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Quarkonia correlators above deconfinement
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We study the quarkonia correlators above deconfinement using the potential model with screened
temperature-dependent potentials. We find that while the qualitative features of the spectral functions,
such as the survival of the 1S state, can be reproduced by potential models, the temperature dependence of
the correlators disagree with the recent lattice data.
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I. INTRODUCTION

Current and past experiments at BNL and at CERN are
and have been colliding heavy ions at relativistic veloc-
ities. One of the major goals of these experiments is to
produce a deconfined state of matter, known as quark-
gluon plasma. In this deconfined phase the dominant de-
grees of freedom are the different flavors of quarks and
gluons which are not bound inside hadrons anymore.
Unlike for light quarks, due to their smaller size, bound
states of heavy quarks could survive inside the plasma to
temperatures higher than that of deconfinement, Tc. In the
1980’s, however, it was predicted [1] that c �c bound states
would disappear already at temperatures close to Tc. The
idea of Matsui and Satz, based on nonrelativistic argu-
ments, was that color screening in the plasma would pre-
vent the strong binding of quarkonia. Therefore, the
dissolution of heavy quark bound states, and thus the
suppression of the J= peak in the dilepton spectra, could
signal deconfinement.

It was recognized in the 1970’s [2] that what is now
known as the Cornell potential (a Coulomb plus a linear
part) provides a very good description of the quarkonia
spectra at zero temperature. Much later it was understood
that in nonrelativistic systems, such as quarkonium, the
hierarchy of energy scales m� mv� mv2 (m and v
being the heavy quark mass and velocity), allows the
construction of a sequence of effective theories: nonrela-
tivistic QCD (NRQCD) and potential NRQCD (pNRQCD)
[3] (for reviews see [4–6]). The potential model appears as
the leading order approximation of pNRQCD, and thus can
be derived in QCD from first principles.

The essence of the potential model calculations in the
context of deconfinement is to use a finite temperature
extension of the zero temperature Cornell potential to
understand the modifications of the quarkonia properties
at finite temperature [7,8]. It is not a priori clear though,
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whether the medium modifications of the quarkonia prop-
erties can be understood in terms of a temperature-
dependent potential. Therefore, a new way of looking at
this problem has been developed. This new way is based on
the evaluation on the lattice of the correlators and spectral
functions of the heavy quark states [9–11]. But why are
correlators of heavy quarks of interest? As we said above,
hadronic bound states are expected to dissolve at high
temperatures. With increasing temperature such reso-
nances become broader and thus very unstable and gradu-
ally it becomes meaningless to talk about them as being
resonances. Accordingly, at and/or above Tc they stop
being the correct degrees of freedom. Correlation functions
of hadronic currents, on the other hand, are meaningful
above and below the transition. These can thus be used in a
rather unambiguous manner to extract and follow the
modification of the properties of quarkonia in a hot
medium.

The numerical analysis of the quarkonia correlators and
spectral functions carried out on the lattice for quenched
QCD provided unexpected, yet interesting results [9–11].
The results suggest the following: The ground state char-
monia, 1S J= and �c, survive well above Tc, at least up to
1:6Tc. Not only do these states not melt at or close to Tc as
was expected, but lattice found little change in their prop-
erties when crossing the transition temperature. In particu-
lar, the masses of the 1S states show almost no thermal shift
[9–11]. Also, although the temperature dependence of the
ground state quarkonium correlators was found to be small,
a small difference between the behavior of the J= and the
�c correlators has been identified. This difference was also
not a priori expected. Furthermore, the lattice results in-
dicate [11] that properties of the 1P states, �c0 and �c1, are
significantly modified above the transition temperature,
and these states have dissolved already at 1:1Tc. The
recently available first results for the bottomonia states
[12] suggest, that the �b is not modified until about 2Tc,
but the �b0 shows dramatic changes already at 1:15Tc.

These features from the lattice calculations are in sharp
contrast with earlier, potential model studies of quark-
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onium properties at finite temperature, which predicted the
dissolution of charmonia states for T � 1:1Tc [7,8]. More
recent studies try to resolve this apparent contradiction by
choosing a potential which can bind the heavy quark
antiquark pair at higher temperatures. In [13] the picture
of strongly coupled Coulomb bound states is discussed. In
[14–16] the internal energy of a static quark antiquark pair
calculated on the lattice at finite temperature is used as the
potential. It is found that the J= could be bound at
temperatures as high as 2Tc, in agreement with the lattice
studies of the spectral functions. The quarkonium proper-
ties, however, are significantly modified in all of these
calculations.

In connection with the potential models two questions
should be addressed: First, can the medium modifications
of quarkonia properties, and eventually their dissolution be
understood in terms of a temperature-dependent potential?
Second, what kind of screened potential should be used in
the Schrödinger equation, that describes well the bound
states at finite temperature? At present neither of these
questions have been answered, since it is not clear whether
the sequence of effective theories leading to the potential
model can be derived also at nonzero temperature, where
the additional scales of order T, gT, and g2T are present.
Therefore, in this paper we follow a more phenomenologi-
cal approach, extending our results presented in [17]. We
address the first question by constructing the heavy quar-
konia correlators within the potential model and comparing
them to the available lattice data. Our way of addressing
the second question is to consider two different screened
potentials and show that the qualitative conclusions do not
depend on the specific choice of the potential. Our study of
quarkonia correlators in Euclidean time is also motivated
by the fact that although lattice calculations give very
precise results about the temperature dependence of the
quarkonia correlators (see e.g. [11]), it is quite difficult to
reconstruct the spectral functions from the correlators at
finite temperature.

The paper is organized as follows: Section II presents the
model we use to construct the spectral function and analyze
the correlators. In Section III our results for the tempera-
ture dependence of the quarkonia properties are presented.
Section IV is devoted to the study of charmonium and
bottomonium correlators in the scalar and pseudoscalar
channels. In Section V we discuss the vector correlator
which also carries information about diffusion properties.
We summarize the results and present our conclusions in
Section VI.
TABLE I. Quarkonia channels considered.

jH 2S	 1LJ JPC q � c q � b

Scalar �qq 3P0 0		 �c0 �b0

Pseudoscalar �q�5q 1S0 0�	 �c �b
Vector �q��q 3S1 1�� J= �
Axial vector �q���5q 3P1 1		 �c1 �b1
II. EUCLIDEAN CORRELATORS AND THE
POTENTIAL MODEL

Here we investigate the quarkonium correlators in
Euclidean time at finite temperature, as these correlators
are directly calculable in lattice QCD. To make contact
with the available lattice data obtained in the quenched
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approximation, i.e. neglecting the effects of light dynami-
cal quarks, we consider QCD with only one heavy quark
flavor. Furthermore, we only consider the case of zero
spatial momentum.

The correlation function for a particular mesonic chan-
nel H is defined as

GH��; T� � hjH���j
y
H�0�i: (1)

Here jH � �q�Hq, and �H � 1, ��, �5, ���5 corresponds,
respectively, to the scalar, vector, pseudoscalar, and axial-
vector channels. At zero temperature these channels cor-
respond to the different quarkonium states shown in
Table I. Using the Euclidean Hamiltonian (transfer matrix)
the spectral decomposition of the correlators defined in
Eq. (1) at zero temperature can be written as [18]

GH��; T � 0� �
X
n

jh0jjHjnij2e�En�; (2)

where the En are the eigenstates of the Hamiltonian. For
the few lowest lying states En corresponds to the quarkonia
masses, while the matrix elements jh0jjHjnij2 � F2

i give
the decay constants. Furthermore, the Euclidean correlator
is an analytic continuation of the real time correlator
D>�t�, GH��; T� � D>

H��i�; T�, and the spectral function
is

��!; T� �
D>
H�!; T� �D

<
H�!; T�

2�
�

1

�
ImDR

H�!; T�:

(3)

Here DR
H�!; T�, D

>�!; T�, and D<�!; T� are the Fourier
transforms of the real time correlators

DR�t; T� � h�j�t�; j�0��i; (4)

D>�t; T� � hj�t�j�0�i; D<�t; T� � hj�0�j�t�i; (5)

and h. . .i denotes the expectation value at finite temperature
T. Using the above, the following spectral representation
for GH��; T� can be derived (see Appendix A)

G��; T� �
Z
d!��!; T�K��;!; T�; (6)

where K is the integration kernel

K��;!; T� �
cosh�!��� 1

2T��

sinh�!2T�
: (7)
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TABLE II. Parameters at T � 0.


 � mc mb s0c s0b

0.471 0:192 GeV2 1.32 GeV 4.746 GeV 4.5 GeV 11 GeV
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Recent lattice QCD calculations utilize the form (6) for
the correlator to extract spectral functions. Results ob-
tained with the Maximum Entropy Method are promising,
but still somewhat controversial, and not fully reliable. We
choose to directly analyze the correlators that are reliably
calculated on the lattice. So as an input to (6) we need to
specify the spectral function at finite temperature. We do
this by following the form proposed in [19] for the zero
temperature spectral function

��!��
X
i

2MiF2
i ��!

2�M2
i �	

3

8�2!
2	�!�s0�f�!;s0�:

(8)

The first term contains the pole contributions from bound
states (resonances), while the second term is the perturba-
tive continuum above some threshold, denoted here by s0.
While we know the asymptotic behavior of the spectral
function from perturbation theory, no reliable information
is available for the explicit form of the threshold function,
f�!; s0�. Therefore, in this work we consider two simple
choices for it: First, we take the most simple form of
f�!; s0� � aH, valid for free massless quarks, resulting
in a sharp threshold. Then, we consider the form motivated
by leading order perturbative calculations with massive
quarks,

f�!� �
�
aH 	 bH

s2
0

!2

� ���������������
1�

s2
0

!2

s
; (9)

giving a smooth threshold. In leading order perturbation
theory s0 � 2mb;c. The coefficients (aH, bH) were calcu-
lated at leading order in [20], and are (� 1, 1), (1,0), (2,1),
and (� 2, 3), for the scalar, pseudoscalar, vector, and
axial-vector channels, respectively [21]. Comparing the
results obtained with these two forms of the threshold
function gives us an estimate on the uncertainties resulting
from the simplified form of the spectral function in Eq. (8).

In real QCD with three light quarks it is natural to
identify the continuum threshold s0 with the open charm
or beauty threshold. For the case of one heavy quark only,
which is considered here, the value of s0 is somewhat
arbitrary. Above some energy though, the spacing between
the different states is so small that they eventually form a
continuum. Parton-hadron duality then requires, that the
area under the spectral function above this energy range is
the same as the area under the free perturbative spectral
function, justifying the form given above. This also moti-
vates our choice of threshold as the energy above which no
individual resonances are observed experimentally. The
parameters of the zero temperature spectral function are
given in Table II.

The remaining parameters of the spectral function (8)
can be calculated using a potential model. The bound state
masses are given by Mi � 2m	 Ei, where Ei are the
binding energies, and m is the constituent mass of either
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the charm or the bottom quark. In order to calculate the
decay constants Fi, we first write the relativistic quark
fields in terms of their nonrelativistic components. This
can be done using the Foldy-Wouthysen-Tani transforma-
tion

q � exp
�
� 
D

2m

��
 
�

�
; (10)

with D being the spatial covariant derivative. At leading
order in the coupling and inverse mass, the decay constant
can be related to the wave function at the origin for the S
states, i.e. the pseudoscalar and vector channel [22],

F2
PS �

Nc
2�
jRn�0�j2 and F2

V �
3Nc
2�
jRn�0�j2; (11)

and to the derivative of the wave function in the origin for
P states, i.e. the scalar and axial-vector channels [22],

F2
S � �

9Nc
2�m2 jR

0
n�0�j

2 and F2
A � �

9Nc
�m2 jR

0
n�0�j

2;

(12)

where n � 1; 2; . . . . For the number of colors we consider
Nc � 3. The negative signs in Eq. (12) are the consequen-
ces of our definitions of the Euclidean Dirac matrices. For
the derivation of these relations see Appendix B. To obtain
the binding energies and the wave functions we solve the
Schrödinger equation�
�

1

m
d2

dr2	
l�l	1�

mr2 	V�r��E
�
u�r��0; R�r��

u�r�
r
;

(13)

with the Cornell potential

V�r� � �


r
	 �r: (14)

Here 
 is the coupling and � is the string tension. Their
values, as well as the quark masses, were obtained in [23]
by fitting the zero temperature quarkonium spectrum. The
parameters of the zero temperature analysis are summa-
rized in Table II. Note that the angular momentum l in (13)
distinguishes between the different quarkonium states
shown in Table I.

To model the binding and propagation of a heavy quark
and antiquark in the deconfined phase, we assume that they
interact via a temperature-dependent screened potential,
and propagate freely above some threshold. Then, our
finite temperature model spectral function has the form
given in (8) with a now temperature-dependent decay
constant, quarkonium mass, and threshold:
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��!; T� �
X
i

2Mi�T�Fi�T�
2��!2 �Mi�T�

2�

	m0!
2	�!� s0�T��f�!; s0�T��

	 �s�T�q�T�!��!�: (15)

The last term in the spectral function gives rise to a
constant contribution to the correlator at finite temperature
[24]. It is present only in the vector channel, and is due to
charge fluctuations and diffusion. The function q�T� � 0
for the scalar and the pseudoscalar states, and q�T� �
�3T=m� 1�, for the vector channel. Since we consider
the case of zero spatial momentum, there is no distinction
between the transverse and the longitudinal components in
the vector channel. Therefore, we sum over all four Lorentz
components, �V �

P
�����. At nonzero spatial momen-

tum there would also be an additional contribution to the
spectral function at small frequencies, !< 2m. This was
studied in detail both in the continuum and on the lattice in
[25]. The charge susceptibility �s in the nonrelativistic
approximation has the following form

�s�T� � 4Nc
1

�2��3=2
m3=2T1=2e�m=T: (16)

The derivation of this expression, together with the full
evaluation of the vector correlator at one-loop level is
provided in the Appendix C. The relevance of this contri-
bution in the spectral function for the possibility of obtain-
ing transport coefficients from the lattice has been recently
discussed in [26].

Just like at zero temperature, we calculate the binding
energy and the wave function of the quarkonium states at
finite temperature using the Schrödinger equation (13). For
this we need to specify a temperature-dependent screened
quark-antiquark potential. While the zero temperature po-
tential can be calculated on the lattice, at nonzero tempera-
ture it is not clear how to define this quantity (for a
discussion of this see [27]). Some ideas on how to general-
ize the notion of static potential to temperatures above
deconfinement were presented in [28]. In the current analy-
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FIG. 1 (color online). Cornell potential at T � 0 and screened Co
internal energy from [29] together with the fit to the data (right pan
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sis we use two different potentials: The screened Cornell
potential above Tc, first considered in [7]

V�r; T� � �


r
e���T�r 	

�
��T�

�1� e���T�r�: (17)

The coupling and the string tension are specified in
Table II. We choose the following Ansatz for the tempera-
ture dependence of the screening mass � � �0:24	 0:31 

�T=Tc � 1�� GeV with Tc � 0:270 GeV. This choice is
motivated by the fact that we want to reproduce the basic
observation from the lattice, namely, that the 1S state exists
up to 1:6Tc, while the 1P state melts at 1:1Tc. The potential
(17) is shown in the left panel of Fig. 1 for different
temperatures above deconfinement.

In [13–15] the change in the internal energy induced by
a static quark-antiquark pair, first calculated in [29], is used
as the potential. This is a debatable choice of potential,
since near the transition temperature the internal energy
shows a very large increase [27,30,31]. However, for tem-
peratures T > 1:07Tc we will also use the internal energy
calculated on the lattice [29] as the potential. We parame-
trize this as

V�r;T���


r
e���T�r

2
	��T�re���T�r

2
	C�T��1�e���T�r

2
�

(18)

This parametrization is shown against the actual lattice
data in the right panel of Fig. 1. The temperature depen-
dence of the parameters of (18) is shown in Tables Vand VI
in Appendix D.

In the presence of screening the potential has a finite
value at infinite separation V1�T� � limr!1V�r; T� (see
Fig. 1). The V1�T�=2 is the extra thermal energy of an
isolated quark. The minimum energy above which the
quark-antiquark pair can freely propagate is 2m	 V1. In
what follows, we assume that this minimum energy defines
the continuum threshold, i.e. s0�T� � 2m	 V1.
Independently of the detailed form of the potential,
V1�T� is decreasing, and thus s0 will also decrease with
temperature. This effect manifests in the temperature de-
-1
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pendence of the correlators, as we will discuss in the
following section. Since at leading order the threshold of
the continuum is 2m, we may think of s0�T�=2 as the
temperature-dependent pole mass. This pole mass is shown
in Fig. 2 as obtained from the screened Cornell potential
(17) and from the lattice fitted potential (18). The decrease
of V1�T� near Tc can thus be considered as a decrease of
the pole mass. Such a decrease of the pole mass was
observed in lattice calculations [32], when calculating
quark and gluon propagators in the Coulomb gauge. As
the temperature increases the position of the peak will be
close to the threshold, causing the phenomenon of thresh-
old enhancement. This has recently been discussed for
light quarks in [33]. We will not consider this in the present
paper. While we assume that above the threshold quarks
and antiquarks propagate with the temperature-dependent
effective mass defined above, quarks inside a singlet bound
state will not feel the effect of the medium, and thus will
have the vacuum mass. Therefore in the Schrödinger equa-
tion we use the zero temperature masses of the c and b
quarks.

Above deconfinement quarkonium can also dissociate
via its interaction with gluons [34]. This effect leads to a
finite thermal width, which we will neglect in the current
analysis. Reasons for this are multiple: First, because this
requires the introduction of another parameter into the
model, yet our goal was to obtain information about the
behavior of the correlators in the most general terms.
Second, we believe the effect of a finite width on the
behavior of the correlators is subdominant.

Finally, in order to make a direct comparison with the
lattice results we normalize the correlation function by the
so-called reconstructed correlators [11,12]. This is done to
eliminate the trivial temperature dependence from the
kernel (7) in the correlator (6). The reconstructed correla-
tors are calculated using the spectral functions at a tem-
perature below the critical one, here at T � 0:

Grecon��; T� �
Z
d!��!; T � 0�K��;!; T�: (19)

The ratio G=Grecon can therefore indicate modifications to
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]
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FIG. 2 (color online). The temperature dependence of the charm (
m	 V�1�=2 as determined from the screened Cornell potential (17
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the spectral function above Tc. Any difference of this ratio
from one is an indication of the medium effects.
III. QUARKONIA PROPERTIES ABOVE
DECONFINEMENT

We first present the properties of the charmonia and
bottomonia states in the deconfined medium. These results
are obtained by solving the Schrödinger Eq. (13) with the
screened Cornell potential (17).

The temperature dependencies of the masses and the
amplitudes of the different quarkonia states, normalized
to their corresponding zero temperature values, are shown
in Fig. 3. The left panel of Fig. 3 shows that the bound state
masses do not change substantially with temperature. An
exception is the mass of the scalar charmonium �c0, which
shows a significant decrease just above the transition tem-
perature. The right panel of Fig. 3 shows the amplitudes, as
obtained from the wave function, or its derivative at the
origin. Contrary to the masses, these show a strong drop
with increasing temperature for all the states considered.
Since we neglect effects that could arise from the hyperfine
splitting, the properties of the 1S scalar �c and pseudosca-
lar J= states are identical. While the small shift in the
quarkonia masses above the deconfinement temperature is
consistent with lattice data, the decrease in the amplitudes
is neither confirmed, nor ruled out by existing lattice data.

In Fig. 4 the temperature dependence of the radii is
displayed. The radii of the scalar and pseudoscalar botto-
monia states begin to increase at much higher temperatures
than their corresponding charmonia states. This is ex-
pected, because bottomonia is much smaller in size, and
therefore survives to much higher temperatures than char-
monia. As the temperature increases and the screening
radius decreases the effective size of a bound state becomes
larger and larger, as seen in Fig. 4. When the size of the
bound state is several times larger than the screening
radius, thermal fluctuations can dissociate it. This means
that the spectral functions no longer correspond to well-
defined bound states, but rather to some very broad struc-
tures. Here we consider a state to be melted, when its radius
becomes greater than 1 fm. For this reason we do not show
1.0 1.2 1.4 1.6 1.8 2.0
4.8

5.0

5.2

5.4

 screened potential
 lattice internal energy

m
po

le
[G

eV
]

T/Tc

left panel) and bottom (right panel) quark pole mass defined as
) and from the lattice internal energy (18).

-5



1 2 3 4 5
0.90

0.95

1.00

1.05

1.10

M
(T

) 
/ M

(T
=

0)

T/Tc

ηc , J/ψ
χc0
ηb
χ

b0

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

F
i(T

) 
/ F

i(T
=

0)

T/Tc

ηc , J/ψ
χc0  
ηb   
χb0  

FIG. 3 (color online). Temperature dependence of quarkonia masses (left panel) and amplitudes (right panel) normalized to their
corresponding zero temperature values.
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the radius of the �c0, since it is significantly increased
already at Tc, suggesting the disappearance of this state
at this temperature. Note, that the �b0 is similar in size to
the �c and the J= , and shows significant increase of its
radius at about the same temperature.

As mentioned in the previous sections, several recent
studies used the internal energy of a static quark-antiquark
pair determined on the lattice as the potential in the
Schrödinger equation to determine the properties of the
quarkonia states at finite temperature. In the present study
we also consider this possibility. The right panel in Fig. 1
shows that close to Tc the internal energy is significantly
larger than its zero temperature value. Therefore, when
used in the Schrödinger equation, this potential yields a
large increase of the quarkonia masses and amplitudes near
Tc. The shift in the quarkonia masses is of the order of
several hundred MeV, and thus disfavored by the lattice
calculations of the quarkonia spectral functions.

The numerical values for the quarkonia properties, to-
gether with the temperature dependence of the parameters
of the potential are given in the Appendix D. Tables III and
1 2 3 4 5
0.0

0.5

1.0

1.5

<
r2 >1/

2  [f
m

]

T/Tc

η
c
 , J/ψ

η
b

χ
b0

FIG. 4 (color online). Temperature dependence of quarkonia
radii.
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IV refer to the screened Cornell potential, and Tables Vand
VI to the potential identified with the internal energy of a
static quark-antiquark pair calculated on the lattice.

IV. NUMERICAL RESULTS FOR THE SCALAR
AND PSEUDOSCALAR CORRELATORS

In this section we discuss the results obtained for the
temperature dependence of the correlators in the scalar and
pseudoscalar quarkonia channels. We compare these to
existing lattice results.

A. Results with the screened Cornell potential

We present the temperature dependence of the scalar
charmonia correlator, normalized to its reconstructed cor-
relator in Fig. 5. The left panel displays the results obtained
on the lattice [11]. These show a very large increase of the
correlator at 1:1Tc, suggesting that the properties of the �c0

are already modified near the transition temperature. The
potential model calculation using (17) as the potential, and
a sharp threshold, i.e. f�!; s0� � aH in (15), with aH �
�1 for the scalar, and 1 for the pseudoscalar, are presented
in the right panel. The calculated �c0 correlator shows an
increase too, in qualitative agreement with the lattice data.
Despite the fact that the contribution from the �c0 state
becomes negligible, the scalar correlator above deconfine-
ment is enhanced compared to the zero temperature corre-
lator. This enhancement is due to the thermal shift of the
continuum threshold s0�T�.

The pseudoscalar charmonia correlators are presented in
Fig. 6. The lattice �c correlator (left panel) shows no
change until about 3Tc, where a decrease is detected. The
potential model with a sharp threshold (right panel), how-
ever, yields a moderate increase in the correlator at about
0.1 fm. This feature is again attributed to the decrease of
the continuum threshold with temperature, and is not de-
tected on the lattice. After reaching a maximum G=Grecon

drops, due to the decrease of the amplitude FPS�T� above
deconfinement (c.f. Fig. 3).

We now discuss the results obtained with the smooth
continuum threshold (9). The temperature dependence
-6
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of the �c0 correlator obtained with the smooth thres-
hold shows a somewhat different behavior, as seen in the
left panel of Fig. 7. After enhancement at intermediate �
the correlator falls below the zero temperature one. We
thus see that the temperature dependence of the scalar
correlator is strongly affected by the continuum part of
the spectral function. In this case too, the reduction of
the continuum threshold clearly leads to the increase of
the correlator at intermediate �. When comparing the
behavior of the �c correlator calculated with the sharp
threshold (right panel in Fig. 6) and with the smooth
threshold (9) (right panel of Fig. 7), we see that in the
pseudoscalar channel the effect of the decreasing contin-
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uum threshold is clearly visible: it produces the enhance-
ment of the correlator for 0:1 fm< �< 0:2 fm for both
choices of the threshold function. At nonzero spatial mo-
mentum there is a continuum contribution for !< 2mc.
This can induce additional temperature dependence in the
correlator. It is an interesting question whether such con-
tribution can explain the finite momentum lattice data
shown in [35]. We will address this question in a further
publication.

Qualitatively similar behavior was obtained for the bot-
tomonia states. The scalar bottomonium �b0 correlator
shown in Fig. 8 has an increase already at 1:13Tc, as
determined both on the lattice (left panel from [12]) and
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in our model calculations (right panel). Here the sharp
continuum has been used. Thus, the behavior of the scalar
bottomonium channel is very similar to that of the scalar
charmonium, even though, contrary to the �c0 state, the
�b0 survives until much higher temperatures. We explain
this with the fact, that the shifted continuum gives the
dominant contribution to the scalar correlator.

In Fig. 9 the behavior of the pseudoscalar bottomonium
correlator is illustrated. Lattice results for this channel (left
panel) show no deviation from one in the correlator ratio
G=Grecon up to high temperatures. This is considered to be
an indication of the temperature independence of the �b
properties up to these temperatures. The potential model
studies for the pseudoscalar correlator (right panel), yield
again, a qualitatively different behavior than seen from the
lattice. There is an increase at small �, and a drop at large �
in the correlator compared to the zero temperature corre-
lator. The increase is due to the threshold reduction, and the
decrease is due to the reduction of the amplitude.

In summary, in this section we have seen that G=Grecon

for the pseudoscalar channel is increasing above one as the
result of the shift in the continuum threshold, and its
decrease is due to the decrease in the amplitude FPS.
This result is qualitatively independent of the detailed
form of the continuum. The temperature dependence of
the scalar correlator is, on the other hand, sensitive to the
continuum part of the spectral function.
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B. Results with higher excited states

In the analysis presented so far we have considered only
the lowest meson states in a given channel. We have done
so, because we wanted to make contact with the existing
lattice data, in which the excited states in any given chan-
nel were not yet identified.

In order to study possible effects due to the higher states
in a given channel, together with the 1S ground state we
now include also the 2S state, and the 2S and 3S states for
the pseudoscalar charmonium, and bottomonium, respec-
tively. These states enter directly in the first term of the
spectral function (15). Thus one of the main effects of the
inclusion of the excited states is the change of the normal-
ization, Grecon. Since the 2S charmonium state is melted
already at Tc (see Table III in Appendix D), we expect a
larger drop in G=Grecon compared to the previous case,
where only the 1S state is included. Similarly, the 3S
bottomonium state is melted at Tc, but the 2S state survives
up until about 1:75Tc (see Table IV in Appendix D). The
results are presented in Fig. 10. The left panel illustrates the
temperature dependence of the �c correlator obtained
when both the 1S and the 2S states are accounted for. As
expected, we identify a 10%–20% reduction in the corre-
lator compared to the previous case with only the 1S state
(right panel of Fig. 6). This is attributed to the melting of
the 2S state. The lattice data on the pseudoscalar correlator
shows no evidence for such a drop. Instead, G=Grecon ’ 1
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within errors, up to 2:25Tc. The right panel in Fig. 10
shows the �b correlator, where the melting of the 3S state
near the transition, and the 2S state at higher temperatures,
clearly induces a 10%–20% drop of the correlator com-
pared to the case with only the 1S state included (right
panel of Fig. 9). These results were obtained with the sharp
continuum threshold.

C. Results using the lattice internal energy

We end this section with the discussion of the quarkonia
correlators obtained using as the potential the internal
energy of a static quark-antiquark pair determined from
the lattice. The temperature dependence of the correlators
is illustrated in Fig. 11. In the numerical analysis we used
0.0                0.1                0.2                 0.3

1.0

1.2

1.4

1.6

χ
c0

G
/G

re
co

n

τ[fm]

 1.07Tc
 1.13Tc

0.0 0.1 0.2 0.3

1.0

1.5

2.0

2.5 χ
b0

G
/G

re
co

n

τ[fm]

1.07Tc
1.13Tc
1.25Tc

FIG. 11 (color online). Ratio of charmonia (top panels) and bottom
for scalar (left panels) and pseudoscalar (right panels) channels obta
continuum threshold.

074007
the sharp continuum. As one can see from the left panels of
Fig. 11 the behavior of the scalar correlator is similar to the
one obtained in Section IVA: Even though the �c0 and the
�b0 states are dissociated, above Tc the correlator is always
enhanced relative to the zero temperature one. As shown
on the right panels of Fig. 11 the enhancement in the
pseudoscalar channel is larger than for the screened
Cornell potential discussed in Section IVA. As mentioned
in Section III, the masses and amplitudes of the 1S quar-
konia states calculated using the internal energy as the
potential show a significant increase at T > Tc. The in-
crease in the amplitudes translate into a significant en-
hancement of the correlators with respect to their values
determined with the zero temperature amplitudes. The
enhancement of the correlators due to the reduction of
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the threshold is also visible here, at least for T > 1:07Tc.
On the other hand, bound states also contribute to the
enhancement of the correlators. This is especially true for
the pseudoscalar channel where the resonances have am-
plitudes significantly larger than at T � 0. This effect is a
consequence of the steep rise of the internal energy above
Tc (see right panel of Fig. 1) leading to the large value of
jR�0�j2. Such a large increase in the correlator is ruled out
by the current lattice data (left panel of Fig. 6), making the
internal energy a disfavorable choice for the potential.
V. NUMERICAL RESULTS FOR THE VECTOR
CORRELATOR

The vector correlator corresponds to an especially inter-
esting channel. This is because of the fact, that the vector
current is conserved. As mentioned in Section II (for the
detailed analysis see Appendix C), this leads to an extra
contribution in the spectral function compared to the scalar
and pseudoscalar channels. This contribution (the third
term in Eq. (15)) arises from the diffusion and charge
fluctuations specific only for the vector state. Also, lattice
data shows a difference in the temperature dependence of
the pseudoscalar and the vector correlators. Namely, in the
pseudoscalar channel the ratio G=Grecon is equal to one up
to temperatures �2:25Tc, and shows significant deviation
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at about 3Tc, as illustrated on the left panel of Fig. 6. In the
vector channel, shown in the left panel of Fig. 12, this ratio
significantly decreases from one already at 1:5Tc at dis-
tances >0:15 fm. This figure further illustrates, that with
increasing temperature the deviation happens already at
smaller distances. Since to leading order in the nonrelativ-
istic expansion the pseudoscalar and vector channels cor-
respond to the same 1S state, one would not expect the
correlator of the �c and the J= to behave differently. Here
we conjecture, that the effects of diffusion and charge
fluctuations make the J= correlator smaller than the
correlator of the �c.

The right panel of Fig. 12 displays the J= correlator
from our potential model calculations. We see a rise of the
correlator at small distances, where the continuum contri-
bution to the spectral function is dominant, and thus again,
the reduction of the threshold is manifest. As in the case of
the pseudoscalar, the model calculations do not reproduce
the behavior of the vector correlator obtained from the
lattice. When comparing the �c and the J= correlator
from the model calculations, i.e. the right panels of Figs. 6
and 12, at large distances we identify a reduction in the
vector channel compared to the pseudoscalar channel, that
results from diffusion and charge fluctuations. To better
visualize the difference between the temperature depen-
dence of the pseudoscalar and vector correlators, in Fig. 13
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we show the difference between the corresponding
G=Grecon ratios for the charmonium (left panel) and the
bottomonium (right panel) cases. From this figure one can
clearly identify the 20% drop in the J= correlator relative
to the �c correlator. Similar to the charmonium case, for
the bottomonium we also see a reduction at long distances
of the � correlator compared to the �b one. As expected,
this reduction is more pronounced with increasing tem-
perature, and for a given temperature is smaller for botto-
monium than for charmonium.
VI. CONCLUSIONS

In this work, we presented the first detailed study of the
quarkonia properties and correlators using model spectral
functions based on the potential picture with screening, and
we contrasted these with lattice data. While the potential
model with certain screened potentials can reproduce the
qualitative features of the lattice data on the quarkonia
spectral functions, namely, the survival of the 1S state up
to 1:6Tc and dissociation of the 1P charmonia state at T ’
1:1Tc, the temperature dependence of the corresponding
meson correlators is different from that seen on the lattice.
In general, the temperature dependencies of the correlators
show much richer structure than those calculated on the
lattice.

We identified several causes for the difference in the
temperature dependence of the meson correlators: First,
the properties of the different charmonia and bottomonia
bound states, such as the masses and the wave functions,
are significantly modified in the presence of screening, and
will change the bound state contribution to the spectral
function. Second, the behavior of the correlators is affected
by the reduction of the continuum threshold. In a potential
model with a screened potential the continuum threshold is
related to the asymptotic value of the potential, which
decreases with increasing temperature. Finally, the higher
excited states (like the 2S, 3S, etc.) are expected to melt at
smaller temperatures above Tc, inducing a large tempera-
ture dependence for the correlators.

What are the possible implications of these findings for
the picture of quarkonium binding at finite temperature? It
is possible that the effects of the medium on quarkonia
binding cannot be understood in a simple potential model.
The effects of screening, which according to lattice calcu-
lations are present in the plasma [27], could have time
scales which are not small compared to the typical time
scale of the heavy quark motion. In this case screening
cannot affect significantly the properties of the quarkonia.

On the other hand, the implications of the finite tem-
perature lattice data on quarkonia correlators also need to
be reexamined. Based on general physical arguments,
though, one would expect the melting of the 2S charmonia
and the 3S bottomonia states close to Tc, together with the
shift of the continuum, to induce a stronger temperature
dependence of the correlators than actually observed in the
074007
lattice calculations. This statement is independent of
whether or not the medium effects on quarkonia properties
can be properly described in terms of potential models. In
the future, therefore, this problem must be investigated in
more detail.

When calculated on the lattice the spectral function is
distorted due to the finite lattice spacing and finite volume.
Because of the finite lattice spacing a the spectral function
is zero above some energy, which is roughly given by ’
4a�1 [36]. For the lattice calculations reported in [11] the
lattice spacing was a � 4:86 and 9:72 GeV�1. Therefore,
the maximal energy was well above the energy region
relevant for charmonium physics. Furthermore, the
temperature-dependence of the correlator was the same
for the two values of the lattice spacing. Thus there is no
indication that cutoff effects would influence the behavior
of the correlators. This is different for bottomonium, and
for these more detailed studies of the cutoff effects are
required. For finite volume the spectral function is not a
continuous function of the energy, but a set of delta-
functions. The relative spacing between these delta func-
tions �!=! is proportional to �=Ns, where Ns is the
spatial extent of the lattice. The finite volume effects for
the ground state mass were found to be very small [37]. For
lattices used in [11] �!=! is small enough that the indi-
vidual delta functions are not resolved in the reconstructed
spectral function. Thus we do not expect significant vol-
ume effects in the correlators. Nonetheless, a more detailed
analysis of the finite volume effects in lattice simulations is
desirable to determine the fate of the excited quarkonia
states.
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APPENDIX A: INTEGRAL REPRESENTATION OF
THE IMAGINARY TIME CORRELATOR

Here we derive the spectral representation for the
Euclidean correlator. We start from the Fourier decompo-
sition of the real time two-point function

D>�t� �
Z 1
�1

d!
2�

D>�!�e�i!t: (A1)

The Fourier transform is given in terms of the spectral
function ��!�,

D>�!� � 2��1	 n�!����!�; (A2)
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with n�!� � 1=�e�! � 1� and � � 1=T [38]. The
Euclidean (Matsubara) propagator is an analytic continu-
ation of the real time correlator

G��� � D>��i�� (A3)

�
Z 1
�1

d!D>�!�e��!: (A4)

Here we insert (A2) and obtain

G��� �
Z 0

�1
d!�1	 n�!����!�e��!

	
Z 1

0
d!�1	 n�!����!�e��!: (A5)

Now we perform a change of variables!! �! in the first
term, and then use the identity 1	 n�!� 	 n��!� � 0
together with the property of the spectral function, that
this is an odd function in the frequency ���!� � ���!�
(the last relation is obtained from D>��!� � D<�!�,
which itself is derived from the periodicity in imaginary
time, known as the Kubo-Martin-Schwinger relation [38]).
We obtain

G��� �
Z 1

0
d!n�!���!�e�!

	
Z 1

0
d!�1	 n�!����!�e��!

�
Z 1

0
d!n�!���!��e�! 	 e�!��!�

�
Z 1

0
d!��!�

1

e�!=2 � e��!=2

� �e��!��!=2� 	 e���!��!=2��: (A6)

Between the first and the second line above we inserted the
identity 1	 n�!� � e�!n�!�. From (A6) the final result
for the Matsubara correlator is obtained:

G��� �
Z 1

0
d!��!�

cosh�!��� �=2��

sinh��!=2�
: (A7)
APPENDIX B: BOUND STATE AMPLITUDES

Here we derive the different relationships between the
decay constant of a given mesonic channel and the radial
wave function, for the pseudoscalar and vector channels, or
its derivative, for the scalar and axial-vector channels
(relations (11) and (12) in the main text).

The general idea is the following: We start from the
definition of the correlator for the mesonic channel H,

GH��� � h0jjH���j
y
H�0�j0i; (B1)

where � is the Euclidean time, and the jH � �q�Hq are
quark currents bilinear in the heavy quark field operator,
that distinguishes between the scalar, vector, pseudoscalar,
and axial-vector channels via �H � 1, ��, �5, and ���5,
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respectively. Using the Foldi-Wouthuysen-Tani transfor-
mation we decouple the heavy quark and antiquark fields,
reducing in this way the relativistic theory of Dirac spinors
to a nonrelativistic theory of Pauli spinors. Accordingly,

q � exp
�
� 
D

2m

�  

�

 !
�

�
1	

� 
D

2m
	O�1=m2�

�  

�

 !

�
 

�

 !
	

i
2m

�� 
 ~D�

� 
 ~D 

 !
	O�1=m2�; (B2)

and

�q � � y ��y � �
i

2m
��y� 
D

 

 y� 
D
 
� 	O�1=m2�:

(B3)

Here is the quark field that annihilates a heavy quark, and
� the antiquark field that creates a heavy antiquark,

 j0i � 0; h0j y � 0; �yj0i � 0; h0j� � 0;

(B4)

D is the covariant derivative operator, the arrows indicate
its direction of action. The Euclidean �-matrices are given
in the Dirac basis

�0 �
1 0
0 �1

� �
; �5 �

0 1
1 0

� �
;

�i �
0 �i�i
i�i 0

� �
;

�i being the Pauli matrices. Note, that for simplicity we
suppressed the color and spin indexes on the quark field
operators. We can rewrite the meson correlator in the form

GH��� � h0jOH���O
y
H�0�j0i; (B5)

where OH is an operator bilinear in the quark/antiquark
fields. Its particular form will be discussed in the details
that follow. Now using

OH��� � eH�OH�0�e
�H�; (B6)

and with the insertion of a complete set of states
P
njni�

hnj � 1, where jni is an eigenstate of the Hamiltonian,
Hjni � Enjni, we derive a spectral representation for the
correlator of the following form:

GH��� �
X
n

jh0jOHjnij2e�En�: (B7)

For large times, �! 1, the correlator is dominated by the
state of lowest energy, and we can write

GH��� ’ F2
He
�EH�; (B8)

where FH and EH are the transition amplitude and the
energy of the ground state. The amplitude is related to
the decay constant, and can be directly related to the radial
wave function, or its derivative, in the origin, as it was
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shown in [22]. Following the steps described above let us
now discuss the different channels separately.
(a) W
e start with the pseudoscalar channel, since the
calculation is simplest in this case. The current is

jPS � �q�5q (B9)

�  y�� �y 	O�1=m�; (B10)

and to leading order in the inverse mass the corre-
lator is

GPS��� � h0j��y ��� y����0j0i

�
X
n

jh0j�y jnij2e�En�: (B11)

At large � the ground state dominates, and so

G�q��� � jh0j�
y j�qij

2e�E�q�; (B12)

where the q refers to either of the c or b quarks. The
relation to the wave function in the origin is pro-
vided by the equation (3.12a) from [22]:

R�q�0� 

�������
2�
Nc

s
h0j�y j�qi: (B13)

Therefore, we can easily identify that

F2
�q �

Nc
2�
jR�q�0�j

2: (B14)
(b) T
he scalar current is

jS � �qq

�  y � �y��
i

2mq
� y� 
 ~D�	 �y� 
 ~D 

	 �y� 
D
 

 	  y� 
D
 

�� 	O�1=m2
q�:

(B15)

After a straightforward, but tedious calculation, ap-
plying the relations of (B4), and neglecting the
disconnected piece, we get the following expression
for the scalar correlator, to leading order in the
inverse mass,

GS��� � �
1

�2mq�
2

X
n

jh0j�y� 
D
$

 jnij2e�En�:

(B16)

Here the D
$

denotes the difference of the derivative
acting on the spinor to the right and on the spinor to
the left, �yD

$

 � �y ~D � �yD
 

 . For large times
the dominant contribution to the sum in (B16) is
from the lowest lying state, the �q0. Utilizing
equation (3.19b) from [22],���������

3Nc
2�

s
R0�q0
�0� 

1���
3
p h0j�y

�
1

2
D
$


 �

�
 j�q0i; (B17)
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the relation between the amplitude and the deriva-
tive of the radial wave function at the origin is
obtained for the �q0, with q � c; b,

F2
�q0
� �

9Nc
2�m2 jR

0
�q0
�0�j2: (B18)

Them refers to the corresponding c or b quark mass.

(c) C
onsider now the spatial component of the vector

current:

jV � �q�iq � �� 
y�i�	 �

y�i �: (B19)

When inserting this into the correlator this yields for
the diagonal components of this the following spec-
tral decomposition:

GV��� � h0jjV���j
y
V�0�j0i

�
X
n

jh0j�y�i jnij2e�En�: (B20)

For �! 1 the leading contribution to this correla-
tor comes from the vector meson V � J= , �, and
thus

GJ= ��� � h0j�y�i jV�i�ie�MV�: (B21)

Equation (3.12b) from [22], with � being the polar-
ization vector of the vector meson, is

RV�0�� 

�������
2�
Nc

s
h0j�y ~� jV���i: (B22)

Accordingly, the transition amplitude is

h0j�y�i jV�i�i �

�������
Nc
2�

s
RV�0�i; (B23)

and summing over all polarizations
P
ii � 3 results

in

F2
V �

3Nc
2�
jRV�0�j

2: (B24)
(d) F
inally, we turn to the axial-vector channel. The ith
component of the current is

jAV � �q�i�5q

� � y�i � �y�i�	
i

2mq
� y�i� 
 ~D�

� �y�i� 
 ~D 	 �y� 
D
 

�i 

�  y� 
D
 

�i�� 	O�1=m2
q�: (B25)

When evaluating the correlator we again make use
of the cancellations of (B4), and the anticommuta-
tivity of the quark field operators. Furthermore, we
also apply the relation between the noncommuting
Pauli matrices,�i�j � �ij 	 iijk�k, and the tensor
notation of a vector product, �a� b�i � ijkajbk.
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The resulting form of the correlator, when consid-
ering only �q1, with q � c; b, and neglecting the
disconnected part, the grounds state, is

G�q1
��� � �

1

�2mq�
2 jh0j�

y��iD
$

� ��

�  j�q1���ij
2e�E�q1

�: (B26)

Equation (3.19c) from [22] relates the transition
amplitude to the derivative of the wave function at
the origin:���������

3Nc
2�

s
R0�q1
�0�� 

1���
2
p h0j�y

�
�
i
2
D
$

� �

�
 j�q1���i:

(B27)

We identify then the decay constant of an unpolar-
ized axial-vector channel to be

F2
�q1
� �

9Nc
�m2

q
jR0�q1

�0�j2: (B28)
APPENDIX C: VECTOR CORRELATOR AT
ONE-LOOP LEVEL

Here we derive the meson spectral function as obtained
from the imaginary part of the retarded correlator. We will
focus on the vector channel, since the spatial and the
temporal component of its spectral function contain terms
relevant for the analysis of the transport properties. The
spectral function in the scalar, pseudoscalar, and axial
channels can be derived in an analogous manner.

The correlation function of a meson can be evaluated in
momentum space, using the quark propagator and its spec-
tral representation. Accordingly,

�H� �!; ~p� � NcT
X
n

Z d3k

�2��3
Tr��HSF�k0; ~k��

y
HS
y
F�k

0
0; ~k
0
��;

(C1)

where Nc is the number of colors, and H refers to a given
mesonic channel, defined by the operator �H � 1, ��, �5,
���5 for the scalar, pseudoscalar, vector, and axial-vector
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channels, respectively. Here k00 � k0 � �!, ~k0 � ~k� ~p, and
k0 � i!n � i�2n	 1��T. The quark propagator has the
following form [38]

SF�k0; ~k� � ���0k0 � ~� 
 ~k	m�

�
Z 1=T

0
d�ek0�

�
Z 1
�1

d!�F�!��1� n�!��e
�!�: (C2)

Here �F�!� � ��!2 �!2
k� is the free quark spectral func-

tion, with !2
k �

~k2
	m2 for a quark of mass m. After

inserting (C2) into (C1) and evaluating the integrals over
the imaginary time �, one obtains

�H� �!; ~p� � NcT
X
n

Z d3k

�2��3
1

!2
k � k

2
0

1

!2
k0 � k

02
0

� Tr��H��
�k� 	m��yH��

�k0� 	m��

� NcT
X
n

Z d3k

�2��3
1

!2
k � k

2
0

1

!2
k0 � k

02
0

� 4�k�k0� 	 k�k0� 	 g���m2 � k 
 k0��; (C3)

where for the second line we specified the vector correlator,
�H � ��.

First, let us evaluate the spatial part of (C3), i.e consider
�; � � i; j and sum over the components:

X
i�j

�ij� �!; ~p��Nc4T
X
n

Z d3k

�2��3
1

!2
k�k

2
0

1

!2
k0 �k

02
0

�
X
i�j

�kik
0
j	kjk

0
i��ij�m

2��k0k
0
0�

~k 
 ~k0���

�Nc4T
X
n

Z d3k

�2��3
1

!2
k�k

2
0

1

!2
k0 �k

02
0

��2k2	pkcos		3�!2
k�k

2
0��3k0 �!�:

(C4)

Here we inserted ~p 
 ~k � pk cos	. Using standard tech-
niques [38] the Matsubara sums can be evaluated:
T
X
n

1

!2
k � k

2
0

� �
1

2!k
�1� 2nk�;

T
X
n

1

�!2
k � k

2
0��!

2
k0 � k

02
0 �
� �

1

4!k!k0

�
�1� nk � nk0 �

�
1

�!�!k �!k0
�

1

�!	!k 	!k0

�

� �nk � nk0 �
�

1

�!	!k �!k0
�

1

�!�!k 	!k0

��
;

T
X
n

k0

�!2
k � k

2
0��!

2
k0 � k

02
0 �
� �

1

4!k

�
�1� nk � nk0 �

�
1

�!�!k �!k0
	

1

�!	!k 	!k0

�

	 �nk � nk0 �
�

1

�!	!k �!k0
	

1

�!�!k 	!k0

��
; (C5)
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where nk � 1=�exp�!k=T� 	 1� is the Fermi distribution
function, with !k �

�����������������
k2 	m2
p

. In the following we intro-
duce a small momentum approximations p� k, according
to which

nk0 � nk ’ �
dnk
d!k

kp
!k

cos	; (C6)

nk0 	 nk ’ 2nk; (C7)

!k0 �!k ’ �
pk
!k

cos	; (C8)

!k0 	!k ’ 2!k: (C9)
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The spectral function is given by the imaginary part of the
momentum space retarded correlation function,
�Rij� �!; ~p� � �ij� �!	 i; ~p�,

X
i

�ii� �!; ~p� � �
1

�
Im
X
i�j

�Rij� �!; ~p�: (C10)

We apply the relation

Im
1

!� E	 i
� ����!� E�; (C11)

and obtain
X
i

�ii� �!; ~p ’ 0� � Nc
Z d3k

�2��3

��
�

2k2 	 pk cos	

!2
k

	
3 �!
!k

�
�1� 2nk��� �!� 2!k� �

2k2 	 pk cos	

!2
k

dn
d!k

pk
!k

� cos	
�
�
�

�!�
pk
!k

cos	
�
� �

�
�!	

pk
!k

cos	
��
	

3 �!
!k

dn
d!k

pk
!k

cos	
�
�
�

�!�
pk
!k

cos	
�

	 �
�

�!	
pk
!k

cos	
���

(C12)

� Nc
Z d3k

�2��3

��
�

2k2 	 pk cos	

!2
k

	
3 �!
!k

�
�1� 2nk��� �!� 2!k� � 2

2k2

!2
k

dn
d!k

pk
!k

cos	�
�

�!�
pk
!k

cos	
��
: (C13)
In the integrand x��!� x� ! !��!� for the limit of zero
momentum, x! 0. The result for the spectral function at
zero momentum is then

X
i

�ii� �!; ~p � 0� �
Nc

8�2 �!2

������������������
1�

4m2

�!2

s
tanh

�!
4T

�
2	

4m2

�!2

�

� 2Nc �!�� �!�
Z d3k

�2��3
dn
d!k

2k2

!2
k

:

(C14)

The first term is the leading order perturbative result for the
continuum, also obtained in [36]. The second term pro-
vides a temperature-dependent contribution to the correla-
tor. We evaluate this term in a nonrelativistic
approximation at the end of this appendix.

Next, we evaluate the temporal part of the correlator.
Inserting � � � � 0 in (C3) results in

�00� �!; ~p� � Nc4T
X
n

Z d3k

�2��3
1

!2
k � k

2
0

1

!2
k0 � k

02
0

� �2k0k00 	 �m
2 � �k0k00 � ~k 
 ~k0���

� Nc4T
X
n

Z d3k

�2��3
1

!2
k � k

2
0

1

!2
k0 � k

02
0

� �2!2
k � pk cos	� �!2

k � k
2
0� � k0 �!�:

(C15)
The corresponding component of the spectral function at
small momentum is

�00� �!; ~p ’ 0� � �
1

�
Im�00� �!; ~p ’ 0� (C16)

� Nc
Z d3k

�2��3

��
�

2!2
k � pk cos	

!2
k

	
�!
!k

�
�1� 2nk�

� �� �!� 2!k� 	 4
dn
d!k

pk
!k

cos	�
�

�!�
pk
!k

cos	
��
:

(C17)

In the limit of zero momentum the contribution from the
first term vanishes, and the final result is

�00� �!; ~p � 0� � 4Nc �!�� �!�
Z d3k

�2��3
dnk
d!k

(C18)

� ��s �!�� �!�: (C19)

Here we identified the static charge susceptibility, �s,
which can be evaluated explicitly. For heavy quarks the
Fermi distribution function is well approximated by the
Boltzmann distribution, nk � exp��!k=T�, and thus
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TABLE IV. Results for the b �b mesons.

T=Tc � [GeV] State M [GeV] hr2i1=2 [fm] jR�0�j2�S�; jR0�0�j2�P�

0 0 1S 9.445 0.225 9:422 GeV3

2S 10.004 0.508 4:377 GeV3

1P 9.897 0.407 1:39 GeV5

3S 10.355 0.74 3:42 GeV3

2P 10.259 0.65 1:74 GeV5

1.1 0.25 1S 9.52 0.243 8:346 GeV3

2S 9.945 0.641 2:632 GeV3

1P 9.893 0.501 0:738 GeV5

2P 10.092 0.95 0:54 GeV5

1.25 0.314 1S 9.536 0.249 8:07 GeV3

2S 9.924 0.695 2:195 GeV3

1P 9.885 0.541 0:574 GeV5

2P 10.041 1.13 0:32 GeV5

1.5 0.395 1S 9.553 0.259 7:644 GeV3

2S 9.895 0.806 1:676 GeV3

1P 9.872 0.603 0:404 GeV5

1.75 0.472 1S 9.569 0.267 7:257 GeV3

2S 9.864 0.974 1:096 GeV3

1P 9.854 0.715 0:255 GeV5

2 0.55 1S 9.582 0.277 6:818 GeV3

2S 9.832 1.246 0:627 GeV3

5

TABLE III. Results for the c �c mesons.

T=Tc � [GeV] State M [GeV] hr2i1=2 [fm] jR�0�j2�S�; jR0�0�j2�P�

0 0 1S 3.07 0.453 0:735 GeV3

2S 3.67 0.875 0:534 GeV3

1P 3.5 0.695 0:06 GeV5

1.1 0.25 1S 3.044 0.574 0:468 GeV3

2S 3.338 1.591 0:137 GeV3

1P 3.294 1.124 0:012 GeV5

1.25 0.314 1S 3.031 0.633 0:395 GeV3

1P 3.23 1.58 0:005 GeV5

1.5 0.395 1S 3.012 0.73 0:311 GeV3

1P 3.132 1.776 0:001 GeV5

1.75 0.472 1S 2.992 0.89 0:23 GeV3

2 0.55 1S 2.968 1.2 0:15 GeV3
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�s � �4Nc
Z d3k

�2��3
dnk
d!k

� 4Nc
1

2�2T

R
1
0 dkk

2e�!k=T

� 4Nc
1

2�2T

Z 1
m
d!!�!2 �m2�1=2e�!k=T (C20)

� 4Nc
1

2�2 m
2K2

�
m
T

�
; (C21)

where K2 is the modified Bessel function of the second
kind. Since m=T � 1 the following approximation can be
applied

K��z� !
�����
�
2z

r
e�z for z� 1; (C22)

yielding for the static susceptibility

�s � 4Nc
1

�2��3=2
m3=2T1=2e�m=T: (C23)

Finally, we now evaluate the second contribution to
(C14), while incorporating a nonrelativistic approximation
for the heavy quarks. This means nk � exp��!k=T� and
k=m� 1. Thus

X
i

�ii� �!; ~p�0���4Nc �!�� �!�
Z d3k

�2��3
dn
d!k

k2

!2
k

�4Nc �!�� �!�
1

2�2T
e�m=T

Z 1
0
dk

k4

k2	m2

�e�k
2=�2mT�

’
4Nc

2�2Tm2 �!�� �!�e�m=T
Z 1

0
dkk4e�k

2=�2mT�

�3 �!�� �!�
�

4Nc
1

�2��3=2
m3=2T1=2e�m=T

�
T
m

�3�s
T
m

�!�� �!�: (C24)
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1P 9.832 1.053 0:12 GeV
2.25 0.628 1S 9.594 0.289 6:369 GeV3

1P 9.802 2.404 0:015 GeV5

2.5 0.705 1S 9.603 0.309 5:867 GeV3

3 0.86 1S 9.618 0.342 4:923 GeV3

3.5 1.015 1S 9.627 0.41 3:865 GeV3

4 1.17 1S 9.63 0.545 2:771 GeV3

4.5 1.325 1S 9.628 0.78 1:707 GeV3

5 1.48 1S 9.62 2.146 0:578 GeV3
APPENDIX D: NUMERICAL RESULTS FOR
QUARKONIA PARAMETERS

Here we provide the results of the numerical calculations
for the properties of the charmonia states, in Table III, and
bottomonia states, in Table IV, together with the tempera-
ture dependence of the screening mass in the screened
074007
Cornell potential, as well as the parameters of the potential
fitted to the lattice internal energy and the charmonia
properties in Tables V and VI.
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TABLE VI. Results for the b �b mesons using the potential fitted to lattice internal energy.

T=Tc � �GeV�2 � [GeV] C [GeV] State M [GeV] hr2i1=2 [fm] jR�0�j2�S�; jR0�0�j2�P�

0 0.181 0 0 1S 9.693 0.283 3:477 GeV3

2S 10.115 0.567 2:268 GeV3

3S 10.419 0.797 1:949 GeV3

1P 9.996 0.452 0:539 GeV5

2P 10.315 0.701 0:773 GeV5

1.07 0.074 0.131 1.471 1S 9.839 0.227 5:590 GeV3

2S 10.544 0.454 3:932 GeV3

3S 10.930 0.927 1:508 GeV3

1P 10.318 0.346 1:775 GeV5

2P 10.826 0.630 1:742 GeV5

1.13 0.087 0.161 1.094 1S 9.827 0.234 5:267 GeV3

2S 10.435 0.530 2:829 GeV3

1P 10.266 0.377 1:369 GeV5

1.25 0.134 0.174 0.752 1S 9.826 0.236 5:136 GeV3

2S 10.435 0.530 2:771 GeV3

1P 10.266 0.376 1:475 GeV5

1.40 0 0.408 0.608 1S 9.820 0.258 4:695 GeV3

1.95 0 0.891 0.422 1S 9.864 0.388 3:216 GeV3

TABLE V. Results for the c �c mesons using the potential fitted to lattice internal energy.

T=Tc � �GeV�2 � [GeV] C [GeV] State M [GeV] hr2i1=2 [fm] jR�0�j2�S�; jR0�0�j2�P�

0 0.181 0 0 1S 3.177 0.500 0:441 GeV3

2S 3.733 0.923 0:370 GeV3

1P 3.534 0.733 0:034 GeV5

1.07 0.074 0.131 1.471 1S 3.522 0.399 0:863 GeV3

1P 4.059 0.791 0:072 GeV5

1.13 0.087 0.161 1.094 1S 3.448 0.458 0:688 GeV3

1.25 0.134 0.174 0.752 1S 3.448 0.636 0:411 GeV3
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