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ga0�� and gf0�� coupling constants in three point QCD sum rules
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The coupling constant of a0 ! �� and f0 ! �� decays are calculated using 3-point QCD sum rules.
We estimate the coupling constant ga0�� and gf0�� which are an essential ingredient in the analysis of
physical processes involving isoscalar f0�980� and isovector a0�980� mesons.
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I. INTRODUCTION

One of the very important goals of studying nuclear
physics is to understand the behavior of hadrons and
hadronic interactions on the basis of the quantum chromo-
dynamics (QCD). One of the powerful tools for this aim is
the QCD sum rule invented by Shifman, Vainshtein, and
Zakharov [1] provides us with a way to relate the physical
quantities of the hadrons to the matrix elements of the
quark-gluon composite operators by means of the operator
product expansion (OPE) [1,2]. The field of application of
the sum rules has been extended remarkably since 1980’s.
The QCD sum rule method has been utilized to analyze
many hadronic properties, and it yields an effective frame-
work to investigate the hadronic observables such as decay
constants and form factors within the nonperturbative con-
tributions proprotional to the quark and gluon condensates
[3].

With increasing experimental information about the dif-
ferent members of the meson spectrum it becomes very
important to develop a consistent understanding of the
observed mesons from a theoretical point of view. For
the low-lying pseudoscalar, vector, and tensor mesons
this has been done quite successfully within the framework
of the simple quark model assuming the mesons to be
quark-antiquark �q �q� states grouped together into nonets.
The decay channels of a0�980� and f0�980� mesons can be
analyzed in the context of QCD sum rules.

The flavor SU(3) forms approximate global symmetry of
hadron spectrum according to which mesons are classified
as bound states of a quark and antiquark �q �q� and they are
placed in nonet representations of SU(3) group. However,
whether light scalar mesons form a scalar nonet is still an
open question. From the experimental point of view, the
isoscalar f0�980� and isovector a0�980� are well estab-
lished, but the nature and the quark substructure of these
scalar mesons, the question whether they are conventional
q �q states, K �K molecules, or multiquark exotic q2 �q2 states
has been a subject of controversy. Understanding the nature
and the quark substructure of the scalar mesons is still an
open problem in hadron physics.
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Radiative transitions between pseudoscalar (P) and vec-
tor (V) mesons have been an important subject in low-
energy hadron physics for more than three decades. These
transitions have been regarded as phenomenological quark
models, potential models, bag models, and effective
Lagrangian methods [4,5]. Among the characteristics of
the electromagnetic interaction processes gVP� coupling
constant plays one of the most important roles, since they
determine the strength of the hadron interactions. Low-
energy hadron interactions are governed by nonperturba-
tive QCD so that it is very difficult to get the numerical
values of the coupling constants from the first principles.
For that reason a semiphenomenological method of QCD
sum rules can be used, which nowadays is the standart tool
for studying of various characteristics of hadron interac-
tions. On the other hand, vector meson-pseudoscalar
meson-photon VP�-vertex also plays a role in photopro-
duction reactions of vector mesons on nucleons. It should
be notable that in these decays (V ! P�) the four-
momentum of the pseudoscalar meson P is timelike, p02 >
0, whereas in the pseudoscalar exchange amplitude con-
tributing to the photoproduction of vector mesons it is
spacelike p02 < 0. Therefore, it is of interest to study the
effective coupling constant gVP� from another point of
view as well.

In this work, we studied a0 ! �� and f0 ! �� decay in
the framework of three-point QCD sum rules and we
obtained the coupling constant ga0�� and gf0��.
II. CALCULATION

According to the general strategy of QCD sum rules
method, the coupling constants can be calculated by equat-
ing the representations of a suitable correlator calculated in
terms of hadronic and quark-gluon degrees of freedom. In
order to do this we consider the following correlation
function by using the appropriately chosen currents

����p;p0��
Z
d4xd4yeip

0�y

�e�ip�xh0jTfJ���0�Jf0
�x�J��y�gj0i (1)

We choose the interpolating current for the � and Smesons
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as j�� � 1
2 � �u�

a
�u

a � �d�a�d
a�, and JS for a0, Ja0

�
1
2 � �ubub � �dbdb� and for f0, Jf0

� 1��
2
p � �ubub 	 �dbdb� sin�	

s�s cos� [6] respectively. �-meson consist of u and
d-quarks. J�� � eu� �u��u� 	 ed� �d��d� is the electromag-
netic current with eu and ed being the quark charges.

The theoretical part of the sum rule in terms of the
quark-gluon degrees of freedom for the coupling constant
ga0�� and gf0�� are calculated by considering the pertur-
bative contribution and the power corrections from opera-
tors of different dimensions to the three-point correlation
function ���. For the perturbative contribution we study
the lowest order bare-loop diagram. Moreover, the power
corrections from the operators of different dimensions
h �qqi, h �q� � Gqi and h� �qq�2i are considered in this work.
Since it is estimated to be negligible for light quark sys-
tems, we did not consider the gluon condensate contribu-
tion proportional to hG2i. We perform the calculations of
the power corrections in the fixed-point gauge [7]. We also
work in the limit mq � 0 and in this limit the perturbative
bare-loop diagram does not make any contribution. In fact,
by considering this limit only operators of dimensions d �
3 and d � 5 make contributions which are proportional to
h �qqi and h �q� �Gqi, respectively. The relevant Feynman
diagrams for power corrections are given in Fig. 1.

On the other hand, in order to calculate the phenome-
nological part of the sum rule in terms of hadronic degrees
of freedom, a double dispersion relation satisfied by the
vertex function ��� is considered [1,2,8]:

����p; p0� �
1

�2

Z
ds1

Z
ds2

����s1; s2�

�p2 � s1��p
02 � s2�

(2)

where we ignore possible substruction terms since they
will not make any contributions after Borel transformation.
For our purpose we choose the vector and pseudoscalar
channels and saturating this dispersion relation by the
FIG. 1. Feynman diagrams for the S��-vertex: (a) bare-loop dia
corrections. The dotted lines denote gluons.
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lowest lying meson states in these channels the physical
part of the sum rule is obtained as

����p; p0� �
h0jJ�jSihS�p�jJ��j��p0�ih�jJsj0i

�p2 �m2
S��p

02 �m2
��

	 . . . ;

(3)

where the contributions from the higher states and the
continuum are given by dots. The overlap amplitudes for
vector and pseudscalar mesons are h0jJ��j�i � ��"

�
�,

where "�� is the polarization vector of the vector meson
and hSjJsj0i � �S, respectively, where S � a0 or f0. The
matrix element of the electromagnetic current is given by

hS�p�jJ��j��p0�i � �i
e
m�

gS��K�q
2��p � q"� � " � qp��

(4)

where q � p� p0 and K�q2� is a form factor with K�0� �
1. This matrix element defines the coupling constant gSV�
by means of the effective Lagrangian

L �
e
m�

gS��@����@�A	 � @	A��S (5)

describing the S��-vertex [9].
We perform the calculations of the power corrections in

the fixed-point gauge x�A� � 0. The general forms of the
contributions corresponding to Feynman diagrams are de-
rived with respect to their dimensions. For the first dia-
grams in Fig. 1(a), there are two contributions with
different dimensions for d 
 5 as

F 2�3d� � �Nch �  i
1

4
Tr
�

�1
1

p6 0 �mq
�2

1

p6 �mq
�3

�

(6)
gram, (b) d � 3 operator corrections, and (c) d � 5 operator
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FIG. 2. The coupling constant ga0�� as a function of the Borel
parameter M2

2 for different values of M2
1 .
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F2�5d� � �
Nc
2
h0j � a
�0�r�r�0 a	�x�j0ix�x�0

� Tr
�

�1
1

p6 0 �mq
�2

1

p6 �mq
�3

�

	

(7)

F2�5d� � �
Nc
2

m2
q

16
h �  i

@
@p�

@
@p�0

� Tr
�

�1
1

p6 0 �mq
�2

1

p6 �mq
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1

64
h � gGa

��0 ��
a=2����0 i

@
@p�

@
@p�0

� Tr
�

�1
1

p6 0 �mq
�2

1

p6 �mq
�3

�
(8)

For the second and third diagrams in Fig. 1(b) and 1(c),
there are contributions with dimensions for d 
 5 as

F3�5d� � �iNc
g

192

�
� Ga

������0�
�c

2
 
�
@
@k�

� Tr
�

�1
1

p6 0 �mq
��

1

p6 0 � k�mq

� �2
1

p6 �mq
�3���

���������k�0
(9)

F03�5d� � �iNc
g
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�
� Ga

������0�
�c

2
 
�
@
@k�

� Tr
�

�1
1

p6 0 �mq
�2

1

p6 � k�mq

� ��
1

p6 �mq
�3���

���������k�0
(10)

For a0�f0� ! �� decay the vertex functions are �1 �

� i
2��, �2 � �ieq��, and �3 � �

i
2 for a0, �3 � �

i��
2
p �

sin� for f0. Using these vertex functions in Eqs. (6)–(10)
we then get the nonvanishing contributions from power
corrections to the correlation function as

��� � CNch �  i
�
�

1

p02p2 	
m2

0

4

�
1

p04p2 	
1

p02p4

�
1

6

1

p04p2 �
1

2

1

p02p4

��
�p�p

0
� � p � p

0g��� (11)

where C � 1
4 for a0 and C � 1

2
��
2
p sin� for f0.

The lowest order perturbative quark loop diagrams do
not make any contributions.

The structure (p�p0� � p � p0g��) is chosen to compare
to theoretical and phenomenological parts and to obtain the
coupling constant gS��. We then find theoretical part of the

0 0
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invariant function T1 for S! �� decay as

T1 � CNch �  i
�
�

1

p02p2 	
5

24
m2

0

1

p04p2 	
1

8
m2

0

1

p02p4

�

(12)

After performing the double Borel transform with re-
spect to the variables Q2 � �p2 and Q02 � �p02, and by
considering the gauge-invariant structure (p�p0� � p �
p0g��), we obtain the sum rule for the coupling constants,

gf0�� � �eu � eq�
3m�

2
���
2
p
���f0

em
2
f0
=M2

1em
2
�=M2

2 h �uui

�

�
�3�

3

8

m2
0

M2
1

�
5

8

m2
0

M2
2

�
sin� (13)

and

ga0�� � �eu 	 eq�
3m�

4���a0

em
2
a0
=M2

1em
2
�=M2

2 h �uui

�

�
�3�

3

8

m2
0

M2
1

�
5

8

m2
0

M2
2

�
(14)

where M2
1 and M2

2 are Borel masses corresponding to a0

(f0) and � mesons, respectively.
III. NUMERICAL RESULTS AND DISCUSSION

For the numerical evaluation of sum rule we use the
values h �uui � �0:014 GeV3, mf0

� 0:98 GeV, ma0
�

0:98 GeV, �f0
� 0:18� 0:02 GeV2 [10], �a0

�

0:21� 0:05 GeV2 [11], m� � 0:770 GeV. We note that
neglecting the electron mass the e	e� decay width of �
meson is given as ���! e	e�� � 4�
2

3m3
�
�2
�. Then using the

value from the experimental leptonic decay width ���!
e	e�� � 6:85� 0:11 keV for � [10,12], we obtain the
value �� � �0:118� 0:001� GeV2 for the overlap ampli-
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FIG. 3. The coupling constant gf0�� as a function of the Borel
parameter M2

2 for different values of M2
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FIG. 4 (color online). Coupling ga0�� as function of the Borel
parameters M2

2 for different values of M2
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tude �meson. In order to examine the dependence of ga0��

and gf0�� on the Borel masses M2
1 and M2

2, we choose
M2

1 � 1:2, 1.3 and 1:4 GeV2 for ga0�� and M2
1 � 0:7, 0.8

and 0:9 GeV2 for gf0��. Since the Borel mass M2 is an
auxiliary parameter and the physical quantitites should not
depend on it, one must look for the region where ga0�� and
gf0�� are practically independent of M2. We first deter-
mined that this condition is satisfied in the interval
1:0 GeV2 
 M2

2 
 1:6 GeV2 for ga0�� and 0:8 GeV2 
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M2
2 
 1:2 GeV2 for gf0��. The variation of the coupling

constant ga0�� as a function of Borel parameters M2
2 for

different values of M2
1 are shown in Figs. 2 and 4 while for

gf0�� in Figs. 3 and 5. Examination of these figures show
that the sum rule is rather stable with these reasonable
variations of M2

1 and M2
2. We then choose the middle value

M2
2 � 1:3 GeV2 for the Borel parameter in its interval of

variation and obtain the coupling constant of ga0�� as
between ga0�� � 0:96� 0:44 and ga0�� � 0:85� 0:38
and also for gf0�� we find the coupling constant gf0�� for
the middle value M2

2 � 1:0 GeV2 at � � 300 as between
gf0�� � 1:75� 0:53 and gf0�� � 1:12� 0:34, where only
the error arising from the numerical analysis of the sum
rule is considered. When we use the mixing angle for � �
�680 [13] we have gf0�� as 3:24� 0:97 
 jgf0��j 


2:07� 0:62 at M2
2 � 1:0 GeV2. In the previous work

[14] coupling constants of ga0�� and gf0�� were found as
ga0�� � 0:85� 0:36 and gf0�� � 1:97� 0:57 in the
framework of light-cone QCD sum rules. The coupling
constant ga0�� was also calculated [10] as 2:0� 0:50 and
1:30� 0:30 in QCD sum rules.

ACKNOWLEDGMENTS

This work partly supported by the Research Fund of
Karadeniz Technical University, under grant contact
no 2002.111.001.2.
-4



ga �� AND gf �� COUPLING CONSTANTS IN THREE . . . PHYSICAL REVIEW D 73, 074020 (2006)
[1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979); B147, 448 (1979).

[2] L. J. Reinders, H. R. Rubinstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[3] P. Colangelo and A. Khodjamirian, in Handbook of the
QCD, edited by M. Shifman (World Scientific, Singapore
2001).
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