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In the framework of perturbative QCD and nonrelativistic bound state formalism, we calculate the
production of J= mesons associated with open-charm particles at HERA and Tevatron conditions. We
show that the contribution from J= � c� �c channel becomes comparable with that of J= sole
production at high J= transverse momenta (approximately, at p ;T > 10 GeV). We investigate the
J= polarization effects and kinematic correlations between J= mesons and the accompanying open-
charmed mesons. We show that the correlations are sensitive to the initial kt of the colliding partons, and
so, can be considered as an additional test discriminating the collinear parton model and the
kt-factorization approach.

DOI: 10.1103/PhysRevD.73.074021 PACS numbers: 12.38.Bx, 13.85.Ni
I. INTRODUCTION

Compared to the inclusive inelastic J= production,
only little attention is paid in the literature to the associated
production of J= mesons with open-charm particles. The
aim of the present study is to fill this gap. In this paper we
are going to show that the production cross section of
J= � c� �c states is not too small, and so, the process
not only can be detected, but even the properties of inclu-
sive J= production cannot be properly understood with-
out taking the J= � c� �c channel into account.
Furthermore, we show that the considered process is con-
nected with rich underlying physics. In particular, the
interparticle kinematic correlations can shed more light
on the internal parton dynamics in the colliding hadrons.

The outline of the paper is the following. In Sec. II we
briefly describe the theoretical grounds of our calculations.
One of the goals of the present paper is to compare the
predictions on the charm-associated and individual J= 
production. Therefore, we find it helpful to recall the J= 
production schemes, and we do that in Sec. III. In Sec. IV
we display our numerical results and discuss the relevant
physics. Our findings are summarized in Sec. V. The
technical details of the calculations are presented in the
appendix.
II. THEORETICAL FRAMEWORK

Our approach is based on three theoretical ingredients.
These are the perturbative QCD, the nonrelativistic bound
state formalism, and the kt-factorization in the parton
model. In this study we consider the photon-gluon and
gluon-gluon fusion reactions, namely

�� g! J= � c� �c; (1)

g� g! J= � c� �c: (2)

The full gauge invariant set comprises 24 and 36 Feynman
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diagrams in the cases of photon-gluon (1) and gluon-gluon
(2) fusion, respectively. The relevant gluon-gluon fusion
diagrams are displayed in Fig. 1. The explicit expressions
for the corresponding matrix elements are presented in the
appendix. The evaluation of the diagrams is straightfor-
ward and follows the standard Feynman rules. Technically,
the computations are organized according to the orthogo-
nal amplitudes method described in detail in Ref. [1]. The
calculation of traces is performed using the algebraic ma-
nipulation system REDUCE [2].

When calculating the spin average of the matrix element
squared, we substitute the full lepton tensor for the photon
polarization matrix:

������� � �4p
�
e p�e � 2�pek��g

���=�k2
��; (3)

where pe is the initial electron momentum and k� the
photon momentum. The form of the gluon spin density
matrix is different depending on whether the gluon is on
shell (as is assumed in the conventional parton model) or
off shell (in the kt-factorization approach). For the general
case, we adopt the kt-factorization prescription [3–5]:

��g ���g � p�pp�px
2
g=jkT j

2 � k�T k
�
T=jkTj

2; (4)

where pp is the initial proton momentum, xg the gluon
momentum fraction, kT the component of the gluon mo-
mentum perpendicular to the beam axis, and the bar stands
for the averaging over the gluon spin. In the collinear limit,
when kT ! 0, this expression converges to the ordinary
��g ���g � �

1
2g

��.
The J= polarization vector � is defined as an explicit

four-vector. In the frame where the z axis is oriented along
the J= momentum vector, p � �0; 0; jp j; E �, the po-
larization vector reads for different helicity states

� �	1� � �1;	i; 0; 0�=
���
2
p
;

� �0� � �0; 0; E ; jp j�=m :
(5)
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FIG. 1. Feynman diagrams representing the subprocess g�
g! J= � c� �c.

1Then we omit the integration over k2
1T and k2

2T in Eq. (6) and
use the on shell expression for the gluon-gluon fusion matrix
element jM�gg!  c �c�j2.
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As we believe that the formation of J= state is domi-
nated by the color-singlet mechanism [6], we do not take
into account the possible color-octet contributions. In fact,
we have already demonstrated [7,8] that the color-singlet
model alone (considered in the framework of the
kt-factorization approach) successfully describes the avail-
able data on the inclusive J= production both at the
Tevatron and HERA. Then, the J= formation probability
reduces to the only parameter j��0�j2, the value of wave
function at the origin of coordinate space, which is known
from the J= leptonic decay width [9].

The multiparticle phase space
Q
d3pi=�2Ei��

4�
P
pin �P

pout� of the reactions e� p! J= � c� �c� X and
p� p! J= � c� �c� X is parametrized in terms of
rapidities, transverse momenta, and azimuthal angles:
d3pi=�2Ei� � ��=2�dp2

iTdyid�i=�2��. Let s be the total
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initial invariant energy squared, ŝ the squared energy of the
partonic subprocess, k1T , k2T , �1, and �2 the transverse
momenta and azimuthal angles of the initial (off shell)
partons, y , yc, y �c, p T , pcT , p �cT , � , �c, and � �c the
rapidities, transverse momenta, and azimuthal angles of
J= meson and the accompanying charmed quark and
antiquark, respectively. Then, the fully differential cross
section reads

d��pp!  c �cX�

�
�	4

s

3ŝ2 j��0�j
2 1

4

X
spins

1

64

X
colors

jM�gg!  c �c�j2


F g�x1; k2
1T; �

2�F g�x2; k2
2T;�

2�dk2
1Tdk

2
2T


 dp2
 Tdp

2
cTdy dycdy �c

d�1

2�
d�2

2�

d� 

2�
d�c

2�
:

(6)

In this expression, F g�xi; k
2
iT; �

2� are the so-called unin-
tegrated gluon distribution functions. They obey Balitsky-
Fadin-Kuraev-Lipatov (BFKL) [10] or Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) [11] equations and reduce to
the conventional parton densities G�x;�2� once the kT
dependence is integrated out:

Z �2

0
F �x; k2

T;�
2�dk2

T � xG�x;�2�: (7)

In order to estimate the degree of theoretical uncertainty
connected with the choice of unintegrated gluon density,
we use two different parametrizations, which are known to
show the largest difference with each other, namely, the
ones proposed in Refs. [3,12]. In the first case [3], the
unintegrated gluon density is derived from the ordinary
(collinear) density G�x;�2� by differentiating it with re-
spect to �2 and setting �2 � k2

T . In the approach of [12],
the unintegrated density is calculated as the convolution of
the ordinary gluon density with some universal weight
factor. In both cases we use the LO Glück-Reya-Vogt
(GRV) set [13] as the input collinear density. This set is
also used to show the predictions of collinear parton
model.1

The initial parton momentum fractions x1 and x2 are
calculated from the independent integration variables using
the energy-momentum conservation laws in the light cone
projections:

�k1 � k2�E�pjj � x1

���
s
p

� m T exp�y � �mcT exp�yc�

�m �cT exp�y �c�; (8)
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�k1 � k2�E�pjj � x2

���
s
p

� m T exp��y � �mcT exp��yc�

�m �cT exp��y �c�; (9)

with miT � �m2
i � jpiTj

2�1=2, i �  , c, �c. The phase space
physical boundary is determined by the inequalities

G�ŝ; t̂1; ŝ2; k2
1; k

2
2; m

2
c� � 0; (10)

�mc �m �
2 � ŝ2 � �

���̂
s
p
�mc�

2; (11)

where ŝ � �k1 � k2�
2, t̂1 � �k1 � pc�2, ŝ2 � �p � p �c�

2,
and G is the standard kinematic function [14]. The multi-
dimensional integration in (6) has been performed by
means of the Monte Carlo technique, using the routine
VEGAS [15]. Finally, to convert the charmed quark and
antiquark into real physical states (say, D-mesons) we use
Peterson [16] fragmentation function with � � 0:06. The
fragmentation probability is set equal to 1 (it means that, in
fact, we collect the cross section corresponding to all
possible charmed states). The full FORTRAN code used
in the calculations is available from the author on request.

III. kt-FACTORIZATION VERSUS COLLINEAR
TREATMENT OF J= PRODUCTION

One of the goals of the present paper is to compare the
predictions on the charm-associated and nonassociated
J= production. Therefore, we find it helpful to recall
the J= production schemes employed in the collinear
and kt-factorization approaches.

The lowest order diagram consistent with all quantum
number conservation laws is presented in Fig. 2(a).
Naively, it ought to make the dominant contribution, but,
when considered in the collinear factorization framework,
it shows too steep falloff with increasing p ;T being at odds
with experimental data. The theory is then ‘‘repaired‘‘ by
attributing the production cross section to another, the so-
FIG. 2. Diagrams representing J= production subprocesses.
(a) Leading-order gluon-gluon fusion. (b) Color-octet scheme.
Part of the diagram to the right of the dashed line is treated in a
nonperturbative way: the emission of soft gluons is absorbed into
phenomenological color-octet matrix elements. (c) Higher-order
contributions connected with initial gluon radiation. In the
kt-factorization approach, the upper and the lower parts of this
diagram are included in the kT evolution of gluon densities.
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called ‘‘color-octet’’ mechanism [17], depicted in
Fig. 2(b). Although the emission of soft final-state gluons
is treated here in a nonperturbative way, this scheme can be
regarded as an effective O�	5

s� process. On the other hand,
the color-octet mechanism is not equivalent to the true
O�	5

s� QCD calculations, because it only focuses on a
specific single diagram of Fig. 2(b) [which is made domi-
nant due to a special choice of phenomenological matrix
elements], while all the other possible contributions, like
the ones shown in Fig. 2(c), are ignored.

The pT dependence of the cross section is determined by
the t-channel gluon propagator in the hard partonic sub-
process (g� g! g� g�), and thus, is d�=dp ;T �
1=p4

 ;T , in agreement with the data. At p ;T  m , the
fragmenting gluon g� is nearly on shell, and so, must
possess strong transverse polarization. The latter predic-
tion is not supported by the data.

In the kt-factorization approach, the natural hierarchy of
the matrix elements is restored. The dominant contribution
comes from the lowest order diagram of Fig. 2(a). As soon
as the initial gluon kT is taken into account, the broadening
effect makes the shape of the J= spectrum fully consistent
with the data. The integrated cross section does not change
much in comparison with O�	3

s� collinear calculations, but
it is only redistributed over a broader p ;T range. The pT
dependence of the cross section is now determined by the
behavior of the unintegrated gluon density, which shows
d�=dp ;T � 1=p4

 ;T . This behavior can be related to the
t-channel gluon propagators in the ‘‘ladder’’ diagrams
describing the kT evolution of gluon density.

In fact, the evolution of gluon densities takes into ac-
count a large piece of higher-order corrections [like those
shown in Fig. 2(c)], collecting the terms of the type
�	s ln�1=x��n and �	s ln��2=�2� ln�1=x��n up to infinitely
large n (see [3]). Thanks to that, the calculations employ-
ing the leading-order partonic matrix elements can show
effects, which are known in collinear calculations with
next-to-leading order (NLO) matrix elements.

It is important that the initial gluon transverse momen-
tum leads to gluon off shellness and, consequently, to the
presence of longitudinal components in the gluon polar-
ization vector. This property plays the key role in under-
standing the J= polarization phenomenon. Typically, the
kT values of the two colliding gluons are much different, as
the parton evolution is equivalent to the random walk in the
lnjkTj plane, not in the kT plane. Roughly speaking, the kT
of one of the gluons can be neglected in comparison with
that of the other. So, in the initial state there is one nearly
on shell (transversely polarized) gluon and one off shell
(longitudinally polarized) gluon. After the interaction, they
convert into one on shell (transversely polarized) gluon and
a heavy vector meson. Simple helicity conservation argu-
ments show that the polarization of vector meson must be
longitudinal, in contrast with the ordinary parton model,
where the initial gluons are both on shell.
-3



FIG. 3. J= � c� �c production at the Tevatron. Upper panel:
J= transverse momentum distribution; middle panel: charmed
meson transverse momentum distribution; lower panel: the ratio
of the J= � c� �c production cross section to the noncharm-
associated J= production. Solid histograms: predictions of the
collinear parton model; dashed and dash-dotted histograms:
kt-factorization approach with JB [12] and dGRV [3] gluon
densities, respectively.
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The reader may have trouble about the discrepancy
between the collinear and kt-factorization predictions.
The difference originates from the fact that the calculations
are based on completely different sets of Feynman dia-
grams. It is possible to say that, in this particular case, the
observed difference is not between the collinear and
kt-factorization interpretations of QCD, but is rather be-
tween the full LO� NLO pQCD and the color-octet model
prescriptions. At present, there is no full LO� NLO col-
linear calculation for the hadronic production of J= me-
sons, but there is such a calculation for photonic J= 
production [18]. It demonstrates that the difference be-
tween the collinear LO and kt-factorization results is rather
significant, but including the NLO contribution makes the
collinear results much closer to the kt-factorization
predictions.

This fact seems reasonable and understandable, because
the intermediate gluons in the NLO diagrams [internal
lines in Fig. 2(c)] bear strong resemblance to the initial
gluons in the kt-factorization approach in Fig. 2(a): they
are off shell, carry transverse momentum, etc. At the same
time, the color-octet model seems to attribute an inad-
equately large role to the diagram of Fig. 2(b). It is worth
saying once again that the situation with J= is excep-
tional, and when the calculations are based on the same set
of Feyman diagrams (e.g., the case of J= � c� �c pro-
cess) the difference between the two approaches should not
be very dramatic.

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical results are displayed in Figs. 3–8. First,
we consider the Fermilab Tevatron conditions. In calcula-
tions, we set the total center of mass system (c.m.s.) energy���
s
p
� 1800 GeV, the charmed quark mass mc � m =2 �

1:55 GeV, the factorization and renormalization scales
�2
F � �2

R � ŝ=4, we use the LO GRV [13] collinear gluon
density in the proton and two different sets of unintegrated
gluon densities described in Refs. [3,12].

The most important theoretical uncertainty in the overall
production rates is connected with the choice of remorm-
alization scale�R in the strong coupling constant: note that
the cross section (6) is proportional to the fourth power of
	s. Variations in�R from�2

R � ŝ to�2
R � ŝ=4 change the

cross section by a factor of 2. The sensitivity of the ratio
�� cc�=�� � is much lower, because three powers of 	s
cancel out. The sensitivity of the results to the factorization
scale �F is nearly the same in the kt-factorization and
collinear calculations. Variations in �F from �2

F � ŝ to
�2
F � ŝ=4 change the cross section by a factor of 1.25.
The choice of unintegrated gluon density has a signifi-

cant effect on the pT distributions and azimuthal correla-
tions. The parametrizations [3,12] used in our calculations
are known to show the largest difference with each other,
and so, to some extent, they outline the theoretical uncer-
tainty band.
074021
We begin the discussion with showing the transverse
momentum distributions d�=dpT for J= mesons and the
accompanying charmed mesons in Fig. 3. The presence of
the initial gluon transverse momentum (in the
-4



FIG. 4. J= � c� �c production at the Tevatron. J= and
charmed meson rapidity distributions. Notation of the curves is
as in Fig. 3.
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kt-factorization approach) leads to the pT-broadening ef-
fect, which is stronger for JB [12] gluon density than for
dGRV [3] density.

We find it interesting to compare the production rates of
J= mesons appearing as individual particles (i.e. without
coproduced charm) and in association with open-charmed
states. The production of individual J= particles can
proceed via the color-singlet and color-octet channels. In
the collinear factorization scheme, the high-pT region is
dominated by the color-octet contribution. The latter is
characterized by the behavior d�=dp ;T � 1=p4

 ;T , as it
was explained in the previous section. In the
kt-factorization approach, one only has to take into account
the color-singlet contribution [7]. In this case, the matrix
element of the process g� g! J= � g is strongly peak-
ing in the forward direction, and the pT dependence of the
cross section is determined by the behavior of the uninte-
grated gluon density, which shows d�=dp ;T � 1=p4

 ;T .
The dominant contribution to the associated J= � c�

�c production at high p ;T comes from the quark fragmen-
tation diagrams: g� g! c� �c, c! J= � c, as it was
demonstrated in Ref. [19]. Here, the pT dependence of the
cross section is determined by the hard partonic subprocess
g� g! c� �c, resulting in d�=dp ;T � 1=p4

 ;T . This
holds for both the collinear and kt-factorization ap-
proaches, as the initial gluon transverse momentum fol-
lows the same law and O�1=p4

 ;T� �O�1=p4
 ;T� �

O�1=p4
 ;T�.

Thus, we see that the asymptotic powerlike behavior
is universal for the production of charm-associated
and individual J= mesons, both in the collinear
and kt-factorization approaches. In accord with that, the
ratio of the differential cross sections r �
�d�� c �c�=dp ;T�=�d�� �=dp ;T� flattens at high p ;T
tending to a constant value. The numerical value of this
constant depends on the matrix elements of the relevant
partonic subprocesses and turns out to be of the order of
1=3.

The color coefficients give at least partial explanation
for the fact that the ratio of the cross sections is not small.
Consider this point in more detail. The individual J= 
production subprocess g� g! J= � g is represented
by the color structure

M col
 � trfTaTbTcg � �1=4�dabc � �i=4�fabc: (12)

The color-antisymmetric coupling fabc is C-even, and so,
is inconsistent with charge parity conservation because
J= is a C-odd state. Hence, we are left with dabc coupling
only, which gives after squaring

jMcol
 j

2 � �1=16�dabcdabc � 5=6: (13)

This has to be compared with the diagrams M21, M31,
M51, and M53 (the first diagram in the second and the
third rows, the second and the fourth diagrams in the fifth
074021
row in Fig. 1) responsible for the associated J= � c� �c
production in the fragmentation limit. The relevant expres-
sions for their color structure (see Appendix) can be re-
written as

M col
21 � �T

aTbTcTc�	


� �2=9��abI	
 � �2=3�ifabc�Tc�	


� �2=3�dabc�Tc�	
 (14)

and

M col
51 � �T

cTdTd�	
if
abc � �4=3�ifabc�Tc�	
: (15)

They give after squaring

jMcol
21 j

2 � jMcol
31 j

2 � �32=27� � �16=3� � �80=27�

� 256=27 (16)

and

jMcol
51 j

2 � jMcol
53 j

2 � 64=3: (17)

These numbers are a factor of 10 to 20 larger than the color
coefficient in Eq. (13).

We proceed with showing the rapidity distributions of
J= mesons and the coproduced charmed mesons in Fig. 4.
-5
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The distributions obtained with different parametrizations
of gluon densities are all similar in shape and only differ in
the total normalization.

Next, we focus attention on the interparticle correla-
tions. Figure 5 displays the distributions in �’, the azimu-
thal angle between the J= and the coproduced charmed
meson momenta, ��, the rapidity difference, and the
FIG. 5. J= � c� �c production at the Tevatron. Kinematic
correlations between the J= and accompanying charmed me-
sons. Upper panel: azimuthal angle difference; middle panel,
pseudorapidity difference; lower panel: combined variable
�R �

��������������������������������
��’�2 � ����2

p
. Notation of the curves is as in Fig. 3.

074021
variable R defined as �R �
��������������������������
�’2 � ��2

p
. One can see

that the initial gluon transverse momentum has quite a
significant effect on the azimuthal correlations. As the
average initial gluon kT increases, the �’ distribution
moves steadily from �’ ’ � towards �’ ’ 0. This effect
is due to nothing but kinematics. In the gluon-gluon center-
of-mass system, the angular distributions look like in the
collinear parton model, but when we consider them in a
FIG. 6. J= � c� �c production at the Tevatron. The fraction
of longitudinally polarized J= mesons as a function of J= 
transverse momentum, J= rapidity, J= �D azimuthal angle
difference, and J= �D pseudorapidity difference, from top to
bottom, respectively. Notation of the curves is as in Fig. 3.
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system moving in the transverse direction the azimuthal
angles between particles become smaller. Hence, the shape
of the �’ distribution measures the average kT of the
colliding gluons. It not only can distinguish the
kt-factorization approach from the collinear parton model,
FIG. 7. J= � c� �c production at HERA. Upper panel: J= 
transverse momentum distribution; middle panel, charmed me-
son transverse momentum distribution; lower panel: the ratio of
the J= � c� �c production cross section to the noncharm-
associated J= production. Solid histograms: predictions of
the collinear parton model; dashed histograms: kt-factorization
approach with JB [12] gluon densities.

074021
but even discriminate the different unintegrated gluon
densities.

Now, let us turn to polarization variables. Figure 6 dis-
plays the fraction of longitudinally polarized J= mesons
(the fraction of helicity � 0 states with respect to all
possible polarizations) plotted as a function of p ;T , � ,
�’, and ��. In all cases, this fraction appears to be close
to 1=3, thus indicating that the mesons are, in essence,
unpolarized.

This result is rather easy to believe in, because there are
no special reasons for J= mesons to be polarized. This
contrasts with two-body partonic processes responsible for
the production of individual J= mesons. Note that the
predictions of the kt-factorization approach and collinear
(color-octet) model on the polarization of individual J= 
particles disagree with each other. If the dominant contri-
bution comes from the gluon fragmentation into an octet c �c
pair, the mesons must have strong transverse polarization.
On the contrary, if the production mechanism is the off
shell gluon-gluon fusion, then the J= polarization tends
to be longitudinal, as it follows from simple helicity con-
servation arguments explained in Sec. III.
FIG. 8. J= � c� �c production at HERA. J= and charmed
meson rapidity distributions. Positive direction corresponds to
the proton beam. Notation of the curves is as in Fig. 7.
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None of these specific polarization mechanisms applies
to the subprocess (2). In view of the fact that the charm-
associated J= production constitutes an important con-
tribution to the total inelastic J= production at high p ;T ,
this contribution must have a significant effect on the
overall measured J= polarization.

The general regularities observed at the Tevatron con-
ditions are also seen in ep collisions at HERA. However, in
the latter case the production rates are much lower, and so,
it looks almost hopeless to fulfil the polarization or corre-
lation analysis. The only more or less realistic task could be
to detect the process and estimate its cross section. The
corresponding theoretical predictions are shown in Figs. 7
and 8.

V. CONCLUSION

We have considered the production of associated J= �
c� �c states at the high energy colliders Tevatron and
HERA. Our results can be summarized in three lessons.
First, the associated production of J= mesons with open-
charm particles constitutes a significant fraction of the
inclusive J= production at high pT . Asymptotically, the
ratio of the production rates �� c �c�=�� � tends to a
constant value of the order of 1=3. Within the uncertainties
coming from the choice of the renormalization and facto-
rization scales and gluon distribution functions this quan-
tity may range from 1=10 to 1.

Second, the J= mesons produced in association with
open-charm states are practically unpolarized, and so, they
contribute to the depolarization of the overall J= sample.
074021
This is worth taking into account when analyzing the J= 
polarization phenomenon at modern colliders.

Third, the azimuthal angular correlations between J= 
mesons and the coproduced charmed particles are sensitive
to the initial transverse momentum of the colliding gluons.
This way, one can not only see the difference between the
kt-factorization approach and collinear parton model, but
also discriminate the different unintegrated (kT-dependent)
gluon distributions. We conclude that the associated pro-
duction of J= � c� �c states is an interesting and infor-
mative process connected with rich underlying physics.
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APPENDIX

Let k1��1� and k2��2� be the 4-momenta (polarization
vectors) of the incoming gluons; mc and m the charmed
quark and J= meson masses; p the J= momentum; p1

and p4 the momenta of the accompanying unbound
charmed quark and antiquark; p2 and p3 the momenta of
the charmed antiquark and quark forming the J= meson;
let also k � k1 � k2. The nonrelativistic approximation
implies mc � m =2 and p2 � p3 � p =2.

The spin projection operator [6] JV � � �p �m �

guarantees the proper quantum numbers of the c �c bound
state, i.e. JPC � 1�� with � being the polarization vector
of J= meson. Then, the matrix elements of the partonic
subprocess reads
M 11 � �u�p1�6�1�6p1 � 6k1 �mc���JV���6k2 � 6p4 �mc�6�2u�p4�=�8�k1p1��k2p4��m2
c � k1p1 � k1p2 � p1p2��;

M12 � �u�p1����6k1 � 6p2 �mc�6�1JV�
��6k2 � 6p4 �mc�6�2u�p4�=�8�k1p2��k2p4��m

2
c � k1p1 � k1p2 � p1p2��;

M13 � �u�p1�6�1�6p1 � 6k1 �mc���JV 6�2�6p3 � 6k2 �mc���u�p4�=�8�k1p1��k2p3��m2
c � k1p1 � k1p2 � p1p2��;

M14 � �u�p1����6k1 � 6p2 �mc�6�1JV 6�2�6p3 � 6k2 �mc��
�u�p4�=�8�k1p2��k2p3��m

2
c � k1p1 � k1p2 � p1p2��;

M21 � �u�p1�6�1�6p1 � 6k1 �mc�6�2�6p1 � 6k �mc���JV�
�u�p4�=�8�k1p1��kp1��m

2
c � p3p4��;
M 22 � �u�p1�6�1�6p1 � 6k1 �mc����6k2 � 6p2 �mc�6�2JV�
�u�p4�=�8�k1p1��k2p2��m

2
c � p3p4��;

M23 � �u�p1����6k � 6p2 �mc�6�1�6k2 � 6p2 �mc�6�2JV��u�p4�=�8�k2p2��kp2��m2
c � p3p4��;

M31 � �u�p1���JV���6k � 6p4 �mc�6�1�6k2 � 6p4 �mc�6�2u�p4�=�8�k2p4��kp4��m2
c � p1p2��;

M32 � �u�p1���JV 6�1�6p3 � 6k1 �mc��
��6k2 � 6p4 �mc�6�2u�p4�=�8�k2p4��k1p3��m

2
c � p1p2��;

M33 � �u�p1���JV 6�1�6p3 � 6k1 �mc�6�2�6p3 � 6k �mc���u�p4�=�8�k1p3��kp3��m2
c � p1p2��;
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M41 � �u�p1�6�1�6p1 � 6k1 �mc���JV��u�p4�G�3��k2�;��p3 � p4��; �p3 � p4 � k2�����2 =�8�k1p1��m2
c � p3p4�


 �m2
c � k1p1 � k1p2 � p1p2��;

M42 � �u�p1����6p1 � 6k1 �mc�6�1JV��u�p4�G�3��k2�;��p3 � p4��; �p3 � p4 � k2�����2 =�8�k1p2��m2
c � p3p4�


 �m2
c � k1p1 � k1p2 � p1p2��;

M45 � �u�p1��
�JV�

��6k1 � 6p4 �mc�6�1u�p4�G
�3��k2�;��p1 � p2��; �p1 � p2 � k2����

�
2 =�8�k1p4��m

2
c � p1p2�


 �m2
c � k1p1 � k1p2 � p1p2��;

M46 � �u�p1���JV 6�1�6p3 � 6k1 �mc���u�p4�G�3��k2�;��p1 � p2��; �p1 � p2 � k2�����2 =�8�k1p3��m2
c � p1p2�


 �m2
c � k1p1 � k1p2 � p1p2��;

M 51 � �u�p1����6p1 � 6k �mc���JV��u�p4�G�3��k1�; k2�;��k1 � k2����
�
1�

�
2 =�8�k1k2��k1k2 � kp1��m2

c � p3p4��;

M52 � �u�p1����6k � 6p2 �mc���JV��u�p4�G�3��k1�; k2�;��k1 � k2����
�
1�

�
2 =�8�k1k2��k1k2 � kp2��m2

c � p3p4��;

M53 � �u�p1���JV���6k � 6p4 �mc���u�p4�G�3��k1�; k2�;��k1 � k2����
�
1�

�
2 =�8�k1k2��k1k2 � kp4��m2

c � p1p2��;

M54 � �u�p1���JV���6p3 � 6k �mc���u�p4�G�3��k1�; k2�;��k1 � k2����
�
1�

�
2 =�8�k1k2��k1k2 � kp3��m2

c � p1p2��;

M61 � �u�p1���JV��u�p4�G�3��k1�; k2�;��k1 � k2��G�3���k1 � k2�;��p1 � p2��;

� �p3 � p4����
�
1�

�
2 =�8�k1k2��m2

c � p1p2��m2
c � p3p4��;

M 62 � �u�p1���JV��u�p4�G�3��k1�;��p1 � p2��; �p1 � p2 � k1��G�3��k2�;��p1 � p2 � k1�;

� �p3 � p4����
�
1�

�
2 =�8�m

2
c � p1p2��m2

c � p3p4��m2
c � k1p1 � k1p2 � p1p2�; �

MA;B;C
64 � �u�p1���JV��u�p4�G

�4�A;B;C
���� a�1a

�
2 =�4�m

2
c � p1p2��m2

c � p3p4��;

and one has to add expressions corresponding to the interchange of the initial gluons �k1; a1� $ �k2; a2� in M11–46 and
M62.

In the above formulas, G�3� and G�4� are related to the standard QCD three- and four-gluon couplings with G�4� being
split into three terms possessing different color structure:

G�3��p; q�; k�� � ��q� p��g� � �k� q�g�� � �p� k��g��; G�4�A��� � �g�g�� � g�g���;

G�4�B��� � �g�g�� � g�g���; G�4�C��� � �g�g�� � g�g���:

Explicitly, the color structure of the above matrix elements reads

M col
11 � �T

a�	� �T
c����T

c����Tb��
; Mcol
12 � �T

c�	� �T
a����T

c����Tb��
; Mcol
13 � �T

a�	� �T
c����T

b����Tc��
;

Mcol
14 � �T

c�	� �T
a����T

b����Tc��
; Mcol
21 � �T

a�	� �T
b����Tc����T

c��
; Mcol
22 � �T

a�	� �T
c����Tb����T

c��
;

Mcol
23 � �T

c�	� �T
a����Tb����T

c��
; Mcol
31 � �T

c�	� �T
c����Ta��� �T

b��
; Mcol
32 � �T

c�	� �T
a����Tc��� �T

b��
;

Mcol
33 � �T

c�	� �T
a����Tb��� �T

c��
; Mcol
41 � �T

a�	� �T
c����T

d��
if
cbd;

Mcol
42 � �T

c�	� �T
a����T

d��
if
cbd; Mcol

45 � �T
c�	� �T

d����Ta��
if
bcd; Mcol

46 � �T
c�	� �T

a����Td��
if
bcd;

Mcol
51 � �T

c�	� �T
d����T

d��
if
abc; Mcol

52 � �T
d�	� �T

c����T
d��
if

abc; Mcol
53 � �T

d�	� �T
d����Tc��
if

abc;

Mcol
54 � �T

d�	� �T
c����Td��
if

abc; Mcol
64A � �T

c�	� �T
d��
f

abefcde; Mcol
64B � �T

c�	� �T
d��
f

acefbde;

Mcol
64C � �T

c�	� �T
d��
f

aedfbce; Mcol
61 �Mcol

64A; Mcol
62 � �M

col
64B:

Here, the upper and lower greek indices denote the fundamental triplet and antitriplet states, while the latin indices
belong to the joint eightfold representation of the SU�3�color group. The initial gluons carry the colors a and b, and the final-
state quark and antiquark carry the colors 	 and 
, respectively.
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and R. Rückl, Nucl. Phys. B174, 317 (1980).

[7] S. P. Baranov, Phys. Rev. D 66, 114003 (2002).
[8] S. P. Baranov and N. P. Zotov, J. Phys. G 29, 1395 (2003);

A. V. Lipatov and N. P. Zotov, Eur. Phys. J. C 27, 87
(2003).

[9] S. Eidelman et al. (Particle Data Group), Phys. Lett. B
592, 1 (2004).
074021
[10] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys.
JETP 45, 199 (1977); Ya. Balitsky and L. N. Lipatov, Sov.
J. Nucl. Phys. 28, 822 (1978).

[11] M. Ciafaloni, Nucl. Phys. B296, 49 (1988); S. Catani, F.
Fiorani, and G. Marchesini, Phys. Lett. B 234, 339 (1990);
Nucl. Phys. B336, 18 (1990); G. Marchesini, Nucl. Phys.
B445, 49 (1995).
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