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B-meson wave function with contributions from three-particle Fock states
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The B-meson light-cone wave functions, ���!; z2�, are investigated up to the next-to-leading order in
Fock state expansion in the heavy-quark limit. In order to know the transverse momentum dependence of
the B-meson wave functions with 3-particle Fock states’ contributions, we make use of the relations
between 2- and 3- particle wave functions derived from the QCD equations of motion and the heavy-quark
symmetry, especially two constraints derived from the gauge field equation of motion are employed. Our
results show that the use of gluon equation of motion can give a constraint on the transverse momentum
dependence ��!;k?� of the B-meson wave functions, whose distribution tends to be a hyperbolalike
curve under the condition 0< c1 < 1, which is quite different from the Wandzura-Wilczek-(WW)-type
wave functions, whose transverse momentum dependence �WW�!;k?� is merely a delta function. Based
on the derived results, we propose a simple model for the B-meson wave functions with 3-particle Fock
states’ contributions.
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I. INTRODUCTION

The nonperturbative light-cone (LC) wave function
(WF)/distribtuion amplitude (DA) of the B meson plays
an important role for making reliable predictions for ex-
clusive B meson decays. The B-meson DA has been inves-
tigated in various approaches [1–9]. Recently, Ref. [10]
claims that it is the B-meson WF rather than the B-meson
DA that is more relevant to the B decays, and in the
framework of the kT-factorization theorem [11], they
proved that the B-meson WF is renormalizable after taking
into account the renormalization-group (RG) evolution
effects, meanwhile, the undesirable feature [3] of the
B-meson DA under evolution can be removed. Since the
B-meson WF still poses a major source of uncertainty in
the study of the B decays, hence, theoretically, it is an
important issue to study on it.

Ref. [12], as well [13], presents an analytic solution for
the B-meson WFs ���!; z2�, which satisfies the con-
straints from the QCD equations of motion and the
heavy-quark symmetry [14]. It is found that in the
Wandzura-Wilczek (WW) approximation [15], which cor-
responds to the valence quark distribution, the B-meson
WFs can be determined uniquely in terms of the ‘‘effective
mass’’, the ��, defined in the heavy-quark effective theory
(HQET) [16]. Ref. [17] shows that when taking �� 2
�0:5 GeV; 0:6 GeV�, one can give a reasonable perturba-
tive QCD result for B! � transition form factor that is
consistent with what was obtained in the LC sum rule
calculation [18] and the lattice QCD simulation [19].
ngtao@mail.ihep.ac.cn
ocf@gucas.ac.cn
xg@itp.ac.cn

06=73(7)=074004(14)$23.00 074004
It should be noted that in the WW approximation, the
obtained analytic results for the B-meson WFs ���!; z

2�
are unique, and the only missing part for practical numeri-
cal use is the RG evolution effect. However, there is very
limited knowledge on the higher Fock states’ contribu-
tions. In Ref. [5], the B-meson distributions ���!� with
3-particle Fock states are given and a rough estimation
presented there shows that the 3-particle Fock states’ con-
tributions might considerably broaden the transverse mo-
mentum distribution that is derived from the WW
approximation. Recently, based on the QCD sum rule
analysis and taking only the two 3-particle distributions
�A��; �� and �V��; �� into consideration, Ref. [7] con-
nects the asymptotic behavior of their difference to the
well-known quark-antiquark-gluon DA ’3���i� (�i�i �
1; 2; 3� are the fractions of the pion momentum carried
by the corresponding partons and satisfy �1 � �2 � �3 �
1), i.e. in the small � and � region, �V��; �� ��A��; �� �
’3���1; 1� �1 � �3; �3�j�1��=mB;�3��=mB

� ��2.
In this paper, we are going to investigate the B-meson

WFs ���!; z
2� with the contributions from 3-particle

Fock states. From the heavy-quark symmetry and the
equations of motion for the light degrees of freedom, we
get several constraints on the behaviors of WFs. By adopt-
ing some assumptions, we will solve the B-meson WFs
approximately, especially, by taking the aforementioned
asymptotic behavior of the difference between �A��; ��
and �V��; �� into account, we try to derive an explicit
form for the B-meson distributions ���!� that include the
3-particle Fock states’ contributions.

The paper is organized as follows. In Sec. II, several
differential equations for the B-meson WFs are obtained by
using the heavy-quark symmetry and the equations of
motion for the light degrees of freedom. In Sec. III, ap-
-1 © 2006 The American Physical Society
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proximate solutions for the B-meson WFs including the
contributions from the 3-particle Fock states are investi-
gated under three assumptions. A new model for the
B-meson WFs and some discussions over its phenomeno-
logical implication are presented in Sec. IV. The last
section is reserved for a summary.

II. DIFFERENTIAL EQUATIONS FOR THE
B-MESON WAVE FUNCTIONS

In HQET, the B-meson WFs ~���t; z
2� can be defined in

terms of the vacuum-to-meson matrix element of the non-
local operators [20]:

h0j �q�z��hv�0�j �B�p�i � �
ifBM

2
Tr
�
�5�

1� v6
2

�

�
~���t; z2�

� z6
~���t; z2� � ~���t; z2�

2t

��
; (1)
074004
where z� � �0; z�; z?�, z2 � �z2
?, v2 � 1, t � v 	 z, and

p� � Mv� is the 4-momentum of the B meson with mass
M, hv�x� denotes the effective b-quark field and � is a
generic Dirac matrix. The path-ordered gauge factors are
implied between the constituent fields. Note that in the
above definition, the separation between quark and anti-
quark is not restricted on the LC (z2 � 0). For a fast
moving meson, t! 1, Eq. (1) shows that ~���t; z

2� is
the leading-twist WF, and ~���t; z2� is the subleading
one. To know more about the twist structures for the B
meson, readers are recommended to refer to Ref. [6] for
details, where the relation between the geometric twist and
the dynamic twist was discussed.

In the heavy-quark limit, the general Lorentz decompo-
sition of the 3-particle matrix elements can attribute to four
independent 3-particle WFs similar to the 3-particle LC
DAs [12], i.e. ~�V�t; u; z2�, ~�A�t; u; z2�, ~XA�t; u; z2� and
~YA�t; u; z

2�:
h0j �q�z�gG�	�uz�z
	�hv�0�j �B�p�i �

1

2
fBM Tr

�
�5�

1� v6
2

�
�v�z6 � t���� ~�A�t; u; z

2� � ~�V�t; u; z
2��

� i
�	z	 ~�V�t; u; z2� �

�
z� �

z2v�
t

�
~XA�t; u; z2� �

�z�
t
z6 �

z2��
t

�
~YA�t; u; z2�

��
: (2)

Here, the z2-dependent terms are kept explicitly in order to get the transverse momentum dependence of the B-meson WFs.

By using the equation of motion for the light quark, �q 6D
 

� 0, and HQET equation of motion for the heavy quark, v 	
Dhv � 0, one can obtain four independent differential equations, which correlate ~���t; z

2� and ~���t; z
2� to the 3-particle

WFs:

@ ~���t; z2�

@t
�

~���t; z
2� � ~���t; z

2�

t
�
z2

t
@

@z2 

~���t; z2� � ~���t; z2��

�
Z 1

0
udu

�
2t
 ~�A�t; u; z

2� � ~�V�t; u; z
2�� � 3

z2

t
~YA�t; u; z

2� �
z2

t
~XA�t; u; z

2�

�
; (3)
@ ~���t; z
2�

@t
�
@ ~���t; z2�

@t
�

~���t; z2� � ~���t; z2�

t
� 4t

@ ~���!; z2�

@z2

�
Z 1

0
udu2t
 ~�A�t; u; z

2� � 2 ~�V�t; u; z
2� � ~XA�t; u; z

2��; (4)
@ ~���t; z2�

@t
�

1

2t

 ~���t; z2� � ~���t; z2�� � i �� ~���t; z2� � 2t

@ ~���t; z
2�

@z2

�
Z 1

0
du�u� 1�

�
t
 ~�A�t; u; z2� � ~XA�t; u; z2�� �

z2

t
~XA�t; u; z2� �

z2

t
~YA�t; u; z2�

�
(5)

and
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~���t; z2�

@t
�

~���t; z
2�

@t
�

�
i ���

1

t

�

 ~���t; z2� � ~���t; z2�� � 2t

�
@ ~���t; z

2�

@z2 �
@ ~���t�

@z2

�

� 2t
Z 1

0
du�u� 1�
 ~�A�t; u; z

2� � ~YA�t; u; z
2��; (6)

where �� � M�mb �
iv	@h0j �q�hvj �B�p�i
h0j �q�hvj �B�p�i

is the usual ‘‘effective mass’’ of the B meson in the HQET. By taking the LC limit,
one may easily find that our present results agree with those in Ref. [12]. Making the Fourier transformation, by virtue of
the formulae given in Appendix A, we obtain,

!
@���!; z2�

@!
� z2

�
@���!; z2�

@z2 �
@���!; z2�

@z2

�
����!; z

2� � I�!; z2�; (7)

�
!

@
@!
� 2

�
����!; z2� ����!; z2�� � 4

@2

@!2

@���!; z
2�

@z2 � J�!; z2�; (8)

�
�!� ���

@
@!
�

3

2

�
���!; z2� �

1

2
���!; z2� � 2

@2

@!2

@���!; z
2�

@z2 � M�!; z2� � N�!; z2� (9)

and

��
���!; z2� ����!; z2�� � 2
@2

@!@z2 
���!; z
2� ����!; z2�� � L�!; z2�; (10)

where the 3-particle source terms are

I�!; z2� � 2
d
d!

Z !

0
d�

Z 1
!��

d�
�

@
@�

�A��; �; z2� ��V��; �; z2��

� z2
Z !

0
d�

Z 1
!��

d�
�

�
!� �
�

�

XA��; �; z

2� � 3YA��; �; z
2��; (11)

J�!; z2� � 2
d
d!

Z !

0
d�

Z 1
!��

d�
�

@
@�

�A��; �; z2� � 2�V��; �; z2� � XA��; �; z2��; (12)

L�!; z2� � �2
Z !

0
d�

Z 1
!��

d�
�

@
@�

YA��; �; z

2� � 2�V��; �; z
2� � XA��; �; z

2��

� 2
d
d!

Z !

0
d�

Z 1
!��

d�
�

�A��; �; z

2� � YA��; �; z
2��; (13)

M�!; z2� �
d
d!

Z !

0
d�

Z 1
!��

d�
�

@
@�

�A��; �; z2� � XA��; �; z2�� �

d2

d!2

Z !

0
d�

Z 1
!��

d�
�

�A��; �; z2� � XA��; �; z2��

(14)

and

N�!; z2� � z2
Z !

0
d�

Z 1
!��

d�
�

�
!� �
�

�

YA��; �; z2� � XA��; �; z2�� � z2

Z !

0
d�

Z 1
!��

d�
�

YA��; �; z2� � XA��; �; z2��:

(15)

Secondly, by using Eq. (2) and the gluon equation of motion, D�Ga
�	�z� � 0, whose source term that induces even

higher Fock state’ contribution is neglected in this work, one can obtain two more independent relations among the 3-
particle WFs:
074004-3
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3 ~�A�t; u; z2� � 4 ~YA�t; u; z2� � ~XA�t; u; z2�� � t
@
@t

 ~�A�t; u; z2� � 2 ~YA�t; u; z2� � ~XA�t; u; z2��

� z2

�
1

t2

 ~YA�t; u; z

2� � ~XA�t; u; z
2�� �

1

t
@
@t

 ~YA�t; u; z

2� � ~XA�t; u; z
2�� � 2

@

@z2 

~�A�t; u; z

2� � ~YA�t; u; z
2��

�
� 0 (16)

and

2

t

 ~XA�t; u; z

2� � ~YA�t; u; z
2�� � 2

z2

t
@

@z2 

~XA�t; u; z

2�� ~YA�t; u; z
2�� � 2t

@

@z2 

~�A�t; u; z

2� � ~XA�t; u; z
2��

�
@
@t

 ~�A�t; u; z

2� � ~YA�t; u; z
2�� � 0: (17)

Taking the LC limit in Eq. (16), we get


3 ~�A�t; u� � 4 ~YA�t; u� � ~XA�t; u�� � t
@
@t

 ~�A�t; u� � 2 ~YA�t; u� � ~XA�t; u�� � 0; (18)
with F�t; u� � F�t; u; z2�jz2!0 (F � f ~�V; ~�A; ~XAg). By
doing the Fourier transformation and exploiting the bound-
ary conditions, F��; ��j�!1;�!1 ! 0 (F � �A; XA; YA),
we obtain a relation among the double moments of the 3-
particle DAs,

3
�A��; ���
1
1 � 4
YA��; ���

1
1 � 
XA��; ���

1
1; (19)

where 
F�ij are double moments of the 3-particle distribu-
tions,


F�ij �
Z 1

0
d�

Z 1
0
d��i�j�j�1F��; ��;

�F � f�V;�A; XAg�:

III. APPROXIMATE SOLUTION FOR THE
B-MESON WFS WITH 3-PARTICLE FOCK STATES

In the following, we shall give an approximate solution
for the B-meson WFs with 3-particle Fock states’ contri-
butions by solving the differential equations as shown in
Sec. II. Before doing this, as a basis and to be self-
consistent, we first recollect the results in the WW approxi-
mation (i.e. I�!� � J�!� � L�!� � M�!� � N�!� � 0),
then, derive several constraints for the B-meson DAs
���!�, where the B-meson DAs can be obtained by taking
the LC limit of the B-meson WFs, i.e. ���!� �
limz2!0���!; z

2�.

A. B-meson WFs �WW
� �!; z2� in the WW

approximation

When ignoring the 3-particle Fock states’ contributions,
i.e. setting I�!� � J�!� � L�!� � M�!� � N�!� � 0,
one can readily obtain the B-meson WW-type WFs
�WW
� �!; z2�. In this case, the two DAs �WW

� �!� take the
form [5,13]:
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�WW
� �!� �

!

2 ��2
��!���2 ���!�;

�WW
� �!� �

�2 ���!�

2 ��2
��!���2 ���!�;

(20)

and the transverse part, �WW�!; z2�, is a zeroth normal
Bessel function. ��x� is the usual unit step function, which
equals to 0 for x < 0 and 1 for x  0. Taking the
Fourier transformation, ~���!;k?� �

R
d2z? exp��ik? 	

z?����!; z2�=�2��2, the normalized B-meson WFs in the
momentum space read as

~� WW
� �!;k?� �

�WW
� �!�
�

��k2
? �!�2

���!�� (21)

and

~� WW
� �!;k?� �

�WW
� �!�
�

��k2
? �!�2

���!��; (22)

whose k?-dependence correlates to the !-dependence via
a �-function.

Eqs. (21) and (22), show that the WFs’ dependence on
transverse and longitudinal momenta is strongly correlated
through a combined variable k2

?=
!�2
���!��. Similar

transverse momentum behavior for the meson has been
discussed in Ref. [21] by transforming the usual equal-time
wave function to its LC form, and has been derived in
Ref. [22] by adopting the dispersion relations and the
quark-hadron duality. In these two references, the authors
stated that the kT-dependence of the meson’s wave func-
tion depends on the off-shell energy of the valence quarks,
i.e. �k2

?=x�1� x�, where x is the momentum fraction
carried by the corresponding valence quark.
-4
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level’’ statement.
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B. Some constraints on the B-meson DAs ���!�

The B-meson DAs can be obtained by taking the LC
limit in equations for the B-meson WFs. In the LC limit,
Eq. (7) is simplified as

!
d���!�
d!

����!� � I�!� (23)

with I�!� � I�!; z2�jz2!0. Similarly, from Eqs. (4) and (5),
we have

@ ~���t�
@t

�
@ ~���t�
@t

� 2i �� ~���t�

� �
Z 1

0
du2t
 ~�A�t; u� � ~XA�t; u� � 2u ~�V�t; u��

which leads to

�!� 2 ������!� �!���!� � K�!� (24)

with

K�!� � �2
d
d!

Z !

0
d�

Z 1
!��

d�
�

�A��; �� � XA��; ���

� 4
Z !

0
d�

Z 1
!��

d�
�
@�V��; ��

@�
:

The solution of the B-meson DAs can be conveniently
decomposed into two pieces as

���!� � �WW
� �!� ���g�� �!�; (25)

where �WW
� �!� are the DAs in the WW approximation and

��g�� �!� denote what induced by the 3-particle source terms
I�!� and K�!�. From Eqs. (23) and (24), the solution for
��g�� can be obtained straightforwardly, and reads:

��g�� �!� �
!

2 ��
G�!� � a1

K�!�

!� 2 ��
;

��g�� �!� �
2 ���!

2 ��
G�!� � a2

K�!�
!

:

(26)

Here, !  0, a1 and a2 are integration parameters that
satisfy the relation a1 � a2 � 1. Note that the result in
Ref. [12] is only a specific choice of a1 � 0 and a2 � 1 in
the general solution Eq. (26). The function G�!� is ex-
pressed as follows:

G�!� � ��2 ���!�
�Z !

0
d�
�
M���

2 ��� �
� a1

K���

�2 ��� ��2

�

�
K�0�

2 ��

�
� ��!� 2 ���

Z 1
!
d�
�
M���

2 ��� �

� a1
K���

�2 ��� ��2

�
�
Z 1
!
d�
�
M���
�
� a2

K���

�2

�
;

(27)

with M��� � I��� � � 1
2 ��
� a2

d
d��K���. One can easily
074004
check that
R
1
0 d!�

�g�
� �!� � 0, so the total DAs are nor-

malized,1 i.e.
R
1
0 d!���!� � 1.

As usual, we adopt the Mellin moments of ���!�,
which take the following form (n � 0; 1; 2; 	 	 	 ),

h!ni� �
Z 1

0
d!!n���!�

�
Z 1

0
d!!n�WW

� �!� �
Z 1

0
d!!n��g�� �!�

� h!niWW
� � h!ni

�g�
� : (28)

With the help of the formulae given in appendix B, we have

h!niWW
� �

2

n� 2
�2 ���n;

h!niWW
� �

2

�n� 1��n� 2�
�2 ���n;

(29)

h!ni
�g�
� �

2

n� 2

Xn�1

i�1

�2 ���i�1
Xn�i
j�1

n� i

j

 !

�

��
�n� 1� i�

2j� 1

j� 1
� 1

�

�A�

n�i
j

� �n� 2� i�
XA�
n�i
j

� �n� 3� i�
j

j� 1

�V�

n�i
j

�
(30)

and

h!ni�g�� �
1

n� 1
h!ni

�g�
� �

2n
n� 1

Xn�1

j�1

n� 1

j

 !

�
j

j� 1
�
�A�

n�1
j � 
�V�

n�1
j �; (31)

where �ij� � i!=
j!�i� j�!�. The above results for h!ni
�g�
�

have nothing to do with the free parameters a1 and a2, due
to the fact that a1 � a2 � 1, and hence they are in agree-
ment with the ones obtained in Ref. [12]. It is obvious that
the moments of DAs have no relation to the 3-particle
distribution YA��; ��.

At the present, one knows little about the magnitudes of
the B-meson DAs’ moments. In Ref. [20], the second mo-
ments of the B-meson DAs are estimated by relating them
to the matrix elements of certain local operators and by
calculating these matrix elements from the sum rules in
HQET, i.e.

h!2i� � 2 ��2 � 2
3

2
E �

1
3

2
H; h!2i� �

2
3

��2 � 1
3

2
H:

(32)

Here E and H parameterize the matrix elements of
-5
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chromoelectric and chromomagnetic fields in the B-meson
rest frame,

h0j �qgE 	��5hvj �B�p � 0�i � fBM2
E (33)

and

h0j �qgH 	 ��5hvj �B�p � 0�i � ifBM
2
H; (34)

with Ei � G0i, Hi � � 1
2 �

ijkGjk, and � � �0�. From
Eqs. (28)–(32), we obtain

2
�A�
1
1 �

3
2
XA�

1
1 � 
�V�

1
1 �

2
3

2
E �

1
3

2
H;


�V�
1
1 �

1
2
XA�

1
1 �

1
3

2
H:

(35)

Together with Eq. (19), it leads to


�A�
1
1 �

2
3

2
E; 
�V�

1
1 �

1
3�

2
H � 

2
E�;


YA�
1
1 � 
XA�

1
1 � �

2
3

2
E:

(36)

The above results are different from those in Refs. [7,12],
where the contributions from 
XA�11 and 
YA�11 have not
been taken into consideration.2.

As a summary, one may observe that ���!� should
satisfy the following conditions:Z

���!�d! � 1;
Z
���!�d! � 1; (37)

Z
!���!�d! �

2
3

��;
Z
!���!�d! �

4
3

��; (38)

Z
!2���!�d! �

2
3

��2 � 1
3

2
H;Z

!2���!�d! � 2 ��2 � 2
3

2
E �

1
3

2
H;

(39)

where according to the QCD sum rule analysis [20], 2
E �

0:11� 0:06 and 2
H � 0:18� 0:07. Further more, as dis-

cussed in Refs. [3,7], the first inverse moment of ���!�
should satisfy

�0 �
Z d!

!
���!� �

1

B
: �B � 460� 160 MeV�

(40)
C. Approximate solution for the B-meson WFs
���!;z

2� including 3-particle Fock states

To solve the B-meson WFs ���!; z
2� including 3-

particle Fock states, one need to know some more details
on the properties of the 3-particle WFs �V��; �; z2�,
�A��; �; z2�, XA��; �; z2� and YA��; �; z2�, i.e. the trans-
2According to the QCD sum rule analysis [7], as a rough
estimation, the contributions to the B-meson WF from XA and YA
are at least suppressed by inverse power of the Borel parameter.
Here we keep both of them for a more complete estimation of the
B-meson WFs.
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verse momentum dependence of these WFs. In the follow-
ing, we will take three assumptions so as to provide an
approximate solution for the B-meson WFs ���!; z2�
from Eqs. (7)–(10), (16), and (17):
(I) B
3Even
Ref. [7]
two mom
model a
and �A�

-6
ased on the B-meson WFs in the WW approxi-
mation [12,13], we assume that ���!; z2� and
���!; z

2� have the same transverse momentum
dependence, i.e.

��
!; z2� � ���!��
!; z2�; (41)

and all the 3-particle WFs also have the same
transverse momentum dependence ��h���; �; z2�,

�A��; �; z2� � �A��; ����h���; �; z2�;

�V��; �; z2� � �V��; ����h���; �; z2�
(42)

and

XA��; �; z2� � XA��; ����h���; �; z2�;

YA��; �; z2� � YA��; ����h���; �; z2�;
(43)

with the boundary condition
limz2!0�

�h���; �; z2� � 1.

(II) S
ince the main features of the 3-particle DAs are

determined by its first several moments (the higher
moments will be suppressed by E or H accord-
ingly), we assume that the relation Eq. (19) among
the first nonzero double moments of the 3-particle
DAs can be extended to be a relation among the 3-
particle DAs, i.e.

YA��; �� ’
XA��; �� � 3�A��; ��

4
: (44)
(III) W
e adopt a naive model [7] for the difference
between �V��; �� and �A��; ��,

3

�V��; �� ��A��; �� �
2
H � 

2
E

6 ��5
��2

� exp
�
�
�� �

��

�
: (45)
With the help of Eqs. (16) and (17), and the assumptions
(I,II), one can obtain two relations among the 3-particle
WFs:
YA��; �; z2� � ��A��; �; z2�;

XA��; �; z
2� � ��A��; �; z

2�:
(46)
though the first moments of �A��; �� and �V��; �� in
are different from our’s, the difference between these
ents are the same for both cases. So we take the same

s the one in Ref. [7] for the difference between �V��; ��
�; ��.
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1. The transverse momentum dependence of ���!; z
2�

Applying Eq. (46) to Eqs. (7)–(10), we obtain

!
@���!; z2�

@!
� z2

�
@���!; z2�

@z2 �
@���!; z2�

@z2

�
����!; z

2� � I�!; z2�; (47)

�!� 2 ������!; z2� �!���!; z2� � �L�!; z2�; (48)

��
���!; z2� ����!; z2�� � 2
@2

@!@z2 
���!; z
2�

����!; z
2�� � L�!; z2�; (49)

where Eq. (48) is obtained from the combination of
Eqs. (8) and (9) and the source terms take the form,

I�!; z2� � 2
d
d!

Z !

0
d�

Z 1
!��

d�
�

@
@�

�A��; �; z

2�

��V��; �; z2�� � 2z2
Z !

0
d�

Z 1
!��

d�
�

�

�
!� �
�

�

�A��; �; z

2�� (50)

and

L�!; z2� � 4
Z !

0
d�

Z 1
!��

d�
�

@
@�

�V��; �; z

2��: (51)

Substituting Eqs. (41) and (42) into Eq. (48), we obtain a
relation between the transverse momentum distribution of
��!; z2� and that of the 3-particle WFs,

��!; z2� �

R
!
0 d�

R
1
!��

d�
�

@
@� 
�V��; ���

�h���; �; z2��R
!
0 d�

R
1
!��

d�
�

@
@� 
�V��; ���

:

(52)

It shows that if one knows the 3-particle WF �V��; �; z
2�

then the exact form of the transverse momentum distribu-
tion ��!; z2� of the B-meson WFs can be derived; and
inversely, a constraint on �V��; �; z2� can be obtained as
long as one knows the form of ��!; z2�.

From Eqs. (48) and (49), we have

2
@2

@!@z2 f�!; z
2� � � ���!�f�!; z2�; (53)

where f�!; z2� � 
���!; z2� ����!; z2��.
Equation (53) shows that the sum of the two WFs
���!; z2� do not explicitly depend on the 3-particle
WFs. Based on the assumption (I), we rewrite f�!; z2� as

f�!; z2� � 
���!� ����!����h�!�z2� � ��!� 	 ��x�;

(54)

where x � 
h�!�z2� and the function h�!� is to be deter-
mined. Substituting Eq. (54) into (53), we obtain
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x
d2��x�

dx2 �
d��x�
dx

�
1�

h�!��0�!�
h0�!���!�

�
���x�

�
�!� ���

2h0�!�

�
� 0:

(55)

To ensure the above equation for ��x� be tenable to any
value of variable !, we set�

1�
h�!��0�!�
h0�!���!�

�
� c1;

�
�!� ���

2h0�!�

�
� c2; (56)

where c1 and c2 are two parameters that are independent of
variable !. From Eq. (56) follows that

h�!� �
!�!� 2 ���

4c2
� c3; (57)

where the value of c3 is to be determined.
With the help of Eq. (56), the solution of Eq. (55) can be

generically expressed as

��x� � ���y� � �K1�
c1�Jc1�1
2y�

� K2�
2� c1�J1�c1

2y��y1�c1 ; �c1 2 �0; 2��;

(58)

where � is the usual Euler-gamma function, Jn is the
modified Bessel J-functions, K1;2 are undetermined con-
stants and y �

�������
c2x
p

(c2x > 0). From the boundary condi-
tion limz2!0��!; z

2� � 1, we obtain

lim
y!0
�K1�
c1�Jc1�1
2y� � K2�
2� c1�J1�c1


2y��y1�c1 � 1:

(59)

Equation (59) leads toK1 � 1 for any value of c1, the value
of K2 is arbitrary for 0< c1 < 1 and equals to 0 for 1 �
c1 < 2. Some typical distributions of ���y� are shown in
Fig. 1.

Some discussions about the solution (58) for the trans-
verse momentum dependence of the B-meson WFs are in
the following.

From the solutions in Eqs. (57) and (58), one may find
that the WFs depend on c2 and c3 only in a combined form,
so the (c2c3) in practice stands as one free parameter and
hereafter, we shall always replace (4c2c3) by merely c3 for
convenience.

When c1 � 1 and c3 � 0, we return to the transverse
momentum dependence of the B-meson wave function in
the WW approximation. The term including c3 brings some
differences to the distribution under the WW approxima-
tion, especially the allowed range for ! will be broadened
for negative value of c3.

When c1  1, one may find the transverse momentum
distribution of the B-meson WF tends to be a � function as
the case in the WW approximation. However, when 0<
c1 < 1, the transverse momentum distribution of the
B-meson WF will be broadened. This is in agreement
with the conclusion drawn in Ref. [12] that the 3-particle
-7



FIG. 1 (color online). Transverse distributions ���y� with dif-
ferent values of c1 and when 0< c1 � 1, K2 is fixed to be 1. The
solid line, the dashed line, the dotted line and the dash-dot line
are for c1 � 0:2, 0.8, 1.2 and 1.8, respectively.
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contributions might considerably broaden the B-meson
transverse momentum distribution. To show this point
more clearly, we take c3 � 0 and transform the transverse
part of Eq. (58) into the momentum space. For c1 2 �0; 1�,
we obtain

~��!;k?� � �
�

1

�
1� c1��
�

�
2� c1� sin
�c1�

�2 K2

�

�
�
2� c1�

��2 ���!�!�j1� k2
T

�2 ���!�!
j2�c1

; (60)

where kT � jk?j. One may easily find that ~��!;k?�
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−103

−102

−101

−100

−10
−1

−10
−2

 k
T

FIG. 2 (color online). Transverse distributions of ~��!;k?� (kT �
diagram is drawn with fixed K2 � 1 and with some different values f
dotted, dashed, and solid lines, respectively. The right diagram is dra
5.0, 10.0 and 15.0, which are shown in solid, dashed, dotted and da
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satisfies the normalization condition,
R
d2k? ~��!;k?� �

1. The transverse distributions of ~��!;k?� with fixed �� �
0:55 GeV and! � 0:5 GeV are shown in Fig. (2). The left
diagram of Fig. 2 is drawn with fixed K2 � 1 and with
some different choices for the magnitude of c1, i.e. c1 �
0:2, 0.4, 0.6, and 0.8. The right diagram of Fig. 2 is drawn
with fixed c1�� 0:6�, and varyingK2, i.e.K2 � 0, 5.0, 10.0,
and 15.0. From Fig. 2, one may find that with the decreas-
ing of c1, or increasing of K2, the transverse momentum
distributions become broader and broader.

From Fig. 2, one may observe that there is a dip in the
transverse momentum distributions around kT ��������������������������
�2 ���!�!

q
. It comes from the denominator in

Eq. (60). Practically, such a dip will not make any problem,
due to the fact that we always need the integrated results,
which will be shown in Sec. IV. By taking the negative
value of c3, the allowed range of!will be broadened and it
will make a suppression to the singularity in Eq. (60).
When summing up all the Fock states’ contributions and
taking the RG evolution effects into consideration, one
may expect a further suppression to such singularity in
the resultant transverse momentum distributions [23].

2. The distribution functions ���!� with 3-particle Fock
states

The solutions for the distributions���!�with 3-particle
Fock states have been given in Eqs. (20), (25), and (26).
However, since the solutions for ��g�� �!� [as shown in
Eq. (26)] involves the unknown 3-particle WFs, it can
not be used directly. In the following, we shall make an
attempt to provide more convenient expressions for���!�
under the above mentioned assumptions (I,II,III).
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−103

−102

−101

−100

−10
−1

−10−2

 k
T

jk?j) with fixed �� � 0:55 GeV and ! � 0:5 GeV. The left
or c1, i.e. c1 � 0:2, 0.4, 0.6 and 0.8, which are shown in dash-dot,
wn with fixed c1 � 0:6 and different values for K2, i.e. K2 � 0,

sh-dot lines, respectively.
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We can derive an expression for the sum of ���!�,
��!� � ���!� ����!�, from Eqs. (56) and (57), which
can be expanded in a more convenient form as

��!� � c4 � exp
�

2 ���c1 � 1�

��c3�
!
�
� �1� �!�; (61)

where c4 is an overall normalization factor and we have
implicitly taken ��c3�> 0, which is reasonable, since the
minus sign indicates that the 3-particle WFs will broaden
the allowed range of ! in comparison to that in the WW
4Those terms in higher power series of ! can be summed up,
since when ! is big, their contributions are suppressed by the
overall exponential factor.
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approximation. Here, � is a new phenomenological pa-
rameter, which stands for the summed effects of other
expansion terms.4 Further more, the 3-particle source
term I�!� can be simplified with the help of Eqs. (11),
(45), and (46) as

I�!� �
2
E � 

2
H

18 ��6
!�6 ��2 � 6! ���!2� exp

�
�
!
��

�
: (62)

And then the solution for ���!� can be obtained from
Eqs. (23) and (61):
���!� � c4�!� exp
�

2 ���c1 � 1�

��c3�
!
�
� c4!

�
��

2 ���c1 � 1�

��c3�

�
Ei
�

2 ���c1 � 1�

��c3�
!
�
� K1!

�

�
2
E � 

2
H

18 ��5
! exp

�
�
!
��

�
��!� 5 ��� �

2
E � 

2
H

3 ��4
!Ei

�
�
!
��

��
(63)

and

���!� � c4 � exp
�

2 ���c1 � 1�

��c3�
!
�
� c4!

�
��

2 ���c1 � 1�

��c3�

�
Ei
�

2 ���c1 � 1�

��c3�
!
�
� K1!

�

�
2
E � 

2
H

18 ��5
! exp

�
�
!
��

�
��!� 5 ��� �

2
E � 

2
H

3 ��4
!Ei

�
�
!
��

��
; (64)
where K1 is an undetermined parameter and the exponen-
tial integral function Ei�z� � �

R
1
�z e

�t=tdt. All the terms
in the big parenthesis come from the source term I�!�.

Some discussions about the solutions (63) and (64) for
���!� are in the following.

Equations (63) and (64) show that c1 and c3 are always

in a combined form as 
2
���c1�1�
��c3�

�, so one can only get the
combined results for them. When !! 0, we have
���0� � 0 and ���0� � c4. Under the condition c3 < 0,
one may observe that c1 should be less than 1 to ensure that
���!� is normalizable, which shows that the transverse
momentum dependence of the B-meson wave function is
broadened due to the introduction of 3-particle wave
functions.

From Eqs. (23) and (61), we obtain

!���!� � 2
Z !

0
�����d� �

Z !

0

I��� � �����d�:
Numerically, due to the fact that 2
E � 

2
H,
R
!
0 I���d��R

!
0 ����d� for 8!> 0, and then one can safely set
I�!� � 0, or equivalently 2

E ’ 
2
H.

Under the approximation 2
E ’ 

2
H ’ 2 ��2=3, a solution

for ���!� can be directly obtained by substituting
Eqs. (63) and (64) into constraints (37)–(39), i.e.
���!� �
!

!2
0

exp
�
�
!
!0

�
; ���!� �

1

!0
exp

�
�
!
!0

�
;

(65)

where !0 � 2 ��=3. The undetermined parameters take the

following values, 
2
���c1�1�
��c3�

� � � 1
!0

, � � 1
!0

, K1 � 0, and
c4 �

1
!0

. Such solution for ���!� also satisfies the con-
straint (40), and it agrees well with the model for ���!�
raised by Ref. [20], where the same approximation 2

E ’

2
H ’ 2 ��2=3 is adopted in their QCD sum rule analysis.
IV. A MODEL FOR THE B-MESON WFS AND ITS
PHENOMENOLOGICAL CONSEQUENCES

In the above section, we have derived an approximate
expression for the B-meson WFs under the assumptions
(I,II,III), in which the 3-particle Fock states’ contributions
are included. The transverse momentum dependence of the
B-meson WFs is shown in Eq. (58) and the corresponding
DAs are shown in Eqs. (63) and (64).

For the transverse momentum dependence of the 3-
particle WFs, our results indicate that when the value of
c1 is within the range of (0, 1), it may be expanded to a
hyperbolalike curve as shown in Figs. 1 and 2, rather than a
simple �-function as is the case of WW approximation.
Our solution for ���!� favors c1 < 1 under the condition
that c3 < 0, which is reasonable since it means that the
introduction of 3-particle wave functions shall broaden the
meson’s longitudinal and transverse distributions. This is
in agreement with the conclusion drawn in Ref. [12], where
-9
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FIG. 3 (color online). B-meson transition form factors FB�� �Q
2� (Left) and FB�0 �Q

2� (Right) with the B-meson wave function
constructed in Eq. (66) and (67). The upper (lower) edge of the shaded band is for � � 0:30 (� � 0:25), and the dash-dot line is for
� � 0:27. For comparison, the dotted line and the dashed line are for the fitted QCD light-cone sum rule results [18] and the result
derived with WW B-meson wave function [17], respectively. �� � 0:55 GeV.
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it has been argued that the 3-particle contributions might
considerably broaden the B-meson transverse momentum
distribution.

The solutions for the B-meson wave function in
Eqs. (58), (63), and (64) are somewhat complex. Based
on the discussions in Sec. III, we propose a simple model
for the B-meson wave function with 3-particle Fock states’
contributions in the following. For convenience, we write
the two normalized B-meson wave functions in the com-
pact parameter b-space (useful for the kT-factorization
approach [11]):

���!; b� �
!

!2
0

exp
�
�
!
!0

�
��
��J��1
��

� �1� ���
2� ��J1��
���
�
�
2

�
1��

(66)

and

���!; b� �
1

!0
exp

�
�
!
!0

�
��
��J��1
��

� �1� ���
2� ��J1��
���
�
�
2

�
1��

; (67)

with!0 � 2 ��=3, � � ��2 ���!�
�������������������������
!�2 ���!�

q
b, and � is

in the range of (0, 1). In the above model, 2
E ’ 

2
H ’

2 ��2=3 is adopted, and to short the uncertainties of the
model as much as possible, we only take two main phe-
nomenological parameters �� and � into the definition.
Here for the transverse momentum dependence part, the
range of! is fixed within the range of �0; 2 ���.5 When �!
1, the trans verse momentum dependence of the B-meson
5This can be understood by checking the general solution of
���!� in Eqs. (63) and (64), i.e. the absolute value of c3 can not
be so big in order for ���!� to satisfy the constraints (37)–(40)
under the condition of c1 < 1.
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wave function returns to that of the B-meson wave function
in the WW approximation. In the above definition, the
transverse momentum dependence of the B-meson wave
function is still the like-function of the off-shell energy of
the valence quarks and keeps the main features caused by
the 3-particle Fock states, i.e. shall broaden the transverse
momentum dependence under the WW approximation to a
certain degree.

In order to see the phenomenological influence of the 3-
particle Fock states’ contributions, we recalculate the B!
� transition form factor within the kT-factorization ap-
proach and show how �� and � affect the final results. A
consistent analysis of the B! � transition form factor
within its physical range has been given in Ref. [17] by
taking the WW B-meson wave functions defined in
Eqs. (21) and (22). There we shall adopt the same method
as that of Ref. [17] to do the calculations and to short the
paper, we shall only list the results, the interested reader
may refer to Ref. [17] for more details of the calculation
technology.

Naively, the main property of the B! � transition form
factor is determined by the first inverse moment of ���!�,
and one may find from Eq. (40) that ���g�0 =�WW

0 � � � ���

B�=B � 0:19, where ��g�0 is the first inverse moment of
��g�� �!� and �WW

0 is that of �WW
� �!�. This shows that the

3-particle wave functions might be small. In Ref. [24], by
studying the B! �l	 decay within the perturbative QCD
approach, the authors also claims a small 3-particle con-
tributions. More explicitly, in Ref. [24], the 3-particle
contributions are estimated by attaching an extra gluon to
the internal off-shell quark line, and then (1=mb) power
suppression is readily induced. In the following, we shall
study the uncertainties caused by two parameters � and ��
under the condition that the 3-particle contribution is less
than �20% of that of the WW case, and at the same time
give the possible range for � and ��.
-10



FIG. 4 (color online). B-meson transition form factors FB�� �Q
2� (Left) and FB�0 �Q

2� (Right) with the B-meson wave function
constructed in Eq. (66) and (67). The upper (lower) edge of the shaded band is for �� � 0:52 ( �� � 0:58), the dash-dot line is for
�� � 0:55. For comparison, the dotted line and the dashed line are for the fitted QCD light-cone sum rule results [18] and the result
derived with WW B-meson wave function [17], respectively. � � 0:27 GeV.
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By taking B-meson wave functions as Eqs. (66) and
(67), we first study the uncertainties of B! � transition
form factor caused by � with fixed �� � 0:55 GeV (the
center value of �� determined in Ref. [17]). We show the
B! � transition form factors FB��;0�Q

2� in Fig. 3. Our
results show that if the contribution from the 3-particle
wave function is limited to be within�20% of that of WW
wave function withQ2 2 �0;�10 GeV2�, then the value of
� should be within the region of (0.25, 0.30).

Next, we study the uncertainties of B! � transition
form factor caused by �� with fixed � � 0:27 and the
results are shown in Fig. (4). Our results show that if the
contribution from the 3-particle wave function is limited to
be within �20% of that of WW wave function with Q2 2

�0;�10 GeV2�, then �� should be within the region of
(0.52, 0.58) GeV. Similarly, one may find that if taking a
larger value for � (e.g. � � 0:30), then the range of ��
should be shifted to a bigger interval [e.g. (0.55,
0.61) GeV].

Figures 3 and 4 show that by taking into account the 3-
particle wave functions’ contributions, the B! � transi-
tion form factors FB��;0�Q

2� raise slower with the increment
ofQ2 than the case of WW B-meson wave function. And if
the contribution from the 3-particle wave function is lim-
ited to be within �20% of that of WW wave function with
Q2 2 �0;�10 GeV2�, then the possible range of � and ��
are, �� �0:25; 0:30� and ��� �0:50 GeV; 0:60 GeV�.
V. SUMMARY

It had been proved that the B-meson WF is renormaliz-
able after taking into account the RG evolution effects [10],
and the undesirable feature [3] of the B-meson DA can be
removed under evolution. Therefore, to keep the kT depen-
074004
dence in both the hard scattering amplitude and the wave
function is necessary. It was found that the transverse and
longitudinal momentum dependence in the B-meson WF
under the WW approximation is correlated through a
�-function, ��k2

? �!�2
���!��. In the paper, we show

that the transverse momentum distribution of the B-meson
WF can be broadened to be a hyperbolalike curve by
including 3-particle Fock state, rather than a simple
�-function.

The solutions in this paper provide a practical frame-
work for constructing the B-meson LC WFs ���!; z2� and
hence are meaningful for phenomenological applications.
And we have constructed a new model for the B-meson
wave function in the compact parameter b-space as shown
in Eqs. (66) and (67) based on these solutions. There are
uncertainties caused by two unknown parameters �� and �.
However, since the B-meson WFs are universal, we can
determine them by global fitting of the experimental data.
By taking B! � transition form factor as an example, we
show that if the 3-particle wave functions’ contributions
are less than 20% of that of the WW case, then one may
observe that the preferable values for these two parameters
are �� 0:27 and ��� 0:55 GeV.

The reasonable inclusion of the 3-particle Fock states in
B-meson WFs provides us with the chance to make a more
precise evaluation on the B meson decays. Further studies
on the B-meson WFs with higher Fock states and its
phenomenological implications are still necessary.
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APPENDIX A: BASIC FORMULAE FOR THE
FOURIER TRANSFORMATION

First, we define ~F�t; u� � ~F�t; u; z2�jz2!0 and the Fourier
transformation:

~���t; z2� �
Z
d!e�i!t���!; z2�; (A1)

~F�t; u� �
Z
d!d�e�i�!��u�tF�!; ��;

�F � f�V;�A; XA; YAg�:
(A2)

Here !v� and �v� [v� is the ‘‘�’’-component of v
defined in Eq. (1)] denote the LC projection of the mo-
mentum carried by the light antiquark and the gluon,
respectively, and F�!; �� vanishes unless !  0 and � 
0.

Some useful formulae:

Z dt
2�

ei!t ~��t; z2� � ��!; z2�; (A3)

Z dt
2�

ei!t
@ ~��t; z2�

@t
� �i!��!; z2�; (A4)

Z dt
2�

tnei!t ~��t; z2� � ��i�n
@n

@!n ��!; z2�; �n  1�;

(A5)

Z dt
2�

tnei!t
@ ~��t; z2�

@t
� ��i�n

@n

@!n 
�i!��!; z2��;

�n  1�;
(A6)

where � � ���;��� and ~� � � ~��; ~���, respectively.
And for the 3-particle distributions, we have

Z dudt
2�

ei!t ~��t; u� �
Z !

0
d�

Z 1
!��

d�
�

���; ��; (A7)

Z dudt
2�

tnei!t ~��t;u� � ��i�n
@n

@!n

Z !

0
d�

Z 1
!��

d�
�

���;��;

�n 1�; (A8)
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Z ududt
2�

ei!t ~��t; u� �
Z !

0
d�

Z 1
!��

d�
�

�
!� �
�

�
���; ��;

(A9)
Z utdudt
2�

ei!t ~��t; u� � ��i�
Z !

0
d�

Z 1
!��

d�
�
@���; ��
@�

;

(A10)
Z utndudt
2�

ei!t ~��t; u� � ��i�n
@n�1

@!n�1

Z !

0
d�

�
Z 1
!��

d�
�
@���; ��
@�

;

�n  2�; (A11)
where � � ��V;�A; XA; YA� and ~� � � ~�V; ~�A; ~XA; ~YA�,
respectively. Note here, we have implicitly using the fol-
lowing equation,

Z 1
0
d�

Z 1
0
d�

Z 1

0
du���; �� 	 ��!� �� �u�

�
Z !

0
d�

Z 1
!��

d�
�

���; ��: (A12)
APPENDIX B: MELLIN MOMENTS OF THE
DISTRIBUTION AMPLITUDE

In order to calculate the Mellin moments defined in
Eq. (28), it is more convenient to use the derivative of
G�!�, i.e.

d
d!

G�!� �
2 ��

!�2 ���!�

�
I�!� �

a1K�!�

2 ���!
�
a2K�!�
!

� a2
d
d!

K�!�
�
: (B1)
And from Eq. (23), we have the following equation,

h!ni� �
h!ni�
n� 1

�
1

n� 1

Z 1
0
!nI�!�d!: (B2)
Substituting Eq. (11) into Eq. (B2), we get
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Z 1
0
!nI�!�d! � 2

Z 1
0
!n d

d!

�Z 1
0
d�

Z 1
0
d�

Z 1

0
du

@
@�

�A ��V� 	 ��!� �� �u�

�
d!

� �2n
Z 1

0
d�

Z 1
0
d�

Z 1

0
du��� �u�n�1 @

@�

�A ��V�

� 2n
Z 1

0
d�

Z 1
0
d�

Xn
j�2

j� 1

n
n

n� j

� �
�n�j�j�2
�A ��V� � 2n

Xn�1

j�1

j
j� 1

n� 1
j

� �

�A ��V�

n�1
j ;

(B3)

where the double moments of the 3-particle distributions are defined as


F�ij �
Z 1

0
d�

Z 1
0
d��i�j�j�1F��; �� �F � f�V;�A; XAg�: (B4)

The moments of ��g�� �!� can be written as

h!ni
�g�
� � �

1

n� 2

Z 1
0

!n�1

2 ���!

�
I�!� �

a1K�!�

2 ���!
�
a2K�!�
!

� a2
d
d!

K�!�
�
d!� a1

Z 1
0

!n

!� 2 ��
K�!�d!: (B5)

More definitely, with the help of the Eqs. (11) and (12), we have

h!ni
�g�
� � �

2

n� 2

Z !n�1

2 ���!

d
d!

�ZZZ
d�d�du

@
@�

�A ��V� 	 ��!� �� �u�

�
d!

�
2

n� 2

Z !n�1

�2 ���!�2

�
d
d!

�ZZZ
d�d�du
�A � XA� 	 ��!� �� �u�

�

� 2
�ZZZ

d�d�du
@
@�

�V� 	 ��!� �� �u�

��
d!

� 2
Z !n

2 ���!

�
d
d!

�ZZZ
d�d�du
�A � XA� 	 ��!� �� �u�

�

� 2
�ZZZ

d�d�du
@
@�

�V� 	 ��!� �� �u�

��
d!;

where we have implicitly applied the relation a1 � a2 � 1. To get the final results, the following formulae are useful
(n  2),

Z 1
0
!n d

d!

�Z 1
0
d�

Z 1
0
d�

Z 1

0
du

@
@�

F� 	 ��!� �� �u�

�
d! � n

Xn�1

j�1

j
j� 1

n� 1

j

 !

F�n�1

j ;

Z 1
0
!n d

d!

�Z 1
0
d�

Z 1
0
d�

Z 1

0
du
F� 	 ��!� �� �u�

�
d! � �

Xn
j�1

n

j

 !

F�nj ;

Z 1
0
!n
�Z 1

0
d�

Z 1
0
d�

Z 1

0
du

@
@�

F� 	 ��!� �� �u�

�
d! � �

Xn
j�1

j
j� 1

n

j

 !

F�nj ;

Z 1
0
!n d2

d!2

�Z 1
0
d�

Z 1
0
d�

Z 1

0
du
F� 	 ��!� �� �u�

�
d! � n

Xn�1

j�1

n� 1

j

 !

F�n�1

j ;

where F � ��V;�A; XA; YA�.
With the help of the above formulae, the value of h!ni

�g�
� can be directly derived, as is shown in Eq. (30). One subtle

point is that, before doing the integration over !, it is more useful to expand 1
2 ���!

, i.e.

1

2 ���!
�
�1

!

�
1�

�
2 ��

!

�
�

�
2 ��

!

�
2
�

�
2 ��

!

�
3
� 	 	 	

�
; (B6)

where the power of �2
��
! � will be stopped at a particular value, for one may observe that the terms with even higher powers

contribute zero exactly. And to do the integration in a form like
074004-13
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Z !n

�!� 2 ���2
dH �!�
d!

d!; (B7)
where H �!� is a function of !, we can transform it to a more familiar one
Z !n

�!� 2 ���2
dH �!�
d!

d! � n
Z !n�1

�!� 2 ���

dH �!�
d!

d!�
Z !n

�!� 2 ���

d2H �!�

d!2 d!: (B8)
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