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Charmonium production at high energy in the kT-factorization approach
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We study charmonium production at high-energy colliders (Tevatron, HERA, and LEP2) in the
framework of the kT-factorization approach and the factorization formalism of nonrelativistic quantum
chromodynamics at leading order in the strong-coupling constant �s and the relative velocity v. The
transverse-momentum distributions of direct and prompt J= -meson production measured at the Fermilab
Tevatron are fitted to obtain the nonperturbative long-distance matrix elements for different choices of
unintegrated gluon distribution functions in the proton. Using the matrix elements thus obtained, we
predict charmonium production rates in ��, �p, and deep-inelastic ep collisions including the contri-
butions from both direct and resolved photons. The results are compared with the known ones obtained in
the conventional parton model and with recent experimental data from HERA and LEP2.
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I. INTRODUCTION

Charmonium production at high energies has provided a
useful laboratory for testing the high-energy limit of quan-
tum chromodynamics (QCD) as well as the interplay of
perturbative and nonperturbative phenomena in QCD. The
factorization formalism of nonrelativistic QCD (NRQCD)
[1] is a theoretical framework for the description of heavy-
quarkonium production and decay. The factorization hy-
pothesis of NRQCD assumes the separation of the effects
of long and short distances in heavy-quarkonium produc-
tion. NRQCD is organized as a perturbative expansion in
two small parameters: the strong-coupling constant �s and
the relative velocity v of the heavy quarks.

The phenomenology of strong interactions at high en-
ergies exhibits a dominant role of gluon interactions in
quarkonium production. In the conventional parton model
[2], the initial-state gluon dynamics is controlled by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equation [3]. In this approach, it is assumed that S >
�2 � �2

QCD, where
���
S
p

is the invariant collision energy, �
is the typical energy scale of the hard interaction, and
�QCD is the asymptotic scale parameter. In this way, the
DGLAP evolution equation takes into account only one big
logarithm, namely, ln��=�QCD�. In fact, the collinear ap-
proximation is used, and the transverse momenta of the
incoming gluons are neglected.

In the high-energy limit, the contribution from the par-
tonic subprocesses involving t-channel gluon exchanges to
the total cross section can become dominant. The summa-
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tion of the large logarithms ln�
���
S
p
=�� in the evolution

equation can then be more important than the one of the
ln��=�QCD� terms. In this case, the noncollinear gluon
dynamics is described by the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) evolution equation [4]. In the region under
consideration, the transverse momenta (kT) of the incom-
ing gluons and their off-shell properties can no longer be
neglected, and we deal with Reggeized t-channel gluons.
The theoretical framework for this kind of high-energy
phenomenology is the so-called kT-factorization approach
[5,6], which can be based on effective quantum field theory
implemented with the non-Abelian gauge-invariant action,
as was suggested a few years ago [7].

This paper is organized as follows: In Sec. II, the
kT-factorization approach is briefly reviewed and com-
pared with the collinear-parton model. The NRQCD for-
malism applied to heavy-quarkonium production is briefly
recapitulated in Sec. III. In Sec. IV, we present in analytic
form the squared amplitudes for S- and P-wave quark-
onium production via the fusion of Reggeized gluons at
leading order (LO) in �s and v. In Sec. V, we perform fits
to the transverse-momentum (pT) distributions of inclusive
charmonium production measured at the Fermilab
Tevatron to obtain numerical values for the nonperturba-
tive matrix elements (NMEs) of the NRQCD factorization
formalism. In Secs. VI and VII, we compare our theoretical
predictions with recent experimental data of charmonium
production in ��, �p, and deep-inelastic ep scattering at
the DESY HERA and CERN LEP2 colliders. Section VIII
contains our conclusions.
II. THE kT-FACTORIZATION APPROACH

In the phenomenology of strong interactions at high
energies, it is necessary to describe the QCD evolution of
the gluon distribution functions of the colliding particles
-1 © 2006 The American Physical Society
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starting from some scale �0, which controls the nonper-
turbative regime, to the typical scale � of the hard-
scattering processes, which is typically of the order of

the transverse mass MT �
������������������������
M2 � jpT j2

p
of the produced

particle (or hadron jet) with (invariant) mass M and trans-
verse two-momentum pT . In the region of very high en-
ergies, the typical ratio x � �=

���
S
p

becomes very small,
x� 1. This leads to large logarithmic contributions of the
type ��s ln�1=x�	n, which need to be resummed. This is
conveniently done by adopting the high-energy factoriza-
tion scheme, which is also known as the kT-factorization
approach, in which the incoming t-channel gluons have a
finite transverse two-momentum kT and are off mass shell.
This implies the notion of an unintegrated gluon distribu-
tion function ��x; jkT j

2; �2�. The resummation is then
implemented by the BFKL evolution equation [4].

Effective Feynman rules for processes involving incom-
ing off-shell gluons were provided in Ref. [6]. The special
trick is to choose the polarization four-vector of the in-
coming gluon as

"��kT� �
k�T
jkTj

; (1)

where k�T � �0;kT; 0� is the transverse four-momentum of
the gluon. In the case of gluon-gluon fusion, the four-
momenta of the incoming gluons can be written as

k�1 � x1P
�
1 � k

�
1T; k�2 � x2P

�
2 � k

�
2T; (2)

where P�1 � �
���
S
p
=2��1; 0; 0; 1� and P�2 � �

���
S
p
=2�
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�1; 0; 0;�1� are the four-momenta of the colliding protons
in the center-of-mass frame. In the following, we shall also
use the shorthand notation pT � jpT j etc. for the absolute
of the transverse two-momentum.

In Ref. [8], the incoming off-shell gluons are considered
as Reggeons (or Reggeized gluons), which are interacting
with quarks and on-shell Yang-Mills gluons in a specific
way. Recently, in Ref. [9], the Feynman rules for the
effective field theory based on the non-Abelian gauge-
invariant action [7] were derived for the vertices RRg,
Rgg, RRgg, Rggg, and RRggg, where R is an off-shell
Reggeized gluon and g is an on-shell Yang-Mills gluon.
The interaction of a Reggeized gluon with a quark is
mediated via the transition vertex Rg. For the relevant
LO amplitudes, which are calculated below, both ap-
proaches [6,8] give the same answers. As was shown in
Ref. [10], the effective vertex RRg [8] can be obtained
using the prescription [6] for the off-shell gluon polariza-
tion four-vector of Eq. (1).

In the kT-factorization approach, which is based on the
high-energy limit of QCD, the hadronic cross section of
quarkonium (H ) production through the process

p� p!H � X (3)

and the partonic cross section for the Reggeized-gluon
fusion subprocess

R� R!H � X (4)

are related as
d�KT�p� p!H � X; S� �
Z dx1

x1

Z
djk1T j

2
Z d’1

2�
��x1; jk1T j

2; �2�
Z dx2

x2

Z
djk2T j

2



Z d’2

2�
��x2; jk2Tj

2; �2�d�̂�R� R!H � X;k1T;k2T; ŝ�; (5)
where ŝ � x1x2S� �k1T � k2T�
2, x1;2 are the fractions of

the proton momenta passed on to the Reggeized gluons,
and ’1;2 are the angles enclosed between k1;2T and the
transverse-momentum pT of H , which we take to point
along the x axis.

In our numerical calculations, we use the unintegrated
gluon distribution functions by Blümlein (JB) [11], by Jung
and Salam (JS) [12], and by Kimber, Martin, and Ryskin
(KMR) [13]. A direct comparison between different unin-
tegrated gluon distributions as functions of x, jkT j

2, and�2

may be found in Ref. [14]. Note, that the JB version is
based on the BFKL evolution equation [4]. On the contrary,
the JS and KMR versions were obtained using the more
complicated Catani-Ciafaloni-Fiorani-Marchesini evolu-
tion equation [15], which takes into account both large
logarithms of the types ln�1=x� and ln��=�QCD�.

For �� �QCD and not too small x � �=
���
S
p

, the col-
linear approximation of the conventional parton model is
recovered. In the collinear-parton model, the hadronic
cross section d��p� p!H � X; S� and the relevant
partonic cross section d�̂�g� g!H � X; ŝ� are related
as

d�PM�p� p!H � X; S� �
Z
dx1G�x1; �2�



Z
dx2G�x2; �

2�d�̂�g

� g!H � X; ŝ�; (6)

where ŝ � x1x2S and G�x;�2� is the collinear gluon dis-
tribution function of the proton, which satisfies the DGLAP
[3] evolution equation. The collinear and the unintegrated
gluon distribution functions are formally related as

xG�x;�2� �
Z �2

0
djkTj

2��x; jkT j
2; �2�; (7)

so that the normalizations of Eqs. (5) and (6) agree.
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III. NRQCD FORMALISM

In the framework of the NRQCD factorization approach
[1], the cross section of heavy-quarkonium production via
a partonic subprocess a� b!H � X may be presented
as a sum of terms in which the effects of long and short
distances are factorized as

d�̂�a� b!H � X� �
X
n

d�̂�a� b! Q �Q�n	 � X�


 hOH �n	i; (8)

where n denotes the set of color, spin, orbital, and total
angular-momentum quantum numbers of the Q �Q pair and
the four-momentum of the latter is assumed to be equal to
the one of the physical quarkonium state H . The cross
section d�̂�a� b! Q �Q�n	 � X� can be calculated in
perturbative QCD as an expansion in �s using the non-
relativistic approximation for the relative motion of the
heavy quarks in the Q �Q pair. The nonperturbative transi-
tion of the Q �Q pair into H is described by the NMEs
hOH �n	i, which can be extracted from experimental data.

To LO in v, we need to include the c �c Fock states n �
3S�1�1 , 3S�8�1 , 1S�8�0 , 3P�8�J if H � J= ,  0 and n � 3P�1�J , 3S�8�1
if H � �cJ, where J � 0, 1, 2. Their NMEs satisfy the
multiplicity relations

hO �nS��3P�8�J 	i � �2J� 1�hO �nS��3P�8�0 	i;

hO�cJ �3P�1�J 	i � �2J� 1�hO�c0�3P�1�0 	i;

hO�cJ �3S�8�1 	i � �2J� 1�hO�c0�3S�8�1 	i;

(9)

which follow to LO in v from heavy-quark spin symmetry.
For example, in the case of J= production, the wave
function of the physical orthocharmonium state can be
presented as a superposition of the Fock states:

jJ= i � O�v0�jc �c�3S�1�1 	i �O�v1�jc �c�3P�8�J 	gi

�O�v2�jc �c�3S�1;8�1 	ggi �O�v2�jc �c�1S�8�0 	gi

� � � � ; (10)

where we use usual spectroscopic notation for the angular-
momentum quantum numbers of theQ �Q pair and the index
in parentheses �1; 8� denotes the color state, either color
singlet or color octet. The color-singlet model (CSM) [16]
only takes into account the first term in Eq. (10), which is
of order v0. In this case, the NME hOJ= �3S�1�1 	i is directly
related to the J= wave function at the origin ��0�, which
can be calculated in the framework of the quark potential
model [17], as

hOJ= �3S�1�1 	i � 2Nc�2J� 1�j��0�j2; (11)

where Nc � 3 and J � 1. Similarly, the color-singlet
P-wave NME reads
074022
hO�cJ �3P�1�J 	i � 2Nc�2J� 1�j�0�0�j2; (12)

where �0�0� is the derivative of the �cJ wave function at
the origin.

In the general case, the partonic cross section of quark-
onium production receives from the Q �Q Fock state n �
2S�1L�1;8�J the contribution [1,18]

d�̂�a� b! Q �Q�2S�1L�1;8�J 	 !H �

� d�̂�a� b! Q �Q�2S�1L�1;8�J 	�



hOH �2S�1L�1;8�J 	i

NcolNpol
; (13)

where Ncol � 2Nc for the color-singlet state, Ncol � N2
c �

1 for the color-octet state, andNpol � 2J� 1. The partonic
cross section of Q �Q production is defined as

d�̂�a� b! Q �Q�2S�1L�1;8�J 	�

�
1

I
jA�a� b! Q �Q�2S�1L�1;8�J 	�j2d�; (14)

where I is the flux factor of the incoming particles, which is
taken as in the collinear-parton model [6] [for example,
I � 2x1x2S for process (4)], A�a� b! Q �Q�2S�1L�1;8�J 	�
is the production amplitude, the bar indicates average
(summation) over initial-state (final-state) spins and colors,
and d� is the phase space volume of the outgoing particles.
This convention implies that the cross section in the
kT-factorization approach is normalized approximately to
the cross section for on-shell gluons when k1T � k2T � 0.

The production amplitude A�a� b! Q �Q�2S�1L�1;8�J 	�
can be obtained from the one for an unspecified Q �Q state,
A�a� b! Q �Q�, by the application of appropriate pro-
jectors. The projectors on the spin-zero and spin-one states
read [19]

�0 �
1���������
8m3
p

�
p̂
2
� q̂�m

�
�5

�
p̂
2
� q̂�m

�
;

��
1 �

1���������
8m3
p

�
p̂
2
� q̂�m

�
��
�
p̂
2
� q̂�m

�
;

(15)

respectively, where p̂ � ��p�, p� is the four-momentum
of the Q �Q pair, q� is the four-momentum of the relative
motion, m � M=2 is the mass of the quark Q, and M is the
mass of the quarkonium state H . In our numerical calcu-
lations, we use mc � 1:55 GeV. The projection operators
for the color-singlet and color-octet states read

C1 �
�ij������
Nc
p ; C8 �

���
2
p
Taij; (16)

respectively, where Ta with a � 1; . . . ; N2
c � 1 are the

generators of the color gauge group SU�Nc�. To obtain
-3
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the projection on a state with orbital-angular-momentum
quantum number L, we need to take L times the derivative
with respect to q and then put q � 0. For the processes
discussed here, we have

A�a�b!Q �Q�1S�1;8�0 	��Tr�C1;8�0A�a�b!Q �Q�	q�0;

A�a�b!Q �Q�3S�1;8�1 	��Tr�C1;8��
1


A�a�b!Q �Q�"��p�	q�0;

A�a�b!Q �Q�3P�1;8�J 	��
d
dq�

Tr�C1;8��
1


A�a�b!Q �Q�"���p�	q�0;

(17)

where "��p� is the polarization four-vector of a spin-one
particle with four-momentum p� and mass M � p2 and
"���p� is its counterpart for a spin-two particle. For the 3S1

state, the polarization sum reads

X
Jz

"��p�"
�
�0 �p� � P��0 �p� � �g��0 �

p�p�0

M2 : (18)

For the 3PJ states with J � 0, 1, 2, we have

"�0����p�"
�0��
�0�0 �p��

1

3
P ���p�P �0�0 �p�;

X
Jz

"�1����p�"
�1��
�0�0 �p��

1

2
�P ��0 �p�P��0 �p��P ��0 �p�P�0��p�	

X
Jz

"�2����p�"
�2��
�0�0 �p��

1

2
�P ��0 �p�P��0 �p��P ��0 �p�P�0��p�	

�
1

3
P ��P�0�0 �p�: (19)

The subprocesses relevant for our analysis read: R�
R! Q �Q, R� R! Q �Q� g, R� �! Q �Q, R� �!
Q �Q� g, R� e! e�Q �Q, and R� e! e�Q �Q� g.
IV. CHARMONIUM PRODUCTION BY
REGGEIZED GLUONS

In this section, we obtain the squared amplitudes for
inclusive charmonium production via the fusion of two
Reggeized gluons or a Reggeized gluon and a real or
virtual photon in the framework of NRQCD. We work at
LO in �s and v and consider the following partonic sub-
processes:

R� R!H �3P�1�J ;
3S�8�1 ;

1S�8�0 ;
3P�8�J 	; (20)
074022
R� R!H �3S�1�1 	 � g; (21)

R� �!H �3S�8�1 ;
1S�8�0 ;

3P�8�J 	; (22)

R� �!H �3S�1�1 	 � g; (23)

R� e! e�H �3S�8�1 ;
1S�8�0 ;

3P�8�J 	; (24)

R� e! e�H �3S�1�1 	 � g: (25)

Notice that, in the collinear-parton model, subprocesses
(20), (22), and (24) only contribute for pT 
 0. Therefore,
to LO in the collinear-parton model, we need to take into
account the corresponding subprocesses with an additional
hard gluon in the final state, for example g� g!
H �3S�8�1 	 � g. The amplitudes of these color-octet subpro-
cesses, after replacing g! R in the initial state, are of
next-to-leading order (NLO) in the kT-factorization ap-
proach and suffer from infrared divergences, in contrast
to the subprocesses (21) and (23) in the color-singlet
channel. The analysis of NLO contributions to inclusive
charmonium production by Reggeized-gluon-gluon fusion
in the kT-factorization approach is beyond the scope of this
paper and needs a separate investigation.

The phenomenological procedure, adopted in Ref. [20],
to regularize infrared divergences due to propagators get-
ting on shell with the help of some cut parameter, which is
unknown a priori, is likely to be problematic. The analysis
of NLO corrections in the kT-factorization approach is
currently an open issue, which has been consistently solved
only in part, e.g. in Ref. [21], where NLO corrections to the
subprocess R� R! g were studied.

According to the prescription of Ref. [6], the amplitude
of R� R! c� �c��g� is related to the one of g� g!
c� �c��g� by

A�R�R! c� �c��g�� � "��k1�"	�k2�


A�	�g� g! c� �c��g��;

(26)

where "��k1� and "��k2� are defined according to Eq. (1).
Analogous relations hold for R� �! c� �c��g� and
R� e! e� c� �c��g�. The amplitudes of the relevant
QCD subprocesses g� g! c� �c��g�, g� �!
c� �c��g�, and g� e! e� c� �c��g� are evaluated us-
ing the conventional Feynman rules of QCD.

We now present and discuss our results for the squared
amplitudes of subprocesses (20) and (21), contributing to
hadroproduction. In the case of the 2! 1 subprocesses
(20), we obtain
-4
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jA�R�R!H �3P�1�0 	j
2�

8

3
�2�2

s
hOH �3P�1�0 	i

M5
F�

3P0	�t1;t2;’�;

jA�R�R!H �3P�1�1 	j
2�

16

3
�2�2

s
hOH �3P�1�1 	i

M5
F�

3P1	�t1;t2;’�;

jA�R�R!H �3P�1�2 	j
2�

32

45
�2�2

s
hOH �3P�1�2 	i

M5
F�

3P2	�t1;t2;’�;

jA�R�R!H �3S�8�1 	j
2�

1

2
�2�2

s
hOH �3S�8�1 	i

M3 F�
3S1	�t1;t2;’�;

jA�R�R!H �1S�8�0 	j
2�

5

12
�2�2

s
hOH �1S�8�0 	i

M3 F�
1S0	�t1;t2;’�;

jA�R�R!H �3P�8�0 	j
2�5�2�2

s
hOH �3P�8�0 	i

M5
F�

3P0	�t1;t2;’�;

jA�R�R!H �3P�8�1 	j
2�10�2�2

s
hOH �3P�8�1 	i

M5
F�

3P1	�t1;t2;’�;

jA�R�R!H �3P�8�2 	j
2�

4

3
�2�2

s
hOH �3P�8�2 	i

M5
F�

3P2	�t1;t2;’�;

(27)

where

F�
3S1	�t1; t2; ’� �

�M2 � jpT j2���t1 � t2�2 �M2�t1 � t2 � 2
��������
t1t2
p

cos’�	

�M2 � t1 � t2�2
;

F�
1S0	�t1; t2; ’� � 2

M2

�M2 � t1 � t2�2
�M2 � jpT j2�2sin2’;

F�
3P0	�t1; t2; ’� �

2

9

M2�M2 � jpT j2�2��3M2 � t1 � t2� cos’� 2
��������
t1t2
p

	2

�M2 � t1 � t2�4
;

F�
3P1	�t1; t2; ’� �

2

9

M2�M2 � jpT j2�2��t1 � t2�2sin2’�M2�t1 � t2 � 2
��������
t1t2
p

cos’�	

�M2 � t1 � t2�
4 ;

F�
3P2	�t1; t2; ’� �

1

3

M2

�M2 � t1 � t2�
4 �M

2 � jpTj2�2f3M4 � 3M2�t1 � t2� � 4t1t2 � �t1 � t2�2cos2’

� 2
��������
t1t2
p

�3M2 � 2�t1 � t2�	 cos’g:

(28)
Here pT � k1T � k2T , t1;2 � jk1;2T j
2, and ’ � ’1 � ’2

is the angle enclosed between k1T and k2T , so that

jpT j2 � t1 � t2 � 2
��������
t1t2
p

cos’: (29)

It is interesting to consider the contribution of the dia-
gram involving a three-gluon vertex separately. It is equal
to

jA3�R� R!H �3S�8�1 	�j
2 � �2�2

s
hOH �3S�8�1 	i

2M3


�M2cos2’� jpT j2�:

(30)

For jpT j2 � M2, one has

jA3�R� R!H �3S�8�1 	�j
2 
 �2�2

s
hOH �3S�8�1 	i

2M3 jpTj2;

(31)
074022
which makes up the bulk of the contribution and can be
interpreted as being due to the fragmentation production of
the H meson. In fact, the right-hand side of Eq. (31) can
be written in the factorized form

jA3�R� R!H �3S�8�1 	�j
2 
 jA�R� R! g�j2


 P�g!H �3S�8�1 	�; (32)

where

jA�R� R! g�j2 �
3

2
��sjpT j2 (33)

refers to real-gluon production by Reggeized-gluon fusion
[10] and

P�g!H �3S�8�1 	� � ��s
hOH �3S�8�1 	i

3M3 (34)
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is the probability for the fragmentation of a gluon to a H
meson, which may be gleaned from the result for the
corresponding fragmentation function at the starting scale
�0 [22],

Dg!H �3S�8�1 	
�z;�0� � ��s

hOH �3S�8�1 	i

3M3 ��1� z�: (35)

The counterparts of Eq. (27) in the collinear-parton
model of QCD emerge through the operation

jA�g� g!H �2S�1L�1;8�J 	j2

� lim
t1;t2!0

Z 2�

0

d’1

2�



Z 2�

0

d’2

2�
jA�R� R!H �2S�1L�1;8�J 	j2: (36)

In this way, we recover the well-known results [23]:

jA�g� g!H �3P�1�0 	j
2 �

8

3
�2�2

s
hOH �3P�1�0 	i

M3 ;

jA�g� g!H �3P�1�1 	j
2 � 0;

jA�g� g!H �3P�1�2 	j
2 �

32

45
�2�2

s
hOH �3P�1�2 	i

M3 ;

jA�g� g!H �3S�8�1 	j
2 � 0;

jA�g� g!H �1S�8�0 	j
2 �

5

12
�2�2

s
hOH �1S�8�0 	i

M
;

jA�g� g!H �3P�8�0 	j
2 � 5�2�2

s
hOH �3P�8�0 	i

M3 ;

jA�g� g!H �3P�8�1 	j
2 � 0;

jA�g� g!H �3P�8�2 	j
2 �

4

3
�2�2

s
hOH �3P�8�2 	i

M3 :

(37)

Our analytic result for the cross section of the 2! 2
subprocess (21) is too lengthy to be listed here. With the
aid of Eq. (36), we recover from it the well-known
collinear-parton model result [23],

jA�g� g!H �3S�1�1 	 � gj
2

� �3�3
s
hOH �3S�1�1 	i

M3

320M4

81�M2 � t̂�2�M2 � û�2�t̂� û�2


�M4 t̂2 � 2M2 t̂3 � t̂4 �M4 t̂ û�3M2 t̂2û� 2t̂3û

�M4û2 � 3M2 t̂û2 � 3t̂2û2 � 2M2û3 � 2t̂û3 � û4�;

(38)
074022
where ŝ � �k1 � k2�
2, t̂ � �k1 � p�

2, and û � �k2 � p�
2

are the standard Mandelstam variables.
We now turn to subprocesses (22) and (23), with one real

photon in the initial state. For the 2! 1 subprocesses (22),
which are pure color-octet processes, we find
jA�R� �!H �3S�8�1 	j
2 � 0;

jA�R� �!H �1S�8�0 	j
2 � 8�2��se2

Q
hOH �1S�8�0 	i

M
;

jA�R� �!H �3P�8�0 	j
2 �

32

3
�2��se

2
Q
hOH �3P�8�0 	i

M3



�3M2 � t1�

2

�M2 � t1�2
;

jA�R� �!H �3P�8�1 	j
2 �

64

3
�2��se2

Q
hOH �3P�8�1 	i

M3



t1�2M2 � t1�

�M2 � t1�2
;

jA�R� �!H �3P�8�2 	j
2 �

64

15
�2��se

2
Q
hOH �3P�8�2 	i

M3



6M4 � 6M2t1 � t

2
1

�M2 � t1�
2 ;

(39)
where eQ is electric charge of the heavy-quark Q.
Application of Eq. (36) to Eq. (39) yields the well-known
results of the collinear-parton model [24],
jA�g� �!H �3S�8�1 	j
2 � 0;

jA�g� �!H �1S�8�0 	j
2 � 8�2��se2

Q
hOH �1S�8�0 	i

M
;

jA�g� �!H �3P�8�0 	j
2 � 96�2��se

2
Q
hOH �3P�8�0 	i

M3 ;

jA�g� �!H �3P�8�1 	j
2 � 0;

jA�g� �!H �3P�8�2 	j
2 �

128

5
�2��se

2
Q
hOH �3P�8�2 	i

M3 :

(40)
For the 2! 2 subprocess (23), which is a color-singlet
process, we find
-6
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jA�R� �!H �3S�1�1 	 � gj
2 � �3��2

se2
Q
hOH �3S�1�1 	i

M3

2048M2

27�M2 � ŝ�2�M2 � û�2�t1 �M
2 � t̂�2

�t41M
2 �M2�ŝ2 � ŝ û�û2

�M2�ŝ� û��2 � t31�M
2�5ŝ� 3û� � 7M4 � ŝ û� � t21�ŝ û�û� ŝ�

�M4�3û� 11ŝ� �M2�7ŝ2 � 2ŝ û�3û2�� � t1ŝ�ŝû
2 �M4�û� 6ŝ�

�M2�4ŝ2 � ŝ û�û2�� � 2
����
t1
p
jpT j�t31M

2 � t21��7M4 � ŝ û�M2�3ŝ� 4û��

� t1�M
4��7ŝ� 2û� � ŝ2û�M2�2ŝ2 � ŝ û�2û2�� �M2�2M4�ŝ� û�

� 2M2û�3ŝ� 2û� � û�3ŝ2 � 4ŝ û�2û2��� cos’

� 2M2jpTj2�t31 �M
2ŝ2 � t21�M

2 � 2ŝ� � t1�2M
2ŝ� ŝ2 � 2t̂2��cos2’�; (41)
where k�2 now represents the photon four-momentum and ’2 � 0. Equation (41) agrees with the corresponding result in
Ref. [25] but has a more compact form. By means of Eq. (36), Eq. (41) collapses to the well-known collinear-parton model
result [26],

jA�g� �!H �3S�1�1 	 � gj
2 � �3��2

se2
Q
hOH �3S�1�1 	i

M3

2048M4

27�M2 � t̂�2�M2 � û�2�t̂� û�2
�M4 t̂2 � 2M2 t̂3 � t̂4

�M4 t̂ û�3M2t̂2û� 2t̂3û�M4û2 � 3M2t̂û2 � 3t̂2û2 � 2M2û3 � 2t̂û3 � û4�: (42)
Finally, we turn to subprocesses (24) and (25), through which electroproduction proceeds at LO. As for the 2! 2
subprocesses (24), which are all color-octet processes, we have
jA�R� e! e�H �3S�8�1 	j
2 � 0;

jA�R� e! e�H �1S�8�0 	j
2 � 64�3�2�se

2
Q
hOH �1S�8�0 	i

M3

1

y2
2Q

2�M2 �Q2 � t1�2
��2� �y2 � 2�y2���M

2 � t1�
2

�Q4 � 2Q2M2 � 2Q2t1y2� � 4Q2t1 � 4Q
���������������������
t1�1� y2�

q
�M2 �Q2 � t1��y2 � 2�y2


 cos�’1 � ’2� � 2�y2 � 1��Q4 � �M2 � t1�
2 �Q2�2M2 � 2t1 � t1y

2
2��


 cos�2�’1 � ’2���M
2;

jA�R� e! e�H �3P�8�0 	j
2 �

256

3
�3�2�se2

Q
hOH �3P�8�0 	i

M5

1

y2
2Q

2�M2 �Q2 � t1�
4 ��2� �y2 � 2�y2��9M8 � 24M6


 �Q2 � t1� � 22M4Q4 � 22M4t21 � �Q
2 � t1�

2�Q4 � t21� � 8M2�Q2 � t1�


 �Q4 � t21�� � 2M4Q2t1�52� y2��43� 9y2�y2 � 64�� � 2Q2t1�Q
2 � t1�

2


 �10� y2�14� �y2 � 6�y2�� � 4M2Q2t1�Q
2 � t1��16� 3y2�8� �y2 � 5�y2��

� 4Q
���������������������
t1�1� y2�

q
�M2 �Q2 � t1��Q

4�4� �y2 � 2�y2� � 2Q2�t1�4� �y2 � 6�y2�

�M2�8� y2��4� 3y2��� � �3M
2 � t1��t1�4� �y2 � 2�y2�

�M2�4� y2�3y2 � 2���� cos�’1 � ’2� � 2�3M2 �Q2 � t1�


 �y2 � 1��3M6 � 7M4�Q2 � t1� � �Q
2 � t1��Q

4 � t21 �Q
2t1�2� �y2 � 4�y2��

�M2�5Q4 � 5t21 �Q
2t1�10� y2�3y2 � 4���� cos�2�’1 � ’2���M

2;
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jA�R� e! e�H �3P�8�1 	j
2�

512

3
�3�2�se2

Q
hOH �3P�8�1 	i

M5

1

y2
2Q

2�M2�Q2� t1�
4 ��2��y2� 2�y2��Q8� t1�M2� t1�2


�2M2� t1��� 2Q6�y2� 2��M2�y2� 2�� t1�2� y2� y2
2��

�Q4�4M2t1�y2� 3��y2� 2��M4�10��y2� 10�y2�� 2t21�y2�6� y2��5� 2y2��� 6��

� 2Q2�M4t1�10���8� y2�y2�� 2M6�y2� 1�� t31�y2� 2��2��y2� 1�y2�

�M2t21�y2�10� y2�2y2� 5��� 12��� 4Q
��������������������
t1�1� y2�

q
�M2�Q2� t1��M

4�y2� 2�

� �Q2� t1�
2�y2� 2�y2�M

2�Q2�2� y2�� t1�2� y2� 2y2
2���cos�’1�’2�� 2�y2� 1�


 ��Q2� t1�
4�Q2t1�Q

2� t1�
2y2

2�M
4��Q2� t1�

2� 2Q2t1y2�� 2M2��Q2� t1�
3

�Q2t1�Q
2� t1�y2�Q

2t21y
2
2��cos�2�’1�’2���M

2;

jA�R� e! e�H �3P�8�2 	j
2�

512

15
�3�2�se

2
Q
hOH �3P�8�2 	i

M5

1

y2
2Q

2�M2�Q2� t1�
4 ��2��y2� 2�y2��Q

8��M2� t1�
2


�6M4� 6M2t1� t21��� 2Q6�M2�8��y2� 8�y2�� t1�y2� 3��y2� 2�2�

�Q4�M4�38� y2�7y2� 38��� 4M2t1�20� y2�8y2� 25��

� t21�44� 2y2�30� y2�2y2� 13����� 2Q2���t31�y2� 3��y2� 2�2�� 6M6�3��y2� 3�y2�

�M2t21�y2�50� y2�6y2� 25��� 40��M4t1�y2�52� y2�6y2� 25��� 46��

� 4Q
��������������������
t1�1� y2�

q
�M2�Q2� t1��Q

4�4��y2� 2�y2�� t
2
1�4��y2� 2�y2�

� 3M4�2� y2�2y2� 3���M2t1�10� y2�6y2� 11���Q2�M2�10� 11y2�

� 2t1�4��y2� 6�y2���cos�’1�’2�� 2�y2� 1��2M2��Q2� t1�
3� 5Q2t1�Q

2� t1�y2

� 3Q2t21y
2
2�� �Q

2� t1�
2�Q4� t21�Q

2t1�2��y2� 4�y2��

�M4�Q4� t21� 2Q2t1�1� 3�y2� 1�y2���cos�2�’1�’2���M
2: (43)

As usual, Q2 � �q2 and y2 � �q � P�=�k � P�, where P�, k�, k0�, and q� � k� � k0� are the four-momenta of the
incoming proton, the incoming lepton, the outgoing lepton, and the virtual photon, respectively, ’1 is the angle between
k1T and pT , and ’2 is the angle between qT and pT . The corresponding formulas in the collinear-parton model [27] are
recovered as explained in Eq. (36) and read:

jA�g� e! e�H �3S�8�1 	j
2 � 0;

jA�g� e! e�H �1S�8�0 	j
2 � 64�3�2�se2

Q
hOH �1S�8�0 	i

M
y2

2 � 2y2 � 2

y2
2Q

2 ;

jA�g� e! e�H �3P�8�0 	j
2 �

256

3
�3�2�se

2
Q
hOH �3P�8�0 	i

M3

�y2
2 � 2y2 � 2��Q2 � 3M2�2

y2
2Q

2�Q2 �M2�2
;

jA�g� e! e�H �3P�8�1 	j
2 �

512

3
�3�2�se

2
Q
hOH �3P�8�1 	i

M3

��y2
2 � 2y2 � 2�Q2 � 4�y2 � 1��M2

y2
2�Q

2 �M2�2
;

jA�g� e! e�H �3P�8�2 	j
2 �

512

15
�3�2�se

2
Q
hOH �3P�8�2 	i

M3

��y2
2 � 2y2 � 2��Q4 � 6M4� � 12�y2 � 1�M2Q2�

y2
2Q

2�Q2 �M2�2
:

(44)

Our analytic result for the 2! 3 color-singlet subprocess (25) is rather lengthy, and we refrain from listing it here.

V. CHARMONIUM PRODUCTION AT THE TEVATRON

During the last decade, the CDF Collaboration at the Tevatron [28,29] collected data on charmonium production at
energies

���
S
p
� 1:8 TeV (run I) and

���
S
p
� 1:96 TeV (run II) in the central region of pseudorapidity j
j< 0:6. The data

cover a large interval in transverse momentum, namely, 5< pT < 20 GeV (run I) and 0< pT < 20 GeV (run II). The data
074022-8
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sample of run I [28] includes pT distributions of J= 
mesons that were produced directly in the hard interaction,
via radiative decays of �cJ mesons, via decays of  0

mesons, and via decays of b hadrons. That of run II [29]
includes pT distributions of prompt J= mesons, so far
without separation into direct, �cJ-decay, and  0-decay
contributions, and of J= mesons from b-hadron decays.

As is well known, the cross section of charmonium
production measured at the Tevatron is more than 1 order
of magnitude larger than the prediction of the CSM eval-
uated within the collinear-parton model [30]. Switching
from the collinear-parton model to the kT-factorization
approach [20,31,32] somewhat ameliorates the situation
but still does not lead to agreement at all. On the other
hand, a successful description of the data could be achieved
with the NRQCD factorization formalism [1] implemented
in the collinear-parton model, including the fusion and
fragmentation mechanisms of charmonium hadroproduc-
tion [33,34].

Charmonium hadroproduction was studied some time
ago using the NRQCD factorization formalism imple-
mented in the kT-factorization approach invoking both
the fusion [20,31,32] and fragmentation pictures [10]. It
was found [20,31,32] that, in order to describe the experi-
mental data from the CDF Collaboration [28], it is neces-
sary to employ a set of NMEs that greatly differs from the
one favored by the collinear-parton model. In this paper,
we confirm this conclusion only to some degree.

On the other hand, the polarization of prompt J= 
mesons measured at the Tevatron [35] also provides a
sensitive probe of the NRQCD mechanism. This issue
was carefully investigated both in the collinear-parton
model [36] and in the kT-factorization approach [37].
None of these studies was able to prove or disprove the
NRQCD factorization hypothesis.

In contrast to previous analyses in the collinear-parton
model or the kT-factorization approach, we perform a joint
fit to the run I and run II CDF data [28,29] to obtain the
color-octet NMEs for J= ,  0, and �cJ mesons. We use
three different versions of unintegrated gluon distribution
function. Our calculations are based on exact analytical
expressions for the relevant squared amplitudes, which
were previously unknown in literature. Our fits include
five experimental data sets, which come as pT distributions
of J= mesons from direct production, prompt production,
�cJ decays, and  0 decays in run I and from prompt
production in run II.

We now describe how to evaluate the differential had-
ronic cross section from Eq. (5) in combination with the
squared matrix elements of the 2! 1 and 2! 2 subpro-
cesses (20) and (21), respectively. The rapidity and pseu-
dorapidity of a charmonium state with four-momentum
p� � �p0;pT; p3� are given by

y �
1

2
ln
p0 � p3

p0 � p3 ; 
 �
1

2
ln
jpj � p3

jpj � p3 ; (45)
074022
respectively. For the 2! 1 subprocess (20), we have

d�KT�p� �p!H � X�
djpTjdy

�
jpT j

�jpT j2 �M2�2

Z
djk1T j

2



Z
d’1�p��1; jk1T j

2; �2�


� �p��2; jk2T j
2; �2�


 jA�R� R!H �j2; (46)

where

�1 �
p0 � p3���

S
p ; �2 �

p0 � p3���
S
p ; (47)

and k2T � pT � k1T . In our numerical analysis, we choose
the factorization scale to be � � MT . For the 2! 2 sub-
process (21), we have

d�KT�p� �p!H � X�
djpTjdy

�
jpT j
�2��3

Z
djk1Tj

2
Z
d’1



Z
dx2

Z
djk2T j

2
Z
d’2


�p�x1; jk1T j
2; �2�


� �p�x2; jk2T j
2; �2�



jA�R� R!H � g�j2

�x2 � �2��2x1x2S�
2 ;

(48)

where

x1 �
1

�x2 � �2�S
��k1T � k2T � pT�2 �M2

� jpT j2 � x2�1S	: (49)

We now present and discuss our results. In Table I, we
list out fit results for the relevant color-octet NMEs for
three different choices of unintegrated gluon distribution
function, namely, JB [11], JS [12], and KMR [13]. The
color-singlet NMEs are not fitted, but determined from the
measured partial decay widths of  �nS� ! l� � l� and
�c2 ! �� �. The numerical values are adopted from
Ref. [34], where they were obtained using the vacuum
saturation approximation and heavy-quark spin symmetry
in the NRQCD factorization formulas and including NLO
QCD radiative corrections [39]. The relevant decay
branching ratios are taken from Ref. [40] and read
B�J= ! �� ���� � 0:0601, B� 0 ! J= � X� �
0:576, B��c0 ! J= � �� � 0:012, B��c1 ! J= �
�� � 0:318, and B��c2 ! J= � �� � 0:203. They some-
what differ from the values used previously [41]. For
comparison, we list in Table I also the NMEs obtained in
Ref. [34] for the collinear-parton model with the LO parton
distribution functions of the proton by Martin, Roberts,
Stirling, and Thorne (MRST98LO) [38]. For simplicity, the
-9
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FIG. 1. Contributions to the pT distribution of prompt J= 
hadroproduction in p �p scattering with

���
S
p
� 1:96 TeV and

jyj< 0:6 from the relevant color-octet states compared with
CDF data from Tevatron run II [29]. All distributions are
normalized to unity at their peaks.

TABLE I. NMEs for J= ,  0, and �cJ mesons from fits in the collinear-parton model (PM) [34] using the MRST98LO parton
distribution functions of the proton [38] and in the kT-factorization approach using the JB [11], JS [12], and KMR [13] unintegrated
gluon distribution functions. The CDF prompt data from run I [28] and run II [29] have been excluded from our fit based on the JB
gluon density. The errors on our fit results are determined by varying in turn each NME up and down about its central value until the
value of �2 is increased by unity keeping all other NMEs fixed at their central values.

NME PM [34] Fit JB Fit JS Fit KMR

hOJ= �3S�1�1 	i=GeV3 1:3� 0:1 1:3� 0:1 1:3� 0:1 1:3� 0:1
hOJ= �3S�8�1 	i=GeV3 �4:4� 0:7� 
 10�3 �1:5� 0:1� 
 10�3 �6:1� 0:2� 
 10�3 �2:7� 0:1� 
 10�3

hOJ= �1S�8�0 	i=GeV3 � � � �6:6� 2:3� 
 10�3 �9:0� 0:6� 
 10�3 �1:4� 0:1� 
 10�2

hOJ= �3P�8�0 	i=GeV5 � � � �0:0� 7:0� 
 10�4 �0:0� 6:6� 
 10�5 �0:0� 3:5� 
 10�5

MJ= 
3:4 =GeV3 �8:7� 0:9� 
 10�2 �6:6� 3:3� 
 10�3 �9:0� 0:7� 
 10�3 �1:4� 0:1� 
 10�2

hO 0 �3S�1�1 	i=GeV3 �6:5� 0:6� 
 10�1 �6:5� 0:6� 
 10�1 �6:5� 0:6� 
 10�1 �6:5� 0:6� 
 10�1

hO 0 �3S�8�1 	i=GeV3 �4:2� 0:1� 
 10�3 �3:0� 0:5� 
 10�4 �1:5� 0:2� 
 10�3 �8:3� 0:9� 
 10�4

hO 0 �1S�8�0 	i=GeV3 � � � �0:0� 3:5� 
 10�4 �0:0� 3:9� 
 10�4 �0:0� 5:8� 
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errors on our fit results are determined by varying in turn
each NME up and down about its central value until the
value of �2 is increased by unity keeping all other NMEs
fixed at their central values. While this error estimation
disregards correlations between the various NMEs, it
nevertheless gives some useful indication.

We first study the relative importance of the different
intermediate states in direct J= and  0 production. In
previous fits to CDF data from run I [28], with pT >
5 GeV, the linear combinations

MH
r � hO

H �1S�8�0 	i �
r

m2
c
hOH �3P�8�0 	i (50)

for H � J= ,  0 were fixed because it was infeasible to
separate the contributions proportional to hOH �1S�8�0 	i and
hOH �3P�8�0 	i. By contrast, the new run II data [28], which
reach down to pT � 0, allow us to determine hOH �1S�8�0 	i

and hOH �3P�8�0 	i separately because the respective contri-
butions exhibit different pT dependences for pT < 5 GeV.
This feature is nicely illustrated in Fig. 1, where the shapes
of the relevant color-octet contributions to prompt J= 
production, proportional to hOH �3S�8�1 	i, hO

H �1S�8�0 	i,
and hOH �3P�8�0 	i, are compared with that of the CDF
data from run II [29]. Notice that the color-octet contribu-
tions differ in the peak position, by up to 1 GeV.
Apparently, this suffices to disentangle the contributions
previously combined by Eq. (50). We find that
hOJ= ; 0 �3P�8�0 	i and hO 0 �1S�8�0 	i are compatible with zero,
independent of the choice of unintegrated gluon density—
a striking result. For the case of J= production from  0
074022
decay, this implies that the 3S�1�1 and 3S�8�1 channels are
sufficient to describe the measured pT distribution (see
Fig. 3).

In Figs. 2–5, we compare the CDF data on J= mesons
from direct production,  0 decays, and �cJ decays in run I
[28] and from prompt production in run II [29], respec-
-10
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included.
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CHARMONIUM PRODUCTION AT HIGH ENERGY IN THE . . . PHYSICAL REVIEW D 73, 074022 (2006)
tively, with the theoretical results evaluated with the NMEs
listed in Table I. From Fig. 2, we observe that the color-
singlet contribution is significant, especially at low values
of pT , and comparable to the one from the 1S�8�0 channel. As
is familiar from the collinear-parton model, the 3S�8�1 con-
tribution makes up the bulk of the cross section at large
values of pT . Incidentally, the values of hOJ= �3S�8�1 	i ob-
tained in the kT-factorization framework are in average
quite close to the one obtained in the collinear-parton
model, as may be seen from Table I. The situation is
very similar for J= production from  0 decay, considered
in Fig. 3, except that the 1S�8�0 and 3P�8�J contributions are
negligible.

At this point, we wish to compare our results for direct
J= hadroproduction in the kT-factorization approach with
074022
the literature, specifically with Refs. [20,32], which con-
sider the partonic subprocess (20). By contrast, in
Ref. [31], the NLO subprocess R� R! J= �3S�8�1 	 � g
was studied, leaving aside the LO subprocess (20). In
Ref. [32], the value hOJ= �3S�8�1 	i � 7:0
 10�3 GeV3

was obtained using the Kwiecinski-Martin-Stasto (KMS)
[42] unintegrated gluon distribution function. This value is
2.6 times larger than the result we found using the KMR
[13] version, which is very similar to the KMS one. We
attribute this difference in hOJ= �3S�8�1 	i to the different
scale choice, � � kT , used by the authors of Ref. [32].
Adopting their value for hOJ= �3S�8�1 	i, we can reproduce
their result for the respective cross section contribution. On
the other hand, the value hOJ= �3S�8�1 	i�15:0
10�3 GeV3
-11
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found in Ref. [20] exceeds the one of Ref. [32] by a factor
of 2.1 and our KMR value by a factor of 5.6. Furthermore,
the cross section evaluated in Ref. [20] falls off with pT
considerably more slowly than in Ref. [32] and here, only
by 1 order of magnitude as pT runs from 2 to 20 GeV, while
the unintegrated gluon density in the proton falls off with
kT far more rapidly.

The discussion of J= production from radiative �cJ
decays, considered in Fig. 4, is simpler because there is
only one free parameter in the fit, namely, hO�c0�3S�8�1 	i. We
confirm the conclusion of Ref. [31], that, in the
kT-factorization approach, the color-singlet contribution
is sufficient to describe the data. In fact, the best fit is
realized when hO�c0�3S�8�1 	i is taken to be zero or very
small. In case of the JB gluon density, the fitting procedure
even favors a negative value of hO�c0�3S�8�1 	i.

In Fig. 5, the pT distribution of prompt J= production
in run II is broken down into the contributions from direct
production,  0 decays, and �cJ decays. We observe that the
latter is dominant for pT & 5 GeV, while prompt J= 
mesons are preferably produced directly at larger values
of pT . The contribution from  0 decays stays at the level of
several percent for all values of pT . While the JS [12] and
KMR [13] gluon densities allow for a faithful description
074022
of the measured pT distribution [29], the JB [11] one has a
problem in the low-pT range, at pT & 5 GeV, where even
the �cJ-decay contribution, which is entirely of color-
singlet origin, exceeds the data. This problem can be traced
to the speed of growth of the JB gluon density as kT ! 0.
By contrast, the JS and KMR gluon densities are smaller
and approximately kT independent at low values of kT . For
this reason, we excluded the CDF prompt-J= data from
run I [28] and run II [29] from our fit based on the JB gluon
density.

Considering the color-octet NMEs relevant for the J= ,
 0, and �cJ production mechanisms, we can formulate the
following heuristic rule for favored transitions from color-
octet to color-singlet states: �L ’ 0 and �S ’ 0; i.e. these
transitions are doubly chromoelectric and preserve the
orbital angular momentum and the spin of the heavy-quark
bound state.
-12
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VI. CHARMONIUM PRODUCTION AT HERA

At HERA, the cross section of prompt J= production
was measured in a wide range of the kinematic variables
W2��P�q�2, Q2��q2, y2��P �q�=�P �k�, z�
�P �p�=�P �q�, pT , and y, where P�, k�, k0�, q��k��
k0�, and p� are the four-momenta of the incoming proton,
incoming lepton, scattered lepton, virtual photon, and pro-
duced J= meson, respectively, both in photoproduction
[43], at small values of Q2, and deep-inelastic scattering
(DIS) [44], at large values of Q2. At sufficiently large
values of Q2, the virtual photon behaves like a pointlike
object, while, at low values of Q2, it can either act as a
pointlike object (direct photoproduction) or interact via its
quark and gluon content (resolved photoproduction).
Resolved photoproduction is only important at low values
of z.

In the region z & 1, diffractive production, which is
beyond the scope of this paper, takes place. In order to
suppress the diffractive-production contribution, one usu-
ally applies the acceptance cut z < 0:9. This effectively
eliminates the contributions from the 2! 1 partonic sub-
processes (22) and (24), so that we are left with the 2! 2
partonic subprocesses (23) and (25).

Let us first present the relevant formulas for the double
differential cross sections of DIS, direct photoproduction,
and resolved photoproduction. In the case of DIS, we have
d�KT�p� e! e�H � X�

djpT j2dz

�
1

8z�2��5
Z
dQ2

Z
dy2

Z
djk1Tj

2
Z
d’1

Z
d’2


�p�x1; jk1T j
2; �2�

jA�R� e! e�H � g�j2

�y2 � �2��2x1S�2
;

(51)
where
x1 �
1

�y2 � �2�S
��k1T � q2T � pT�2 �M2 � jpT j2

� y2�1S� �y2 � �2�Q
2	;

�1 �
p0 � p3

2Ep
; �2 �

p0 � p3

2Ee
:

(52)
Here, Ep and Ee are the proton and lepton energies in the

laboratory frame, and we have S � 4EpEe and jq2T j ������������������������
�1� y2�Q2

p
.
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In the case of direct photoproduction, we have

d�KT�p� e! e�H � X�

djpT j2dz

�
1

2z�2��2
Z
dy2

Z
djk1T j

2
Z
d’1�p�x1; jk1T j

2; �2�


 f�=e�y2�
jA�R� �!H � g�j2

y2�y2 � �2��2x1S�2
; (53)

where

x1 �
1

�y2 � �2�S
��k1T � pT�2 �M2 � jpT j2 � y2�1S	;

(54)

and f�=e�y2� is the quasireal photon flux. In the Weizäcker-
Williams approximation, the latter takes the form

f�=e�y2� �
�

2�

�
1� �1� y2�

2

y2
ln
Q2

max

Q2
min

� 2m2
ey2

�
1

Q2
max

�
1

Q2
min

��
; (55)

where Q2
min � m2

ey
2
2=�1� y2� and Q2

max is determined by
the experimental setup, e.g. Q2

max � 1 GeV2 [43].
In the case of resolved photoproduction, we take into

account the 2! 1 and 2! 2 partonic subprocesses (20)
and (21), respectively, where the first Reggeized gluon
comes from the proton and the second one from the photon.
For subprocess (20), the relevant doubly differential cross
section reads:

d�KT�p� e! e�H � X�

djpT j2dz

�
1

2z�jpT j2 �M2�2

Z
dy2

Z
djk1T j

2
Z
d’1


�p�x1; jk1Tj
2; �2�f�=e�y2����x2; jk2T j

2; �2�


 jA�R� R!H �j2; (56)

where

x1 � �1; x2 �
�2

y2
; k2T � pT � k1T: (57)

For subprocess (21), the relevant doubly differential cross
section is given by
-13
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d�KT�p� e! e�H � X�

djpT j2dz

�
1

2z�1� z��2��3
Z
dy2

Z
djk1T j

2
Z
d’1

Z
dx2



Z
djk2T j

2
Z
d’2�p�x1; jk1T j

2; �2�f�=e�y2�


���x2; jk2Tj
2; �2�

jA�R� R!H � g�j2

x2�2x1x2y2S�
2 ; (58)

where

x1 �
1

�x2y2 � �2�S
��k1T � pT�2 �M2 � jpTj2

� x2y2�1S	: (59)

To evaluate the unintegrated gluon distribution function in
the resolved photon, ���x2; jk2T j

2; �2�, we use a proce-
dure suggested by Blümlein [45], which is similar to the
proton case [11]. As input for this, we use the collinear-
parton distribution functions of the resolved photon by
Glück, Reya, and Vogt (GRV�) [46].

In Figs. 6–9, our NRQCD predictions in the
kT-factorization approach, evaluated with the NMEs from
Table I, are compared with the HERA data [43,44].
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FIG. 7. Contributions to the z distribution of prompt J= 
photoproduction in ep scattering with Ep � 820 GeV, Ee �
27:5 GeV, 60 GeV<W < 240 GeV, Q2 < 1 GeV2, and
(a) pT > 1 GeV, (b) pT > 2 GeV, or (c) pT > 3 GeV from
(1) the direct-photon subprocess R� �!H �3S�1�1 	 � g,
(2) the resolved-photon subprocesses R� R!
H �3S�1�1 ;

3P�1�J ;
3S�8�1 ;

1S�8�0 ;
3P�8�J 	, and (3) their sum compared

with ZEUS data from HERA [43]. The theoretical results are
obtained with the JB [11] unintegrated gluon distribution func-
tion.
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FIG. 6. Contribution to the p2
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photoproduction in ep scattering with Ep � 820 GeV, Ee �
27:5 GeV, 60 GeV<W < 240 GeV, Q2 < 1 GeV2, and 0:3<
z < 0:9 from the direct-photon subprocess R� �!
H �3S�1�1 	 � g compared with ZEUS data from HERA [43].
The resolved-photon subprocesses R� R!H �3S�1�1 ;

3P�1�J ;
3S�8�1 ;

1S�8�0 ;
3P�8�J 	 are neglected. The theoretical results are ob-

tained with the JB [11], JS [12], or KMR [13] unintegrated gluon
distribution functions.
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Specifically, Figs. 6 and 7 refer to the p2
T and z distributions

in photoproduction with Ep � 820 GeV, Ee � 27:5 GeV,
60 GeV<W < 240 GeV, and Q2 < 1 GeV2 [43], while
Figs. 8 and 9 refer to those in DIS with Ep � 920 GeV,
Ee � 27:5 GeV, 50 GeV<W < 225 GeV, and
2 GeV2 <Q2 < 100 GeV2 [44]. Acceptance cuts com-
mon to both photoproduction and DIS include pT >
1 GeV and 0:3< z< 0:9. In this regime, the LO
NRQCD predictions in the kT-factorization approach are
mainly due to the color-singlet channels and are thus fairly
independent of the color-octet NMEs presented in Table I.
Therefore, our results agree well with previous calculations
in the CSM [47], up to minor differences in the choice of
the color-singlet NMEs and the c-quark mass.
-14
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VII. CHARMONIUM PRODUCTION AT LEP2

Some time ago, the DELPHI Collaboration presented
data on the inclusive cross section of J= photoproduction
in �� collisions (e� � e� ! e� � e� � J= � X) at
LEP2, taken as a function of the J= transverse-
momentum pT [48]. The J= mesons were identified
through their decays to ���� pairs, and events where
the system X contains a prompt photon were suppressed
by requiring that at least four charged tracks were recon-
structed. The average e�e� center-of-mass energy was���
S
p
� 197 GeV, the scattered positrons and electrons

were antitagged, with maximum angle �max � 32 mrad,
and the maximum �� center-of-mass energy was chosen to
be W � 35 GeV in order to reject the major part of the
non-two-photon events.

Under LEP2 experimental conditions, most J= mesons
are produced promptly, while the cross section for J= 
mesons from b-hadron decays is estimated to be about 1%
of the total J= cross section [49] and can be safely
neglected. Because the average value of the photon vir-
tuality Q2 is small, the Weizsäcker-Williams approxima-
tion can be used to evaluate the e�e� cross section from
the �� cross section as

d��e��e�!e��e��H �X��
Z
dy1

Z
dy2f�=e�y1�


f�=e�y2�d�����

!H �X�: (60)

The process e� � e� ! e� � e� � J= � X receives
contributions from direct, single-resolved, and double-
resolved photoproduction. The relevant partonic subpro-
cesses are: �� �!H �3S�8�1 	 � g, �� R!
H �1S�8�0 ;

3P�8�J 	, �� R!H �3S�1�1 	 � g, R� R!

H �3S�8�1 ;
1S�8�0 ;

3P�8�J 	, and R� R!H �3S�1�1 	 � g. The
squared amplitude of �� �!H �3S�8�1 	 � g may be
found in Ref. [49]; the ones for the other partonic subpro-
cesses were presented in Sec. IV.

The cross section of direct photoproduction is evaluated
as

d��e� � e� ! e� � e� �H � X�

djpT j2dy

�
1

4�

Z
dy2f�=e�y1�f�=e�y2�

y1y2

y2 � �2



jA��� �!H � g�j2

�2y1y2S�2
; (61)

where �1 and �2 are defined in Eq. (47) and

y1 �
y2�1S�M2

�y2 � �2�S
: (62)
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���
S
p
� 197 GeV,

Q2 < 9:93 GeV2, W < 35 GeV, and jyj< 2 from the
partonic subprocesses (1) R��!H �1S�8�0 ;

3P�8�J 	,
(2) R� �!H �3S�1�1 	 � g, (3) �� �!H �3S�8�1 	 � g, R�
R!H �3S�8�1 ;

1S�8�0 ;
3P�8�J 	, and R� R!H �3S�1�1 	 � g, and

(4) their sum compared with DELPHI data from LEP2 [48].
The theoretical results are obtained with the JB [11] unintegrated
gluon distribution function.
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In the case of single-resolved photoproduction via the
2! 1 subprocesses, we have

d�KT�e� � e� ! e� � e� �H � X�

djpT j2dy

� 4�
Z
dy1f�=e�y1�f�=e�y2����x1; jk1T j

2; �2�y2



jA�R� �!H �j2

�2x1y1y2S�
2 ; (63)

where x1 � �1=y1, y2 � �2, and k1T � pT . In the case of
single-resolved photoproduction via the 2! 2 subprocess,
we have

d�KT�e� � e� ! e� � e� �H � X�

djpT j2dy

�
1

2�2��2
Z
dy1

Z
dy2

Z
djk1T j

2
Z
d’1f�=e�y1�f�=e�y2�


���x1; jk1Tj
2; �2�

y2

y2 � �2



jA�R� �!H � g�j2

�2x1y1y2S�2
; (64)

where

x1 �
1

y1�y2 � �2�S
��k1T � pT�2 �M2 � jpT j2 � y2�1S	:

(65)

In the case of double-resolved photoproduction via the
2! 1 subprocesses, we have

d�KT�e� � e� ! e� � e� �H � X�

djpT j2dy

� 2
Z
dy1

Z
dy2

Z
djk1T j

2
Z
d’1f�=e�y1�f�=e�y2�


���x1; jk1Tj
2; �2����x2; jk2Tj

2; �2�



jA�R� R!H �j2

�2x1x2y1y2S�2
; (66)

where x1 � �1=y1, x2 � �2=y2, and k2T � pT � k1T . In
the case of double-resolved photoproduction via the 2! 2
subprocess, we have

d�KT�e��e�!e��e��H �X�

djpT j2dy

�
1

2�2��3
Z
dy1

Z
dy2

Z
djk1T j

2
Z
d’1

Z
dx2

Z
djk2Tj

2



Z
d’2f�=e�y1����x1;jk1T j

2;�2�f�=e�y2�


���x2;jk2T j
2;�2�

y2

x2y2��2

jA�R�R!H �g�j2

�2x1x2y1y2S�2
;

(67)
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where

x1 �
1

y1�x2y2 � �2�S
��k1T � k2T � pT�2 �M2

� jpT j2 � x2y2�1S	: (68)

In Fig. 10, we confront the p2
T distribution of e� �

e� ! e� � e� � J= � X, where X is devoid of prompt
photons, measured by DELPHI [48] with our full theoreti-
cal prediction (line No. 4), which is broken down into the
single-resolved color-octet contribution (line No. 1), the
single-resolved color-singlet contribution (line No. 2), and
the direct plus double-resolved contributions (line No. 3).
We observe that the single-resolved contribution makes up
the bulk of the cross section, while the direct and double-
resolved contributions are greatly suppressed, and that,
within the single-resolved contribution, the color-singlet
channel is dominant. The experimental data overshoot the
theoretical prediction by a moderate factor of 2–3. For the
case of �� collisions, we conclude that the color-singlet
processes are dominant in the kT-factorization approach, a
situation familiar from photo- and electroproduction in ep
collisions considered in Sec. VI. The situation is quite
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different for the collinear-parton model, where color-octet
processes dominate [49].

Recently, in Ref. [25], it was attempted to interpret the
DELPHI data in the kT-factorization approach invoking
only the CSM and neglecting the cascade decays of the  0

and �cJ mesons. Curve No. 2 in Fig. 10 approximately
agrees with the corresponding predictions in Ref. [25] for
mc � 1:55 GeV. In Ref. [25], a significantly lower value of
mc is employed to reach agreement with the DELPHI data.
VIII. CONCLUSION

Working at LO in the kT-factorization approach to
NRQCD, we analytically evaluated the squared amplitudes
of prompt charmonium production by Reggeized gluons in
RR, R�, and Re collisions. We extracted the relevant color-
octet NMEs, hOH �3S�8�1 	i, hO

H �1S�8�0 	i, and hOH �3P�8�0 	i
for H � J= ,  0, and �cJ through fits to pT distributions
measured by the CDF Collaboration in p �p collisions at the
Tevatron with

���
S
p
� 1:8 TeV [28] and 1.96 TeV [29] using

three different versions of unintegrated gluon distribution
function, namely, JB [11], JS [12], and KMR [13].
Appealing to the assumed NRQCD factorization, we
used the NMEs thus obtained to predict various cross
section distributions of prompt J= photoproduction and
electroproduction in ep collisions and photoproduction in
e�e� collisions and compared them with ZEUS [43] and
H1 [44] data from HERA and DELPHI [48] data from
LEP2, respectively. In the case of photoproduction, we
included both the direct and resolved contributions. As
for the unintegrated parton distribution functions of the
proton and the resolved photon, we assumed the gluon
content to be dominant.

Our fits to the Tevatron data turned out to be satisfactory,
except for the one to the �cJ sample based on the JB gluon
density in the proton, where the fit result significantly
exceeded the measured cross section in the small-pT re-
gion. We found agreement with the HERA and LEP2 data
074022
within a factor of 2, which is the typical size of the
theoretical uncertainty due to the lack of knowledge of
the precise value of the c-quark mass and the NLO correc-
tions. Specifically, we found that direct and resolved photo-
production in ep collisions under HERA kinematic
conditions dominantly proceed through color-singlet pro-
cesses, namely, R�p� � �!H �3S�1�1 	 � g and R�p� �
R��� !H �3S�1�1 	 � g, respectively. Similarly, photopro-
duction in e�e� collisions under LEP2 kinematic condi-
tions is mainly mediated via the color-singlet subprocess
R��� � �!H �3S�1�1 	 � g, but the color-octet subprocess
R��� � �!H �1S�8�0 	 also contributes appreciably.

LO predictions in both the collinear-parton model and
the kT-factorization framework suffer from sizeable theo-
retical uncertainties, which are largely due to unphysical-
scale dependences. Substantial improvement can only be
achieved by performing full NLO analyses. While the
stage for the NLO NRQCD treatment of 2! 2 processes
has been set in the collinear-parton model [50], conceptual
issues still remain to be clarified in the kT-factorization
approach. Since, at NLO, incoming partons can gain a
finite kT kick through the perturbative emission of partons,
one expects that essential features produced by the
kT-factorization approach at LO will thus automatically
show up at NLO in the collinear-parton model.

ACKNOWLEDGMENTS

V. A. S. and D. V. V. thank the 2nd Institute for
Theoretical Physics at the University of Hamburg for the
hospitality extended to them during visits when this re-
search was carried out. The work of D. V. V. was supported
in part by a Mikhail Lomonosov grant, jointly funded by
DAAD and the Russian Ministry of Education, by the
International Center of Fundamental Physics in Moscow,
and by the Dynastiya Foundation. This work was supported
in part by BMBF Grant No. 05 HT4GUA/4.
[1] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
51, 1125 (1995); 55, 5853(E) (1997).

[2] R. Brock et al. (CTEQ Collaboration), Rev. Mod. Phys.
67, 157 (1995).

[3] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)
[Sov. J. Nucl. Phys. 15, 438 (1972)]; Yu. L. Dokshitzer,
Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46,
641 (1977)]; G. Altarelli and G. Parisi, Nucl. Phys. B126,
298 (1977).

[4] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp.
Teor. Fiz. 71, 840 (1976) [Sov. Phys. JETP 44, 443
(1976)]; I. I. Balitsky and L. N. Lipatov, Yad. Fiz. 28,
1597 (1978) [Sov. J. Nucl. Phys. 28, 822 (1978)].
[5] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.
100, 1 (1983); S. Catani, M. Ciafoloni, and F. Hautmann,
Nucl. Phys. B366, 135 (1991).

[6] J. C. Collins and R. K. Ellis, Nucl. Phys. B360, 3 (1991).
[7] L. N. Lipatov, Nucl. Phys. B452, 369 (1995).
[8] V. S. Fadin and L. N. Lipatov, Nucl. Phys. B477, 767

(1996).
[9] E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O.

Cherednikov, Nucl. Phys. B721, 111 (2005).
[10] V. A. Saleev and D. V. Vasin, Phys. Rev. D 68, 114013

(2003); Yad. Fiz. 68, 95 (2005) [Phys. At. Nucl. 68, 94
(2005)].
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