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Branching ratio and CP Asymmetry of B! ���0� decays in the perturbative QCD approach
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In this paper, we calculate the branching ratios and CP-violating asymmetries for B0 ! �0��0� and
B� ! ����0� decays in the perturbative QCD factorization approach. In this approach, we not only
calculate the usual factorizable contributions, but also evaluate the nonfactorizable and annihilation type
contributions. Besides the current-current operators, the contributions from the QCD and electroweak
penguin operators are also taken into account. The theoretical predictions for the branching ratios are
Br�B� ! ����0�� � 9� 10�6 and Br�B0 ! �0��0�� � 5� 10�8, which agree well with the measured
values and currently available experimental upper limits. We also predict large CP-violating asymmetries
in these decays: Adir

CP��
��� � �13%, Adir

CP��
��0� � �18%, Adir

CP��
0�� � �41%, Adir

CP��
0�0� � �27%,

Amix
CP ��

0�� � �25%, and Amix
CP ��

0�0� � �11%, which can be tested by the current or future B factory
experiments.
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I. INTRODUCTION

Along with the great progress in theoretical studies and
experimental measurements, the charmless two-body B
meson decays are getting more and more interesting and
attracting more and more attentions, since they provide a
good place for testing the standard model (SM), studying
CP violation and searching for possible new physics be-
yond the SM.

For the two-body hadronic B meson decays, the domi-
nant theoretical error comes from the uncertainty in eval-
uating the hadronic matrix element hM1M2jOijBi where
M1 and M2 are light final mesons. At present, the QCD
factorization (QCDF) approach [1,2] and the perturbative
QCD (PQCD) factorization approach [3–5] are the two
popular methods being used to calculate the hadronic
matrix elements. The perturbative QCD approach has
been developed earlier from the QCD hard-scattering ap-
proach [3]. Some elements of this approach are also
present in the QCD factorization formula of Refs. [1,2].
The two major differences between these two approaches
are (a) the form factors are calculable perturbatively in
PQCD approach, but taken as the input parameters ex-
tracted from other experimental measurements in the
QCDF approach; and (b) the annihilation contributions
are calculable and play an important role in producing
CP violation for the considered decay modes in PQCD
approach, but it could not be evaluated reliably in QCDF
approach. Of course, one should remember that the as-
sumptions behind the PQCD approach, specifically the
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possibility to calculate the form factors perturbatively,
are still under discussion [6]. More efforts are needed to
clarify these problems.

Up to now, many Bmeson hadronic decay channels have
been calculated and studied phenomenologically in both
the QCDF approach [1,7,8] and in the PQCD approach [9–
13]. In this paper, we would like to calculate the branching
ratios and CP asymmetries for the B! ���0� decays by
employing the low energy effective Hamiltonian [14] and
the PQCD approach. Besides the usual factorizable con-
tributions, we here are able to evaluate the nonfactorizable
and the annihilation contributions to these decays.

Theoretically, the four B! ���0� decays have been
studied before in the naive or generalized factorization
approach [15], as well as in the QCD factorization ap-
proach [8]. On the experimental side, the branching ratios
of B! ���; ���0 decays have been measured [16–19],

Br�B� ! ���� � �8:1�1:7
�1:5� � 10�6;

Br�B� ! ���0� � �12:9�6:2
�5:5 � 2:0� � 10�6:

(1)

For B! �0�, �0�0 decays, only the experimental upper
limits are available now [19]

Br�B0 ! �0��< 1:5� 10�6;

Br�B0 ! �0�0�< 4:3� 10�6:
(2)

In B! ���0� decays, the B meson is heavy, setting at
rest and decaying into two light mesons (i.e. � and ��0� )
with large momenta. Therefore the light final state mesons
are moving very fast in the rest frame of B meson. In this
case, the short distance hard process dominates the decay
amplitude. We assume that the soft final state interaction is
not important for such decays, since there is not enough
-1 © 2006 The American Physical Society
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time for light mesons to exchange soft gluons. Therefore, it
makes the PQCD reliable in calculating the B! ���0�

decays. With the Sudakov resummation, we can include
the leading double logarithms for all loop diagrams, in
association with the soft contribution. Unlike the usual
factorization approach, the hard part of the PQCD ap-
proach consists of six quarks rather than four. We thus
call it six-quark operators or six-quark effective theory.
Applying the six-quark effective theory to Bmeson decays,
we need meson wave functions for the hadronization of
quarks into mesons. All the collinear dynamics are in-
cluded in the meson wave functions.

This paper is organized as follows. In Sec. II, we give a
brief review for the PQCD factorization approach. In
Sec. III, we calculate analytically the related Feynman
074002
diagrams and present the various decay amplitudes for
the studied decay modes. In Sec. IV, we show the numeri-
cal results for the branching ratios and CP asymmetries of
B! ���

0� decays and comparing them with the measured
values. The summary and some discussions are included in
the final section.
II. THEORETICAL FRAMEWORK

The three scale PQCD factorization approach has been
developed and applied in the nonleptonic B meson decays
[3–5,9–12] for some time. In this approach, the decay
amplitude is separated into soft, hard, and harder dynamics
characterized by different energy scales �t;mb;MW�. It is
conceptually written as the convolution,
A �B! M1M2� 	
Z
d4k1d

4k2d
4k3 Tr
C�t��B�k1��M1

�k2��M2
�k3�H�k1; k2; k3; t��; (3)
where ki’s are momenta of light quarks included in each
mesons, and Tr denotes the trace over Dirac and color
indices. C�t� is the Wilson coefficient which results from
the radiative corrections at short distance. In the above
convolution, C�t� includes the harder dynamics at larger
scale than MB scale and describes the evolution of local
4-Fermi operators from mW (the W boson mass) down to

t	O�
�����������
��MB

q
� scale, where �� � MB �mb. The function

H�k1; k2; k3; t� describes the four quark operator and the
spectator quark connected by a hard gluon whose q2 is in

the order of ��MB, and includes the O�
�����������
��MB

q
� hard dy-

namics. Therefore, this hard part H can be perturbatively
calculated. The function �M is the wave function which
describes hadronization of the quark and antiquark to the
meson M. While the function H depends on the processes
considered, the wave function �M is independent of the
specific processes. Using the wave functions determined
from other well measured processes, one can make quan-
titative predictions here.

Since the b quark is rather heavy we consider the B
meson at rest for simplicity. It is convenient to use light-
cone coordinate �p�; p�;pT� to describe the meson’s mo-
menta,

p� �
1���
2
p �p0 � p3� and pT � �p1; p2�: (4)
Throughout this paper, we use the light-cone coordinates to
write the four momentum as �k�1 ; k

�
1 ; k

?
1 �. Using these

coordinates the B meson and the two final state meson
momenta can be written as

P1 �
MB���

2
p �1; 1; 0T�; P2 �

MB���
2
p �1; r2

�; 0T�;

P3 �
MB���

2
p �0; 1� r2

�; 0T�;
(5)

respectively, where r� � m�=mB; the light pseudoscalar
meson masses have been neglected.

For the B! ���0� decays considered here, only the �
meson’s longitudinal part contributes to the decays, its
polar vector is �L �

MB��
2
p
M�
�1;�r2

�; 0T�. Putting the light

(anti-) quark momenta in B, � and ��0� mesons as k1, k2,
and k3, respectively, we can choose

k1 � �x1P
�
1 ; 0;k1T�; k2 � �x2P

�
2 ; 0;k2T�;

k3 � �0; x3P�3 ;k3T�:
(6)

Then, the integration over k�1 , k�2 , and k�3 in Eq. (3) will
lead to
A �B! ���0�� 	
Z
dx1dx2dx3b1db1b2db2b3db3 Tr
C�t��B�x1; b1����x2; b2����0� �x3; b3�H�xi; bi; t�St�xi�e�S�t��; (7)
where bi is the conjugate space coordinate of kiT , and t is
the largest energy scale in function H�xi; bi; t�. The large
logarithms ( lnmW

t ) coming from QCD radiative corrections
to four quark operators are included in the Wilson coef-
ficients C�t�. The large double logarithms (ln2xi) on the
longitudinal direction are summed by the threshold resum-
mation [20], and they lead to St�xi� which smears the end-
point singularities on xi. The last term, e�S�t�, is the
-2
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Sudakov form factor resulting from overlap of soft and
collinear divergences, which suppresses the soft dynamics
effectively [21]. Thus it makes the perturbative calculation
of the hard partH applicable at intermediate scale, i.e., MB
scale. We will calculate analytically the function
H�xi; bi; t� for B! ���0� decays in the first order in �s
expansion and give the convoluted amplitudes in next
section.

A. Wilson coefficients

For B! ���0� decays, the related weak effective
Hamiltonian Heff can be written as [14]

H eff �
GF���

2
p

�
VubV
ud�C1���Ou

1��� � C2���Ou
2����

� VtbV


td

X10

i�3

Ci���Oi���
�
: (8)

We specify below the operators in H eff for b! d tran-
sition:

Ou
1 �

�d��
�Lu� � �u���Lb�;

Ou
2 �

�d��
�Lu� � �u���Lb�;

O3 � �d��
�Lb� �

X
q0

�q0���Lq
0
�;

O4 � �d���Lb� �
X
q0

�q0���Lq
0
�;

O5 � �d��
�Lb� �

X
q0

�q0���Rq
0
�;

O6 � �d���Lb� �
X
q0

�q0���Rq
0
�;

O7 �
3

2
�d��

�Lb� �
X
q0
eq0 �q

0
���Rq

0
�;

O8 �
3

2
�d���Lb� �

X
q0
eq0 �q0���Rq

0
�;

O9 �
3

2
�d��

�Lb� �
X
q0
eq0 �q

0
���Lq

0
�;

O10 �
3

2
�d���Lb� �

X
q0
eq0 �q0���Lq

0
�;

(9)

where � and � are the SU(3) color indices; L and R are the
left- and right-handed projection operators with L � �1�
�5�, R � �1� �5�. The sum over q0 runs over the quark
fields that are active at the scale � � O�mb�, i.e.,
(q0�fu; d; s; c; bg). The PQCD approach works well for
the leading twist approximation and leading double loga-
rithm summation. For the Wilson coefficients Ci��� �i �
1; . . . ; 10�, we will also use the leading order (LO) expres-
sions, although the next-to-leading order calculations al-
ready exist in the literature [14]. This is the consistent way
074002
to cancel the explicit � dependence in the theoretical
formulae.

For the renormalization group evolution of the Wilson
coefficients from higher scale to lower scale, we use the
formulae as given in Ref. [9] directly. At the highmW scale,
the leading order Wilson coefficients Ci�MW� are simple
and can be found easily in Ref. [14].

In PQCD approach, the scale t is chosen at the maximum
value of various subprocess scales to suppress the higher
order corrections, which may be larger or smaller than the
mb scale. In the range of mb � t < mW , we will evaluate
the Wilson coefficients Ci�t� at scale t by using the leading
logarithm running equations, as given explicitly in
Eq. (C1) of Ref. [9]. In numerical calculations, we also
use �s � 4�=
�1 ln�t2=��5�2QCD�� which is the leading order

expression with ��5�QCD � 193 MeV, derived from ��4�QCD �

250 MeV. Here �1 � �33� 2nf�=12, with the appropriate
number of active quarks nf: nf � 5 for t � mb.

At a given energy scale t � mb � 4:8 GeV, the LO
Wilson coefficients Ci�mb� as given in Ref. [9] are

C1 � �0:2703; C2 � 1:1188; C3 � 0:0126;

C4 � �0:0270; C5 � 0:0085; C6 � �0:0326;

C7 � 0:0011; C8 � 0:0004; C9 � �0:0090;

C10 � 0:0022: (10)

In the range of t < mb, then we evaluate the Wilson
coefficients Ci�t� by using the Ci�mb� in Eq. (10) as bound-
ary input and the leading logarithmic running equations as
given in Appendix D of Ref. [9] for the case of nf � 4. For
the Wilson coefficient C2�t�, for example, the running
equation in the two different regions can be written as

C2�t� �
1
2��

�6=23 � �2=23�; for mb � t < mW;

(11)
C2�t� �
1
4��

�6=23 � �2=23��	�6=25 � 	12=25�

� 1
4��

�6=23 � �2=23��	�6=25 � 	12=25�;

for t < mb; (12)

where � � �S�t�=�S�mW� and 	 � �S�t�=�S�mb�. For the
running equations of other Wilson coefficients one can see
Appendix C and D of Ref. [9].

B. Wave functions

In the resummation procedures, the Bmeson is treated as
a heavy-light system. In general, the B meson light-cone
matrix element can be decomposed as [7,22]
-3
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Z 1

0

d4z

�2��4
eik1�zh0j �b��0�d��z�jB�pB�i

� �
i���������

2Nc
p

�
�p6 B �mB��5

�

B�k1�

�
n6 � v6���

2
p �
B�k1�

��
��
; (13)

where n � �1; 0; 0T�, and v � �0; 1; 0T� are the unit vectors
pointing to the plus and minus directions, respectively.
From the above equation, one can see that there are two
Lorentz structures in the B meson distribution amplitudes.
They obey to the following normalization conditions

Z d4k1

�2��4

B�k1� �

fB
2
���������
2Nc
p ;

Z d4k1

�2��4
�
B�k1� � 0:

(14)

In general, one should consider these two Lorentz struc-
tures in calculations of Bmeson decays. However, it can be
argued that the contribution of �
B is numerically small
[23], thus its contribution can be numerically neglected.
Using this approximation, we can reduce one input pa-
rameter in our calculation. Therefore, we only consider the
contribution of Lorentz structure

�B �
1���������
2Nc
p �p6 B �mB��5
B�k1�: (15)

In the next section, we will see that the hard part is always
independent of one of the k�1 and/or k�1 , if we make
approximations shown in next section. The B meson
wave function is then the function of variable k�1 (or k�1 )
and k?1 ,


B�k�1 ; k
?
1 � �

Z
dk�1 
�k

�
1 ; k

�
1 ; k

?
1 �: (16)

The wave function for d �d components in ��0� meson are
given as

��d �d
�P; x; �� �

1���������
2Nc
p fp6 
A

�d �d
�x� �m�d �d

0 
P
�d �d
�x�

� �m�d �d
0 �v6 n6 � v � n�


T
�d �d
�x�g (17)
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where P and x are the momentum and the momentum
fraction of �d �d, respectively. We assumed here that the
wave function of �d �d is same as the � wave function. The
parameter � is either �1 or �1 depending on the assign-
ment of the momentum fraction x.

In B! ���0� decays, � meson is longitudinally polar-
ized. We only consider its wave function in longitudinal
polarization [23,24],

h���P; �L�j �d��z�u��0�j0i �
1���������
2Nc
p

�
Z 1

0
dxeixP�zf6�
p6 �


t
��x�

�m�
��x�� �m�

s
��x�g:

(18)

The second term in above equation is the leading twist
wave function (twist-2), while the first and third terms are
subleading twist (twist-3) wave functions.

The transverse momentum k? is usually conveniently
converted to the b parameter by Fourier transformation.
The initial conditions of leasing twist 
i�x�, i � B, �, �,
�0, are of nonperturbative origin, satisfying the normaliza-
tion

Z 1

0

i�x; b � 0�dx �

1

2
���
6
p fi; (19)

with fi the meson decay constants.

III. PERTURBATIVE CALCULATIONS

In the previous section we have discussed the wave
functions and Wilson coefficients of the amplitude in
Eq. (3). In this section, we will calculate the hard part
H�t�. This part involves the four quark operators and the
necessary hard gluon connecting the four quark operator
and the spectator quark. We will show the whole amplitude
for each diagram including wave functions. Similar to the
B! �� decays [25], the eight diagrams contributing to
the B! ���0� decays are shown in Fig. 1. We first calcu-
late the usual factorizable diagrams (a) and (b). Operators
O1, O2, O3, O4, O9, and O10 are �V � A��V � A� currents,
the sum of their amplitudes is given as
Fe� � 4
���
2
p
GF�CFm

4
B

Z 1

0
dx1dx3

Z 1
0
b1db1b3db3
B�x1; b1� � f
�1� x3�
��x3; b3� � �1� 2x3�r��


s
��x3; b3�

�
t
��x3; b3����s�t1e�he�x1; x3; b1; b3� exp
�Sab�t1e�� � 2r�
s

��x3; b3��s�t2e�he�x3; x1; b3; b1� exp
�Sab�t2e��g; (20)
where CF � 4=3 is a color factor. The explicit expressions
of the functions hie, the energy scales tie and the Sudakov
factors Sab�t� Can be found in the Appendix. In the above
equation, we do not include the Wilson coefficients of the
corresponding operators, which are process dependent.
They will be shown later in this section for different decay
channels. The diagrams Fig. 1(a) and 1(b) are also the
diagrams for the B! � form factor AB!�0 . Therefore we
can extract AB!�0 from Eq. (20).

The operators O5, O6, O7, and O8 have a structure of
�V � A��V � A�. In some decay channels, some of these
operators contribute to the decay amplitude in a factoriz-
-4
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able way. Since only the axial-vector part of �V � A�
current contribute to the pseudoscalar meson production,

h�jV � AjBih�jV � Aj0i � �h�jV � AjBih�jV � Aj0i;

(21)

the result of these operators is opposite to Eq. (20). In some
074002
other cases, we need to do Fierz transformation for these
operators to get right color structure for factorization to
work. In this case, we get �S� P��S� P� operators from
�V � A��V � A� ones. For these �S� P��S� P� operators,
Fig. 1(a) and 1(b) give
FPe� � 8
���
2
p
GF�CFfd�m4

B

Z 1

0
dx1dx3

Z 1
0
b1db1b3db3
B�x1; b1� � f

��x3; b3� � r���x3 � 2�
s

��x3; b3� � x3
t
��x3; b3���

� �s�t1e�he�x1; x3; b1; b3� exp
�Sab�t1e�� � �x1
��x3; b3� � 2r�
s
��x3; b3���s�t2e�he�x3; x1; b3; b1� exp
�Sab�t2e��g:

(22)
For the nonfactorizable diagrams (c) and (d), all three meson wave functions are involved. The integration of b3 can be
performed using � function ��b3 � b2�, leaving only integration of b1 and b2. For the �V � A��V � A� operators, the result
is

Me� � �
16���

3
p GF�CFm4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1�
A

��x2; b2�

� fx3

��x3; b2� � 2r�
t
��x3; b3���s�tf�hf�x1; x2; x3; b1; b2� exp
�Scd�tf��g: (23)
For the nonfactorizable annihilation diagrams (e) and (f), again all three wave functions are involved. Here we have two
kinds of contributions. Ma� is the contribution containing operator type �V � A��V � A�, while MP

a� is the contribution
containing operator type �V � A��V � A�.
Ma� �
16���

3
p GF�CFm4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1� � f
x3
��x3; b2�
A

��x2; b2�

� r�r���x3 � x2��
P
��x2; b2�
t

��x3; b2� �
T
��x2; b2� �
s

��x3; b2�� � �x3 � x2��
P
��x2; b2�
s

��x3; b2�

�
T
��x2; b2�
t

��x3; b2���� � �s�t1f�h
1
f�x1; x2; x3; b1; b2� exp
�Sef�t1f�� � 
x2
��x3; b2�
A

��x2; b2�

� r�r���x2 � x3��

P
��x2; b2�


t
��x3; b2� �


T
��x2; b2�


s
��x3; b2�� � r�r� � ��2� x2 � x3�


P
��x2; b2�


s
��x3; b2�

� �2� x2 � x3�
T
��x2; b2�
t

��x3; b2���� � �s�t2f�h
2
f�x1; x2; x3; b1; b2� exp
�Sef�t2f��g; (24)
where r� � r� � m�
0 =mB.

MP
a� � �

16���
3
p GF�CFm4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1� � f
x2r�
��x3; b2��
P

��x2; b2� �
T
��x2; b2��

� x3r��
s
��x3; b2� �
t

��x3; b2�� �
A
��x2; b2���s�t1f�h

1
f�x1; x2; x3; b1; b2� exp
�Sef�t1f��

� 
�2� x2�r�
��x3; b2��
P
��x2; b2� �
T

��x2; b2�� � �2� x3�r��
s
��x3; b2� �
t

��x3; b2��
A
��x2; b2��

� �s�t2f�h
2
f�x1; x2; x3; b1; b2� exp
�Sef�t2f��g: (25)
The factorizable annihilation diagrams (g) and (h) involve only � and ��0� wave functions. There are also two kinds of
decay amplitudes for these two diagrams. Fa� is for �V � A��V � A� type operators, and FPa� is for �S� P��S� P� type
operators,
-5



FIG. 2. Diagrams contributing to the B! ���0� decays
(diagram (a) and (b) contribute to the B! ��0� form factor
FB!�

�0�

0 ).

FIG. 1. Diagrams contributing to the B! ���0� decays
(diagram (a) and (b) contribute to the B! � form factor AB!�0 ).
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Fa� � �4
���
2
p
�GFCFfBm4

B

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f
x3
��x3; b3�
A

��x2; b2� � 2r�r�
P
��x2; b2���1� x3�
s

��x3; b3�

� �1� x3�

t
��x3; b2����s�t

3
e�ha�x2; x3; b2; b3� exp
�Sgh�t

3
e�� � 
x2
��x3; b3�


A
��x2; b2�

� 2r�r�

s
��x3; b3���1� x2�


P
��x2; b2� � �1� x2�


T
��x2; b2����s�t

4
e�ha�x3; x2; b3; b2� exp
�Sgh�t

4
e��g; (26)

FPa� � �8
���
2
p
GF�CFm

4
BfB

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f
2r�
��x3; b3�


P
��x2; b2� � x3r��


s
��x3; b3�

�
t
��x3; b2��
A

��x2; b2�� � �s�t3e�ha�x2; x3; b2; b3� exp
�Sgh�t3e�� � 
2r�
s
��x3; b3�
A

��x2; b2�

� x2r��
P
��x2; b2� �
T

��x2; b2��
��x3; b3�� � �s�t4e�ha�x3; x2; b3; b2� exp
�Sgh�t4e��g: (27)
In the above equations, we have assumed that x1 � x2,
x3. Since the light quark momentum fraction x1 in Bmeson
is peaked at the small x1 region, while quark momentum
fraction x2 of ��0� is peaked around 0:5, this is not a bad
approximation. The numerical results also show that this
approximation makes very little difference in the final
result. After using this approximation, all the diagrams
are functions of k�1 � x1mB=

���
2
p

of B meson only, inde-
074002
pendent of the variable of k�1 . Therefore the integration of
Eq. (16) is performed safely.

If we exchange the � and ��0� in Fig. 1, the result will be
different. Because this will switch the dominant contribu-
tion from B! � form factor to B! ��0� form factors. The
new diagrams are shown in Fig. 2.

We firstly consider the factorizable diagrams Fig. 2(a)
and 2(b). The decay amplitude Fe induced by inserting the
-6
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�V � A��V � A� operators is
Fe � 4
���
2
p
�GFCFf�m4

B

Z 1

0
dx1dx3

Z 1
0
b1db1b3db3
B�x1; b1� � f
�1� x3�
A

��x3; b3� � r��1� 2x3��
P
��x3; b3�

�
T
��x3; b3��� � �s�t

1
e�he�x1; x3; b1; b3� exp
�Sab�t

1
e�� � 2r�


P
��x3; b3��s�t

2
e�he�x3; x1; b3; b1� exp
�Sab�t

2
e��g:

(28)

These two diagrams are also responsible for the calculation of B! ��0� form factors FB!�0 and FB!�
0

0 , These two form
factors can be extracted from Eq. (28).

Since only the vector part of the �V � A� current contribute to the vector meson production, the decay amplitude FPe
induced by inserting �V � A��V � A� operators is identical with the amplitude Fe as given in Eq. (28), i.e.,

FPe � Fe: (29)

Because neither scaler nor pseudoscaler density gives contribution to a vector meson production, h�jS� Pj0i � 0, we
get FS�Pe � 0.

For the nonfactorizable diagrams Fig. 2(c) and 2(d), the corresponding decay amplitudes are

Me � �
16���

3
p GF�CFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1�
��x2; b2� � fx3



A
��x3; b2�

� 2r�
T
��x3; b2���s�tf�hf�x1; x2; x3; b1; b2� exp
�Scd�tf��g; (30)

MP
e � �

32���
3
p GF�CFr�m4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1� � f
x2
A

��x3; b2��
s
��x2; b2� �
t

��x2; b2��

� r���x2 � x3��
P
��x3; b2� �
s

��x2; b2� �
T
��x3; b2�
t

��x2; b2�� � �x3 � x2��
P
��x3; b2�
t

��x2; b2�

�
T
��x3; b2�
s

��x2; b2�����s�tf�hf�x1; x2; x3; b1; b2� exp
�Scd�tf��g: (31)

From the nonfactorizable annihilation diagrams Fig. 2(e) and 2(f), we find the decay amplitude Ma for �V � A��V � A�
operators, MP

a for �V � A��V � A� operators,

Ma �
16���

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2
B�x1; b1� � f
x3
��x2; b2�


A
��x3; b2�

� r�r���x3 � x2��
P
��x3; b2�
t

��x2; b2� �
T
��x3; b2� �
s

��x2; b2�� � �x2 � x3��
P
��x3; b2�
s

��x2; b2�

�
T
��x3; b2�


t
��x2; b2���� � �s�t

1
f�h

1
f�x1; x2; x3; b1; b2� exp
�Sef�t

1
f�� � 
x2
��x2; b2�


A
��x3; b2�

� r�r���x2 � x3��
P
��x3; b2�
t

��x2; b2� �
T
��x3; b2� �
s

��x2; b2�� � �2� x2 � x3�
P
��x3; b2�
s

��x2; b2�

� �2� x2 � x3�
T
��x3; b2� �
t

��x2; b2����s�t2f�h
2
f�x1; x2; x3; b1; b2� exp
�Sef�t2f��g; (32)
MP
a � MP

a�: (33)

For the factorizable annihilation diagrams Fig. 2(g) and
2(h), we have

Fa � �Fa� and FPa � �F
P
a�: (34)

Now we are able to calculate perturbatively the form

factors FB!�
�0 �

0 �0�, AB!�0;1 �0�, and the decay amplitudes for
the Feynman diagrams after the integration over xi and bi.
When doing the above integrations over xi and bi, we
074002
should include the corresponding Wilson coefficients
Ci�tj� calculated at the appropriate scale tj using
Eqs. (C1) and (D1) of Ref. [9]. Since we here calculated
the form factors and amplitudes at the leading order ( one
order of �s�t�), the radiative corrections at the next order
would emerge in terms of �s�t� ln�m=t�, where m0s denote
some scales, like mB; 1=bi; . . . , in the hard part H�t�. We
select the largest energy scale amongm0s appearing in each
diagram as the hard scale t0s for the purpose of at least
killing the large logarithmic corrections partially,
-7



¨ PHYSICAL REVIEW D 73, 074002 (2006)
t1e � at �max�
�����
x3
p

mB; 1=b1; 1=b3�;

t2e � at �max�
�����
x1
p

mB; 1=b1; 1=b3�;

t3e � at �max�
�����
x3
p

mB; 1=b2; 1=b3�;

t4e � at �max�
�����
x2
p

mB; 1=b2; 1=b3�;

tf � at �max�
���������
x1x3
p

mB;
���������
x2x3
p

mB; 1=b1; 1=b2�;

t1f � at �max�
���������
x2x3
p

mB; 1=b1; 1=b2�;

t2f � at �max�
����������������������������������������������������������
x1 � x2 � x3 � x1x3 � x2x3

p
mB;���������

x2x3
p

mB; 1=b1; 1=b2�; (35)

where the constant at � 1:0� 0:1 is introduced in order to
estimate the scale dependence of the theoretical predic-
tions for the observables.

Before we put the things together to write down the
decay amplitudes for the studied decay modes, we give a
brief discussion about the �� �0 mixing and the gluonic
component of the �0 meson.

The � and �0 are neutral pseudoscalar (JP � 0�) me-
sons, and usually considered as mixtures of the SU�3�F
singlet �1 and the octet �8:

�
�0

� �
�

cos
p � sin
p
sin
p cos
p

� �
�8

�1

� �
; (36)

with

�8 �
1���
6
p �u �u� d �d� 2s�s�;

�1 �
1���
3
p �u �u� d �d� s�s�;

(37)

where 
p is the mixing angle to be determined by various
related experiments [26]. From previous studies, one ob-
tains the mixing angle 
p between�20� to�10�. One best
fit result as given in Ref. [27] is �17� � 
p � �10�.

As shown in Eqs. (36) and (37), � and �0 are generally
considered as a linear combination of light quark pairs. But
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it should be noted that the �0 meson may has a gluonic
component in order to interpret the anomalously large
branching ratios of B! K�0 and J=�! �0� [27,28]. In
Refs. [27–29], the physical states � and�0 were defined as

j�i � X�

��������u �u� �dd���
2
p

	
� Y�js�si; j�0i

� X�0
��������u �u� �dd���

2
p

	
� Y�0 js�si � Z�0 jgluoniumi; (38)

where X��0� , Y��0� , and Z�0 parameters describe the ratios of
u �u� d �d, s�s and gluonium (SU�3�F singlet) component of
��0�, respectively. In Ref. [27], the author shows that the
gluonic admixture in �0 can be as large as 26%, i.e.

Z�0=�X��0� � Y��0� � Z�0 � � 0:26: (39)

According to paper [28], a large SU(3) singlet contribution
can help us to explain the large branching ratio for B!
K�0 decay, but also result in a large branching ratio for
B! K0� decay, Br�B! K0�� 	 7:0�13� � 10�6 for

P � �20���10�� as given in Table II of Ref. [28], which
is clearly too large than currently available upper limits
[19]:

Br�B! K0��< 1:9� 10�6: (40)

Although a lot of studies have been done along this
direction, but we currently still do not understand the
anomalous gg� �0 coupling clearly, and do not know
how to calculate reliably the contributions induced by the
gluonic component of �0 meson. In this paper, we firstly
assume that �0 does not have the gluonic component, and
set the quark content of � and �0 as described by Eqs. (36)
and (37). We will also discuss the effects of a nonzero
gluonic admixture of �0 in next section.

Combining the contributions from different diagrams,
the total decay amplitude for B� ! ��� decay can be
written as
���
3
p

M����� � Fe�

��
	u

�
C1 �

1

3
C2

�
� 	t

�
�

1

3
C3 � C4 �

3

2
C7 �

1

2
C8 �

5

3
C9 � C10

��
fd�F1�
p�

� 	t

�
1

2
C7 �

1

6
C8 �

1

2
C9 �

1

6
C10

�
fs�F2�
p�

�
� FPe�	t

�
1

3
C5 � C6 �

1

6
C7 �

1

2
C8

�
F1�
p�

�Me�

��
	uC2 � 	t �

�
C3 � 2C4 � 2C6 �

1

2
C8 �

1

2
C9 �

1

2
C10

��
F1�
p�

� 	t

�
C4 � C6 �

1

2
C8 �

1

2
C10

�
F2�
p�

�
� �Ma� �Me �Ma�
	uC1 � 	t�C3 � C9�� � F1�
p�

� �2MP
a� �MP

e �	t�C5 � C7� � F1�
p� � Fe

��
	u

�
1

3
C1 � C2

�
� 	t

�
1

3
C3 � C4 �

1

3
C9 � C10

��
F1�
p�

�
;

(41)

where 	u � V
ubVud, 	t � V
tbVtd, and F1�
p� � � sin
p � cos
p=
���
2
p

and F2�
p� � � sin
p �
���
2
p

cos
p are the mixing
-8
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factors. The Wilson coefficients Ci should be calculated at the appropriate scale t using equations as given in the
Appendices of Ref. [9].

Similarly, the decay amplitude for B0 ! �0� can be written as

���
6
p

M��0�� � Fe

�
	u

�
C1 �

1

3
C2

�
� 	t

�
�

1

3
C3 �C4 �

3

2
C7 �

1

2
C8 �

5

3
C9 � C10

��
F1�
p�

� Fe�

��
	u

�
C1 �

1

3
C2

�
� 	t

�
1

3
C3 � C4 �

1

2
C7 �

1

6
C8 �

1

3
C9 �

1

3
C10

��
fd�F1�
p�

� 	t

�
1

2
C7 �

1

6
C8 �

1

2
C9 �

1

6
C10

�
fs�F2�
p�

�
� FPe�	t

�
1

3
C5 � C6 �

1

6
C7 �

1

2
C8

�
� F1�
p�

�Me�

��
	uC2 � 	t

�
C3 � 2C4 � 2C6 �

1

2
C8 �

1

2
C9 �

1

2
C10

��
� F1�
p�

� 	t

�
C4 � C6 �

1

2
C8 �

1

2
C10

�
F2�
p�

�
� �Ma� �Ma�

�
	uC2 � 	t

�
�C3 �

3

2
C8 �

1

2
C9 �

3

2
C10

��
F1�
p�

� �MP
e � 2MP

a �	t

�
C5 �

1

2
C7

�
F1�
p� �Me

�
	uC2 � 	t

�
�C3 �

3

2
C8 �

1

2
C9 �

3

2
C10

��
F1�
p�: (42)
The decay amplitudes for B! ���0 and B! �0�0 can
be obtained easily from Eqs. (41) and (42) by the following
replacements

fd�; fs� ! fd�0 ; f
s
�0 ;

F1�
p� ! F01�
p� � cos
p �
sin
p���

2
p ;

F2�
p� ! F02�
p� � cos
p �
���
2
p

sin
p:

(43)

Note that the possible gluonic component of �0 meson has
been neglected here.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters and wave functions

We use the following input parameters in the numerical
calculations

��f�4�

MS
� 250 MeV; f� � 130 MeV;

fB � 190 MeV; m�d �d
0 � 1:4 GeV;

f� � 200 MeV; fK � 160 MeV;

MB � 5:2792 GeV; MW � 80:41 GeV:

(44)

The central values of the CKM matrix elements to be used
in numerical calculations are [26]

jVudj � 0:9745; jVubj � 0:0040;

jVtbj � 0:9990; jVtdj � 0:0075:
(45)

For the B meson wave function, we adopt the model


B�x; b� � NBx
2�1� x�2 exp

�
�
M2
Bx

2

2!2
b

�
1

2
�!bb�

2

�
;

(46)
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where !b is a free parameter and we take !b � 0:4�
0:04 GeV in numerical calculations, and NB � 91:745 is
the normalization factor for !b � 0:4. This is the same
wave functions as in Refs. [9,10,23,30], which is a best fit
for most of the measured hadronic B decays.

For the light meson wave function, we neglect the b
dependant part, which is not important in numerical analy-
sis. We choose the wave function of � meson similar to the
pion case [24]


��x� �
3���
6
p f�x�1� x�
1� 0:18C3=2

2 �2x� 1��; (47)


t
��x� �

fT�
2
���
6
p f3�2x� 1�2 � 0:3�2x� 1�2
5�2x� 1�2

� 3� � 0:21
3� 30�2x� 1�2 � 35�2x� 1�4�g;

(48)


s
��x� �

3

2
���
6
p fT��1� 2x�
1� 0:76�10x2 � 10x� 1��:

(49)

The Gegenbauer polynomial is defined by

C3=2
2 �t� �

3
2�5t

2 � 1�: (50)

For � meson’s wave function, 
A
�d �d

, 
P
�d �d

and 
T
�d �d

represent the axial vector, pseudoscalar, and tensor com-
ponents of the wave function, respectively, for which we
utilize the result from the light-cone sum rule [31] includ-
ing twist-3 contribution:
-9
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A
�d �d
�x� �

3���������
2Nc
p fxx�1� x�

�
1� a�d �d

2

3

2

5�1� 2x�2 � 1�

� a�d �d
4

15

8

21�1� 2x�4 � 14�1� 2x�2 � 1�

�
;


P
�d �d
�x� �

1

2
���������
2Nc
p fx

�
1�

1

2

�
30�3 �

5

2
�2
�d �d

�

3�1� 2x�2

� 1� �
1

8

�
�3�3!3 �

27

20
�2
�d �d
�

81

10
�2
�d �d
a�d �d

2

�

�
35�1� 2x�4 � 30�1� 2x�2 � 3�
�
;


T
�d �d
�x� �

3���������
2Nc
p fx�1� 2x� �

�
1

6
�

�
5�3 �

1

2
�3!3

�
7

20
�2
�d �d
�

3

5
�2
�d �d
a�d �d

2

�
�10x2 � 10x� 1�

�
;

(51)

with

a�d �d
2 � 0:44; a�d �d

4 � 0:25; aK1 � 0:20;

aK2 � 0:25; ��d �d
� m�=m

�d �d
0 ; �3 � 0:015;

!3 � �3:0: (52)

We assume that the wave function of u �u is same as the
wave function of d �d. For the wave function of the s�s
components, we also use the same form as d �d but with
ms�s

0 and fy instead of md �d
0 and fx, respectively. For fx and

fy, we use the values as given in Ref. [32] where isospin
symmetry is assumed for fx and SU(3) breaking effect is
included for fy:

fx � f�; fy �
���������������������
2f2

K � f
2
�

q
: (53)

These values are translated to the values in the two
mixing angle method, which is often used in vacuum
saturation approach as

f8 � 169 MeV; f1 � 151 MeV;


8 � �25:9���18:9��; 
1 � �7:1���0:1��;
(54)

where the pseudoscalar mixing angle 
p is taken as �17�

(� 10�) [27]. The parameters mi
0 �i � �d �d�u �u�; �s�s� are
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defined as

m
�d �d�u �u�

0 � m�
0 �

m2
�

�mu �md�
; m�s�s

0 �
2M2

K �m
2
�

�2ms�
:

(55)

We include full expression of twist-3 wave functions for
light mesons. The twist-3 wave functions are also adopted
from QCD sum rule calculations [33]. We will see later that
this set of parameters will give good results for B! ���0�

decays. Using the above chosen wave functions and the
central values of relevant input parameters, we find the
numerical values of the corresponding form factors at zero
momentum transfer from Eqs. (20) and (28)

AB!�0 �q2 � 0� � 0:37; FB!�0 �q2 � 0� � 0:15;

FB!�
0

0 �q2 � 0� � 0:14:
(56)

These values agree well with those as given in
Refs. [31,32,34].

B. Branching ratios

For B! ���0� decays, the decay amplitudes in Eqs. (41)
and (42) can be rewritten as

M � V
ubVudT � V


tbVtdP � V
ubVudT
1� ze

i������;

(57)

where

z �
��������V



tbVtd

V
ubVud

��������
��������PT

�������� (58)

is the ratio of penguin to tree contributions, � �

arg
�
VtdV
tb
VudV
ub

� is the weak phase (one of the three CKM

angles), and � is the relative strong phase between tree
(T) and penguin (P) diagrams. The ratio z and the strong
phase � can be calculated in our PQCD approach. One can
leave the CKM angle � as a free parameter and explore the
CP asymmetry parameter dependence on it.

For B! ��� decay, for example, one can find ‘‘T’’ and
‘‘P’’ terms by comparing the decay amplitude as defined in
Eq. (41) with that in Eq. (57),
T����� �
F1�
p����

3
p �

�
Fe�

�
C1 �

1

3
C2

�
fd� �Me�C2 � Fe

�
1

3
C1 � C2

�
� �Ma �Me �Ma��C1

�
; (59)
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P����� �
F1�
p����

3
p �

�
Fe�

�
�

1

3
C3 � C4 �

3

2
C7 �

1

2
C8 �

5

3
C9 � C10

�
fd� � FPe�

�
1

3
C5 � C6 �

1

6
C7 �

1

2
C8

�

�Me�

�
�C3 � 2C6 �

3

2
C8 �

1

2
C9 �

3

2
C10

�
� Fe

�
1

3
C3 � C4 �

1

3
C9 � C10

�

� �Ma� �Me �Ma��C3 � C9� � �2MP
a �MP

e ��C5 � C7�

�

�
F2�
p����

3
p

�
Fe�

�
1

2
C7 �

1

6
C8 �

1

2
C9 �

1

6
C10

�
� fs� �Me�

�
C4 � C6 �

1

2
C8 �

1

2
C10

��
: (60)
Similarly, one can obtain the expressions of the corre-
sponding tree and penguin terms for the remaining three
decays.

Using the ‘‘T’’ and ‘‘P’’ terms, one can calculate the
ratio z and the strong phase � for the decay in study. For
B� ! ��� and ���0 decays, we find numerically that

z����� � 0:10; ������ � �137�; (61)

z����0� � 0:15; �����0� � �139�: (62)

The errors of the ratio z and the strong phase � induced by
the uncertainty of the input parameters, such as !b �
0:4� 0:04 GeV, m�

0 � 1:4� 0:1 GeV, and � � 100� �
20�, are very small in magnitude and not be shown explic-
itly in Eqs. (61) and (62). The reason is that the errors
induced by the uncertainties of these input parameters are
canceled almost completely in the ratio.

Unlike the case of QCD factorization approach, the
energy scale t (in PQCD factorization approach ) appeared
in the Wilson coefficients Ci�t� and in the Sudakov form
factors Sj�t� vary simultaneously during the integration
over xi and bi �i � 1; 2; 3�. If we choose the hard energy
scale t0js as defined in Eqs. (35) with at � 1, there will be
no remaining scale dependence left explicitly after the
integration. But we know that such scale dependence
should exist and likely dominate the errors on theoretical
predictions for those observables. Since the calculation in
this paper is performed at the leading order and thus may
suffers from the uncertainties due to the scale dependence
of the LO Wilson coefficients. In Ref. [35] the authors
calculated the branching ratios of B! K�, �� firstly at
the next-to-leading order by using the PQCD factorization
approach, and they found that the NLO contribution can
give about 15–20% correction to LO predictions. The size
of NLO contribution in PQCD approach is indeed very
complicated to calculate. To explore it, as shown in
Eq. (35), we here multiply a factor at � 1:0� 0:1 to the
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ordinary definition of scale tj’s in Refs. [9–13], and take it
as an estimation for the uncertainty of the possible scale
dependence. Numerically we find that

z����� � 0:10�0:06
�0:01; ������ � ��137�22

�2 �
�; (63)

z����0� � 0:15�0:06
�0:01; �����0� � ��139�27

�1 �
�; (64)

for at � 1� 0:1. The larger change of z and � corresponds
to the case of at � 0:9, while the magnitude of the varia-
tions is consistent with the general expectation.

From Eq. (57), it is easy to write the decay amplitude for
the corresponding charge conjugated decay mode

�M � VubV
udT � VtbV


tdP � VubV
udT
1� ze

i�������:

(65)

Therefore the CP-averaged branching ratio for B0 ! ���0�

is

Br � �jMj2 � j �Mj2�=2

� jVubV


udTj

2
1� 2z cos� cos�� z2�; (66)

where the ratio z and the strong phase � have been defined
in Eqs. (57) and (58). It is easy to see that the CP-averaged
branching ratio is a function of cos� for the given ratio z
and the strong phase �. This gives a potential method to
determine the CKM angle � by measuring only the
CP-averaged branching ratios with PQCD calculations.
But one should know that the uncertainty of theory is so
large as to make it unrealistic.

Using the wave functions and the input parameters as
specified in previous sections, it is straightforward to cal-
culate the branching ratios for the four considered decays.
The theoretical predictions in the PQCD approach for the
branching ratios of the decays under consideration are the
following
Br�B� ! ���� � 
8:5�3:0
�2:1�!b�

�0:8
�0:7�m

�
0 � � 0:4����1:2

�0:2�at�� � 10�6; (67)

Br�B� ! ���0� � 
8:7�3:0
�2:2�!b�

�0:7
�0:9�m

�
0 �
�0:5
�0:7���

�1:1
�0:3�at�� � 10�6; (68)

Br�B0 ! �0�� � 
0:024�0:012
�0:007�!b�

�0:004
�0:002�m

�
0 � � 0:002����0:102

�0:005�at�� � 10�6; (69)
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Br�B0 ! �0�0� � 
0:061�0:030
�0:018�!b�

�0:004
�0:003�m

�
0 � � 0:003����0:114

�0:009�at�� � 10�6; (70)

for 
p � �10�; and

Br�B� ! ���� � 
10:6�3:9
�2:6�!b�

�1:0
�0:9�m

�
0 � � 0:5����1:4

�0:3�at�� � 10�6; (71)

Br�B� ! ���0� � 
6:5�2:3
�1:8�!b� � 0:6�m�

0 � � 0:5����0:9
�0:2�at�� � 10�6; (72)

Br�B0 ! �0�� � 
0:042�0:020
�0:012�!b� � 0:005�m�

0 �
�0:006
�0:004���

�0:128
�0:012�at��� � 10�6; (73)

Br�B0 ! �0�0� � 
0:047�0:020
�0:016�!b�

�0:001
�0:006�m

�
0 � � 0:001����0:100

�0:004�at�� � 10�6; (74)
for 
p � �17�. The major errors are induced by the
uncertainty of hard energy scale t, !b � 0:4�
0:04 GeV, m�

0 � 1:4� 0:1 GeV, and � � 100� � 20�,
respectively. It is easy to see that
(a) T
FIG. 3.
10�6)
!b � 0
0:44 G
he errors of the branching ratios induced by vary-
ing at in the range of at � 
0:9; 1:1� are less than
20% for the tree-dominated B! ����0� decays; but
can be significant for the penguin-dominated B!
�0��0� decays;
(b) T
he deviations with respect to the central values are
large for the case of at � 0:9, but very small for
at � 1:1.
(c) I
n general, the theoretical predictions have a weak
dependence on the variation of at for 1< at < 1:5.
But the numerical results show a very strong depen-
dence on the variation of at for at < 1: For at � 0:8,
for example, the error of the branching ratio
Br�B� ! ���� will become as large as �40%;
For at � 0:7, some numerical integrations even be-
come broken.
This feature agrees with the general expectations: the
energy scale tj’s can not be too low in the PQCD factori-
zation approach, otherwise, the reliability of the perturba-
tive calculation of the form factors and decay amplitudes in
PQCD approach will become weak or even lost
completely.

It is easy to see that the PQCD predictions for the
branching ratios of considered decays agree very well
with the measured values or the upper limits as shown in
Eqs. (1) and (2). For the four B! ���0� decays, the theo-
The � dependence of the branching ratios (in unit of
of B� ! ����0� decay for m�

0 � 1:4 GeV, 
p � �10�,
:36 GeV (dotted curve), 0:40 GeV (solid curve) and

eV (short-dashed curve). The gray band show the data.
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retical predictions for the CP-averaged branching ratios in
the PQCD approach are well consistent with those given in
the QCD factorization approach [2]:

Br�B� ! ���� � �9:4�5:9
�4:8� � 10�6;

Br�B� ! ���0� � �6:3�4:0
�3:3� � 10�6;

(75)

Br�B0 ! �0�� � �0:03�0:17
�0:10� � 10�6;

Br�B0 ! �0�0� � �0:01�0:12
�0:06� � 10�6;

(76)

where the individual errors have been added in quadrature.
It is worth stressing that the theoretical predictions in the

PQCD approach have large theoretical errors induced by
our ignorance of NLO contributions, and the still large
uncertainties of many input parameters. In our analysis,
we consider the constraints on these parameters from
analysis of other well measured decay channels. For ex-
ample, the constraint 1:1 GeV � m�

0 � 1:9 GeV was ob-
tained from the phenomenological studies for B! ��
decays [9], while the constraint of � � 100� � 20� were
obtained by direct measurements or from the global fit
[19,36,37]. From numerical calculations, we get to know
that the main errors come from the uncertainty of !b, m�

0 ,
�, 
p and the next-to-leading order contributions.

In Figs. 3 and 4, we present, respectively, the PQCD
predictions of the branching ratios of B! ��� and ���0

decays for 
p � �10�, !b � 0:4� 0:04 GeV, m�
0 �

1:4� 0:1 GeV and � � 
0�; 180��. Figure 5 shows the
�-dependence of the PQCD predictions of the branching
FIG. 4. The � dependence of the branching ratios (in unit of
10�6) of B� ! ����0� decays for !b � 0:4 GeV, 
p � �10�,
m�

0 � 1:3 GeV (dotted curve), 1:4 GeV (solid curve) and
1:5 GeV (short-dashed curve). The gray band shows the data.
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FIG. 5. The � dependence of the branching ratios (in unit of
10�6) of �0� (solid curve) and �0�0 (dotted curve) decays for
m�

0 � 1:4 GeV, 
p � �10�, !b � 0:40 GeV.

FIG. 6. The direct CP asymmetries (in percentage) of B� !
��� (solid curve) and B� ! ���0 (dotted curve) as a function
of CKM angle �.
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ratios of B! �0��0� decays for 
p � �10�, !b �

0:4 GeV, m�
0 � 1:4 GeV and � � 
0�; 180��.

From the numerical results and the figures we observe
that the PQCD predictions are very sensitive to the varia-
tions of !b and m�

0 . The parameter m�
0 originates from the

chiral perturbation theory and have a value near 1 GeV. The
m�

0 parameter characterizes the relative size of twist 3
contribution to twist 2 contribution. Because of the chiral
enhancement of m�

0 , the twist 3 contribution become com-
parable in size with the twist 2 contribution. The branching
ratios of Br�B! ���0�� are also sensitive to the parameter
m�

0 , but not as strong as the !b dependence.

C. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating
asymmetries of B! ���0� decays in PQCD approach.
For B� ! ��� and B� ! ���0 decays, the direct
CP-violating asymmetries ACP can be defined as:

A dir
CP �

j �Mj2 � jMj2

jMj2 � jMj2
�

2z sin� sin�

1� 2z cos� cos�� z2 ; (77)

where the ratio z and the strong phase � have been defined
in previous subsection and are calculable in PQCD
approach.

Using the central values of z and � as given in Eqs. (61)
and (62), it is easy to calculate the CP-violating asymme-
tries. In Fig. 6, we show the �� dependence of the direct
CP-violating asymmetries Adir

CP for B� ! ��� (the solid
curve) and B� ! ���0 (the dotted curve) decay, respec-
tively. From Fig. 6, one can see that the CP-violating
asymmetries Adir

CP�B
� ! ���� and Adir

CP�B
� ! ���0� are

large in magnitude, about �15% for �	 100�. The large
CP-violating asymmetries plus large branching ratios are
clearly measurable in the B factory experiments.
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For � � 100� � 20�, one can read out the allowed
ranges of Adir

CP from Fig. 6 directly

Adir
CP�B

� ! ���� � ��13�1:2
�0:5���

�2
�14�at�� � 10�2;

Adir
CP�B

� ! ���0� � ��18�3:0
�1:6���

�1
�14�at�� � 10�2:

(78)

where the second error comes from at � 1:0� 0:1, it is
indeed not very large. The possible theoretical errors in-
duced by the uncertainties of other input parameters are all
very small, since both z and � are stable against the
variations of them.

The theoretical predictions for the direct CP-violating
asymmetries Adir

CP�B
� ! ����0�� in the PQCD approach

are generally larger in size than those obtained by using
the QCD factorization approach [2]

Adir
CP�B

� ! ���� � ��2:4� 6:4� � 10�2;

Adir
CP�B

� ! ���0� � �4:1�10:6
�9:9 � � 10�2:

(79)

On the experimental side, the new world-average [19] is

ACP�B
� ! ����exp � ��3� 16� � 10�2; (80)

which is still consistent with the predictions in both PQCD
and QCD factorization approach within the still large
experimental error. More data are clearly needed to make
a reliable judgement.

We now study the CP-violating asymmetries for B0 !

�0��0� decays. For these neutral decay modes, the effects of
B0 � �B0 mixing should be considered. For B0 meson de-
cays, we know that ��=�md � 1 and ��=�� 1. The
CP-violating asymmetry of B0� �B0� ! �0��0� decay is time
dependent and can be defined as
-13



FIG. 8. The mixing-induced CP asymmetry Amix
CP (in percent-

age) of B0 ! �0� (solid curve) and B0 ! �0�0 (dotted curve) as
a function of CKM angle �.
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ACP �
��B0

d��t� ! fCP� � ��B0
d��t� ! fCP�

��B0
d��t� ! fCP� � ��B0

d��t� ! fCP�

� Adir
CP cos��m�t� � Amix

CP sin��m�t�; (81)

where �m is the mass difference between the two B0 mass
eigenstates, �t � tCP � ttag is the time difference between
the tagged B0 ( �B0) and the accompanying �B0 (B0) with
opposite b flavor decaying to the finalCP-eigenstate fCP at
the time tCP. The direct and mixing-induced CP-violating
asymmetries Adir

CP and Amix
CP can be written as

Adir
CP �

j�CPj2 � 1

1� j�CPj2
; Amix

CP �
2 Im��CP�

1� j�CPj2
; (82)

where the CP-violating parameter �CP is

�CP �
V
tbVtdh�

0��0�jHeffj �B0i

VtbV


tdh�

0��0�jHeffjB
0i
� e2i� 1� zei�����

1� zei�����
: (83)

Here the ratio z and the strong phase � have been defined
previously. In PQCD approach, since both z and � are
calculable, it is easy to find the numerical values of Adir

CP
and Amix

CP for the considered decay processes.
For B0 ! �0� and �0�0 decays, the numerical values of

the ratio z and the strong phase � are

z��0�� � 4:0; ���0�� � �57�; (84)

z��0�0� � 6:8; ���0�0� � �65�: (85)

Unlike the case of B� ! ����0� decays, we here have z >
1, which means that the ‘‘P’’ term is much larger in size
than the ‘‘T’’ term for B0 ! �0��0� decays, since the ‘‘T’’
term here is a color-suppressed tree.

In Figs. 7 and 8, we show the �� dependence of the
direct and the mixing-induced CP-violating asymmetry
FIG. 7. The direct CP asymmetry Adir
CP (in percentage) of B0 !

�0� (solid curve) and B0 ! �0�0 (dotted curve) as a function of
CKM angle �.
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Adir
CP and Amix

CP for B0 ! �0� (solid curve) and B0 ! �0�0

(dotted curve) decays, respectively. For �	 100�, one can
find numerically that

Adir
CP�B

0 ! �0�� � �41%;

Amix
CP �B

0 ! �0�� � �25%;
(86)

Adir
CP�B

0 ! �0�0� � �27%;

Amix
CP �B

0 ! �0�0� � �11%:
(87)

They are also large in size. The theoretical errors induced
by the uncertainties of input parameters are only about
10% because of the cancellation in ratios. If we vary at
in the range of 0:9 � at � 1:1, however, the theoretical
predictions for the CP-violating asymmetries of the
penguin-dominated B0 ! �0��0� decays may change sig-
nificantly

Adir
CP�B

0 ! �0�� � 
�85%;�24%�;

Amix
CP �B

0 ! �0�� � 
�19%;�35%�;
(88)

Adir
CP�B

0 ! �0�0� � 
�75%;�13%�;

Amix
CP �B

0 ! �0�0� � 
�9%;�22%�:
(89)

This feature may be interpreted as an indication of the
importance of the NLO contributions to those penguin-
dominated decay modes.

If we integrate the time variable t, we will get the total
CP asymmetry for B0 ! �0��0� decays,

ACP �
1

1� x2 A
dir
CP �

x

1� x2 A
mix
CP ; (90)

where x � �m=� � 0:771 for the B0 � �B0 mixing [26]. In
Fig. 9, we show the �-dependence of the total CP asym-
-14



FIG. 9. The total CP asymmetry Atot
cp (in percentage) of B0 !

�0� (solid curve) and B0 ! �0�0 (dotted curve) as a function of
CKM angle �.
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metry ACP for B0 ! �0� (solid curve) and B0 ! �0�0

(dotted curve) decay, respectively. For �	 100�, the total
CP asymmetry is around �10% for B0 ! �0��0� decays.

For B� ! ��� and ���0 decays, the large
CP-violating asymmetry around�15% could be measured
in the running B factory experiments since their branching
ratios are rather large, 	10�5. For Br�B0 ! �0�� and
�0�0 decays, however, it is very difficult to measure their
CP-violating asymmetries at current running B factories
since their branching ratios are very small, 	10�8 only. It
could be measured in the forthcoming LHCb experiment.

D. Effects of possible gluonic component of �0

Up to now, we have not considered the possible contri-
butions to the branching ratios and CP-violating asymme-
tries of B! ��0 decays induced by the possible gluonic
component of �0 [27–29]. When Z�0 � 0, a decay ampli-
tude M0 will be produced by the gluonic component of �0.
Such decay amplitude may interfere constructively or de-
structively with the ones from the q �q �q � u; d; s� compo-
nents of �0, the branching ratios of the decays in question
may be increased or decreased accordingly.

Unfortunately, we currently do not know how to calcu-
late this kind of contributions reliably. But we can treat it as
an theoretical uncertainty. For jM0=M�q �q�j 	 0:1� 0:2,
for example, the resulted uncertainty for the branching
ratios as given in Eqs. (68) and (70) will be around 20 to
30%.

From Eq. (68), one can see that the theoretical prediction
of Br�B� ! ���0� in the PQCD approach agrees well
with the measured value within 1 standard deviation, which
means that there is no large room left for the contribution
due to the gluonic component of �0. We therefore believe
that the gluonic admixture of �0 should be small, and most
possibly not as important as expected before.
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As for the CP-violating asymmetries of B! ��0 de-
cays, the possible contributions of the gluonic components
of the �0 meson are largely cancelled in the ratio.
V. SUMMARY

In this paper, we calculate the branching ratios and
CP-violating asymmetries of B0 ! �0�, B0 ! �0�0,
B� ! ���, and B� ! ���0 decays in the PQCD facto-
rization approach.

Besides the usual factorizable diagrams, the nonfactor-
izable and annihilation diagrams as shown in Figs. 1 and 2
are also calculated analytically. Although the nonfactoriz-
able and annihilation contributions are subleading for the
branching ratios of the considered decays, but they are not
negligible. Furthermore these diagrams provide the neces-
sary strong phase required by a nonzero CP-violating
asymmetry for the considered decays.

From our calculations and phenomenological analysis,
we found the following results:
(i) F
-15
rom analytical calculations, the form factors for
B! �, B! �0 and B! � transitions can be ex-
tracted. The PQCD results for these form factors
are AB!�0 �0� � 0:37, FB!�0 �0� � 0:15, and
FB!�

0

0 �0� � 0:14, which are in good agreement
with those obtained from the QCD sum rule
calculations.
(ii) F
or the branching ratios of the four considered
decay modes, the theoretical predictions in PQCD
approach are

Br�B� ! ����0�� � 9� 10�6; (91)

Br�B0 ! �0��0�� � 5� 10�8: (92)

Although the theoretical uncertainties are still large
(can reach 50%), the leading PQCD predictions for
the branching ratios agree well with the measured
values or currently available experimental upper
limits, and are also consistent with the results ob-
tained by employing the QCD factorization
approach.
(iii) F
or the CP-violating asymmetries, the theoretical
predictions in PQCD approach are

Adir
CP�B

� ! ���� � �13%; (93)

Adir
CP�B

� ! ���0� � �18%; (94)

Adir
CP�B

0 ! �0�� � �41%;

Amix
CP �B

0 ! �0�� � �25%;
(95)

Adir
CP�B

0 ! �0�0� � �27%;

Amix
CP �B

0 ! �0�0� � �11%;
(96)
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for � � 100�. For B� ! ��� decay, the
CP-violating asymmetry around �15% could be
measured in the running B factory experiments. For
the neutral decays, their CP-violating asymmetries
may be measured in the forthcoming LHCb
experiments.
(iv) T
he major theoretical errors of the computed ob-
servables are induced by the uncertainties of the
hard energy scale tj’s, the parameters !b and m�

0 ,
as well as the CKM angle �.
(v) F
rom the good consistency of the PQCD prediction
of Br�B� ! ���0� with the measured value, we
believe that the gluonic admixture of �0 should be
small, and most possibly not as important as ex-
pected before.
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APPENDIX: RELATED FUNCTIONS

We show here the function hi’s, coming from the Fourier
transformations of H�0�,
he�x1; x3; b1; b3� � K0�
���������
x1x3
p

mBb1�

�b1 � b3�K0�
�����
x3
p

mBb1�I0�
�����
x3
p

mBb3�

� 
�b3 � b1�K0�
�����
x3
p

mBb3�I0�
�����
x3
p

mBb1��St�x3�; (A1)

ha�x2; x3; b2; b3� � K0�i
���������
x2x3
p

mBb3�

�b3 � b2�K0�i
�����
x3
p

mBb3�I0�i
�����
x3
p

mBb2�

� 
�b2 � b3�K0�i
�����
x3
p

mBb2�I0�i
�����
x3
p

mBb3��St�x3�; (A2)

hf�x1; x2; x3; b1; b2� � f
�b2 � b1�I0�MB
���������
x1x3
p

b1�K0�MB
���������
x1x3
p

b2�

� �b1 $ b2�g �
K0�MBF�1�b1�; for F2

�1� > 0

�i
2 H�1�0 �MB

�����������
jF2
�1�j

q
b1�; for F2

�1� < 0

0
B@

1
CA; (A3)

h1
f�x1; x2; x3; b1; b2� � f
�b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB�

� �b1 $ b2�g �
K0�MBF�2�b1�; for F2

�2� > 0

�i
2 H�1�0 �MB

�����������
jF2
�2�j

q
b1�; for F2

�2� < 0

0
B@

1
CA��; (A4)

h2
f�x1; x2; x3; b1; b2� � f
�b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB� � �b1 $ b2�g

�
�i
2

H�1�0 �
����������������������������������������������������������
x1 � x2 � x3 � x1x3 � x2x3

p
b1MB�; (A5)
where J0 is the Bessel function and K0, I0 are modified
Bessel functions K0��ix� � ���=2�Y0�x� � i��=2�J0�x�,
and F�j�’s are defined by

F2
�1� � �x1 � x2�x3; (A6)

F2
�2� � �x1 � x2�x3: (A7)
The threshold resummation form factor St�xi� is adopted
from Ref. [23]

St�x� �
21�2c��3=2� c�����

�
p

��1� c�

x�1� x��c; (A8)

where the parameter c � 0:3. This function is normalized
to unity.

The Sudakov factors used in the text are defined as
-16
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Sab�t� � s�x1mB=
���
2
p
; b1� � s�x3mB=

���
2
p
; b3� � s��1� x3�mB=

���
2
p
; b3� �

1

�1

�
ln

ln�t=��

� ln�b1��
� ln

ln�t=��

� ln�b3��

�
; (A9)

Scd�t� � s�x1mB=
���
2
p
; b1� � s�x2mB=

���
2
p
; b2� � s��1� x2�mB=

���
2
p
; b2� � s�x3mB=

���
2
p
; b1� � s��1� x3�mB=

���
2
p
; b1�

�
1

�1

�
2 ln

ln�t=��

� ln�b1��
� ln

ln�t=��

� ln�b2��

�
; (A10)

Sef�t� � s�x1mB=
���
2
p
; b1� � s�x2mB=

���
2
p
; b2� � s��1� x2�mB=

���
2
p
; b2� � s�x3mB=

���
2
p
; b2� � s��1� x3�mB=

���
2
p
; b2�

�
1

�1

�
ln

ln�t=��

� ln�b1��
� 2 ln

ln�t=��

� ln�b2��

�
; (A11)

Sgh�t� � s�x2mB=
���
2
p
; b1� � s�x3mB=

���
2
p
; b2� � s��1� x2�mB=

���
2
p
; b1� � s��1� x3�mB=

���
2
p
; b2�

�
1

�1

�
ln

ln�t=��

� ln�b1��
� ln

ln�t=��

� ln�b2��

�
; (A12)

where the function s�q; b� are defined in the Appendix B of Ref. [9] and the hard energy scale t0js have been given in
Eq. (35).
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Lü, Phys. Rev. D 71, 074026 (2005); C. D. Lü, Y. L. Shen,
and J. Zhu, Eur. Phys. J. C 41, 311 (2005); J. Zhu, Y. L.
Shen, and C. D. Lü, Phys. Rev. D 72, 054015 (2005);
J. Phys. G 32, 101 (2006); Y. Li and C. D. Lü, Commun.
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