-
diction, using the value of � determined in Fig. 1. The
consistency with the data is a nontrivial cross check of the
value of � obtained in Fig. 1. The delta-function at 	� �
	� is not shown. As �iso is tuned to a nonzero value the
delta-function peak gets smeared into a broader peak
around zero as in Fig. 1. It is the fit to the shape of this
broader peak that allows us to determine F�.
074023
IV. SUMMARY

We have demonstrated that F� can be extracted with
high precision from small lattices in unquenched lattice
QCD. The approach exploits the dramatic dependence of
the universal microscopic correlation functions on F�.
This dependence enters through the coupling to an external
vector field in the form of an imaginary isospin chemical
potential. The derivation of the analytical results used here
is quite involved and will be presented in [21]. We have
performed appropriate two flavor lattice simulations, and
the numerical results have been shown to agree with our
analytical predictions. This agreement has allowed us to
extract F� in lattice units. See Table II for a summary.

In this first study of the method with dynamical fermions
we have worked with an unimproved staggered action. It
would be of great interest to perform a simulation with
actions suffering less severely from scaling violations,
which would allow us to quote a result for F� in physical
units.
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