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Elements of the neutrino mass matrix: Allowed ranges and implications of texture zeros
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We study the range of the elements of the neutrino mass matrix m� in the charged lepton basis.
Neutrinoless double beta decay is sensitive to the ee element (the effective mass) of m�. We then analyze
the phenomenological implications of single texture zeros. In particular, interesting predictions for the
effective mass can be obtained, in the sense that typically only little cancellation due to the Majorana
phases is expected. Some cases imply constraints on the atmospheric neutrino mixing angle.
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I. INTRODUCTION

Neutrino physics aims to identify the form and origin of
the neutrino mass matrix [1]. Towards this goal, literally
dozens of new experiments are running, under construction
or in development. For Majorana neutrinos, the neutrino
mass matrix is given by

�m���� � �Um
diag
� UT��� with �;� � e;�; �; (1)

where mdiag
� is a diagonal matrix containing the three mass

states m1;2;3. In the basis in which the charged lepton mass
matrix is real and diagonal, U is the leptonic mixing or
PMNS matrix [2]. Being a symmetric matrix, m� contains
six independent and complex entries, corresponding to
nine physical parameters. Several analyzes [3–5] have
been performed in order to study the form of the neutrino
mass matrix as allowed by current data. Reconstructing m�
is possible since for Majorana neutrinos—in contrast to
the quark sector—the mass matrix is in general symmetric.
In addition, the Majorana nature of neutrinos allows to
probe an element of the mass matrix directly; namely, the
second order weak interaction process �A; Z� !
�A; Z� 2� � 2e�, denoted neutrinoless double beta decay
(0���), possesses a decay width proportional to the square
of the so-called effective mass jmeej � j

P
imiU2

eij. In the
charged lepton basis and if only the three light Majorana
neutrinos as implied by the oscillation experiments are
exchanged in 0���, this coherent sum is nothing but the
ee element of m�. In order to experimentally reconstruct
the mass matrix, the question arises if one can probe the
other elements ofm� in the same sense as the ee element is
probed by 0���. In principle, the answer is ‘‘yes’’: a mass
matrix element m�� will govern �L � 2 lepton number
violating processes with the charged leptons � and � in the
final state. For instance, the rare decay K� ! ������
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has a branching ratio proportional to jm��j
2, wherem�� is

the �� entry of m�. However, the possibility to probe the
mass matrix by these decays is only academic, since neu-
trino oscillation data predicts branching ratios of such
processes up to 20 orders of magnitude below current
experimental limits [3,5,6].

Another, often studied aspect of mass matrices is the
possibility of texture zeros, which can serve as a tool to
explain certain properties of the observed mass and mixing
schemes.1 Models generating such texture zeros can be
based on the Froggatt-Nielsen mechanism [10] or certain
flavor symmetries [11]. Since texture zeros are very suc-
cessful in the quark sector (see, e.g., [12] for a review), one
expects such an approach to be useful for the lepton sector
as well. It was found that in the charged lepton basis, and if
neutrinos are Majorana particles, at most two zero entries
in m� are allowed [13,14].2 Interesting and observable
correlations between the neutrino mass and mixing pa-
rameters follow from the presence of two zeros.
Regarding the possibility of just one zero entry in m�, we
are only aware of analyzes making simplifying assump-
tions such as a vanishing determinant [8] or the equality of
two entries [16].

In the present paper we wish to analyze the implications
of vanishing mass matrix elements. Towards this goal, we
study the individual mass matrix elements as functions
of the smallest neutrino mass. Identifying the situations
in which one of the entries can vanish, we obtain the
phenomenological implications for the neutrino observ-
ables. This often concerns the ee element, i.e., the predic-
tions for neutrinoless double beta decay are modified by
the constraint of one of the m�� being zero. This modifi-
cation concerns for instance the value of one of the
Majorana phases, leading to little cancellation for the
effective mass.

We parameterize the PMNS matrix as
1The structure of m� can also be constrained by assuming a
vanishing determinant [7,8] or a vanishing trace [9].

2For Dirac neutrinos there can be up to 5 zero entries [15].
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U �
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
B@

1
CAdiag�1; ei�; ei������; (2)
where we have used the usual notations cij � cos�ij, sij �
sin�ij and � is the Dirac CP-violation phase, whereas �
and � are the two Majorana CP-violation phases [17]. In
what regards the oscillation parameters, two independent
mass squared differences, �m2

� � m2
2 �m

2
1 and �m2

A �
jm2

3 �m
2
1j, as well as three mixing angles are currently

under examination. Their best-fit, 1 and 3	 values are [18]

�m2
� � �7:9

�0:3;1:0
�0:3;0:8� � 10�5 eV2;

sin2�12 � 0:31�0:02;0:09
�0:03;0:07;

�m2
A � �2:2

�0:37;1:1
�0:27;0:8� � 10�3 eV2;

sin2�23 � 0:50�0:06;0:18
�0:05;0:16;

sin2�13 < 0:012�0:046�:

(3)

The best-fit value for sin2�13 is 0.
All six independent mass matrix elements depend cru-

cially on the neutrino mass scheme, which is determined
by the magnitude and the ordering (normal or inverted) of
the individual neutrino masses:

normal:m3>m2>m1 with m2�
����������������������
m2

1��m2
�

q
;

m3�
����������������������
m2

1��m2
A

q
;

inverted:m2>m1>m3 with m2�
��������������������������������������
m2

3��m2
���m2

A

q
;

m1�
����������������������
m2

3��m2
A

q
: (4)

Of special interest are the following three extreme cases3:

normal hierarchy�NH�: jm3j ’
�����������
�m2

A

q
	 jm2j ’

�����������
�m2

�

q
	 jm1j; (5)

inverted hierarchy �IH�: jm2j ’ jm1j ’
�����������
�m2

A

q
	 jm3j;

(6)

quasi -degeneracy�QD�: m0 � jm1j ’ jm2j ’ jm3j

	
�����������
�m2

A

q
: (7)

In the following Sections we will analyze the six indepen-
dent mass matrix entries and study the implications of one
of them being zero. It turns out that interesting implications
from a texture zero in mee only occur for NH (see Sec. II).
3In the last case, QD, we denote with m0 the smallest neutrino
mass, i.e., the definition written here applies for the normal
ordering.

073012
If me� or me� should vanish, then this yields interesting
correlations in case of IH and QD (see Sec. III). The case of
the ��, �� and �� entries is studied in Sec. IV. Only for
quasidegenerate neutrino masses there are notable correla-
tions, which interestingly affect the atmospheric neutrino
mixing angle �23. We conclude and summarize in Sec. V.
II. THE MASS MATRIX ELEMENT mee

The ee entry of m� has been the subject of intense
investigation in the past [19] and we have nothing new to
add here. For the sake of completeness, we nevertheless
summarize the important features of mee. The current
bound on jmeej is [20]

jmeej 
 0:35
 eV; (8)
where we have indicated with the factor 
 � O�1� the
uncertainty due to the calculation of the nuclear matrix
elements of 0���. For an overview of the current status of
0���, see [19,21]. Given the fact that jmeej depends on 7
out of 9 parameters contained in the neutrino mass matrix
(it neither depends on � nor on �23), it is obvious that a
huge amount of information would be encoded in an ob-
servation of 0���.

The effective mass jmeej reads in general and in the three
extreme cases from Eqs. (5)–(7) as follows:

mee � c2
13�m1c2

12� e
2i�m2s2

12� � e
2i�m3s2

13

) jmeej ’

8>>><
>>>:
je2i�����

�����������
�m2

�

p
c2

13s
2
12�

�����������
�m2

A

q
s2

13j NH;�����������
�m2

A

q
c2

13

��������������������������������������
1� sin22�12sin2�

p
IH;

m0jc2
12� e

2i�s2
12� e

2i�s2
13j QD:

(9)
A numerical evaluation of these expressions gives with
best-fit, 1	 and 3	 values of the oscillation parameters
for NH 2.8 (1.8–3.5, 0–6.2) meV, for IH 0.02–0.05 (0.01–
0.05, 0.01–0.06) eVand for QD withm0 � 0:5 eV one gets
0.19–0.50 (0.16–0.51, 0.08–0.52) eV.

Interestingly, it will turn out that from all six indepen-
dent entries in the mass matrix, the ee element as given in
Eq. (9) looks most simple. Obviously, this has its reason in
the simple form of the Uei entries in the PMNS matrix, and
is therefore a consequence of the chosen parametrization.
For �13 � 0 it is given by
-2
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�mee��13�0�m1c
2
12�e

2i�m2s
2
12

)jmeej�13�0
’

8>>><
>>>:

�����������
�m2

�

p
s2

12 NH;�����������
�m2

A

q �������������������������������������
1�sin22�12sin2�

p
IH;

m0

�������������������������������������
1�sin22�12sin2�

p
QD:

(10)

The scale of mee for zero �13 and NH is roughly�����������
�m2

�

p
s2

12 ’ 0:003 eV, for IH it is jmeej ’
�����������
�m2

A

q
’

0:04 eV and for QD one has jmeej ’ m0 (cancellations
for IH and QD can be of order 50%, though). Plugging in
the best-fit values, 1	 and 3	 ranges, jmeej is given by 2.8
(2.4–3.0, 2.0–3.8) meV for NH, 17.8– 46.9 (14.9–50.7,
7.5–57.4) meV for IH and, for QD with m0 � 0:5 eV,
0.19–0.50 (0.17–0.50, 0.10–0.50) eV. The Majorana phase
� is crucial for the magnitude of jmeej in case of IH and
QD. When sin� � 0, then there is no cancellation, whereas
for sin� � 1 maximal cancellation occurs. Moreover,
sin� � 0 implies sizable instability with respect to radia-
tive corrections. In Fig. 1 we show the ee element as a
function of the smallest neutrino mass for four character-
istic values of �13. In this and some of the following plots
we indicate a typical cosmological limit on the sum of
neutrino masses � �

P
mi of 1.74 eV (thus m< 0:58 eV

for the lightest neutrino mass), obtained by an analysis of
SDSS and WMAP data [22].

Turning to the possibility of texture zeros, it is well
known that mee � 0 is only possible for a limited parame-
FIG. 1 (color online). The absolute value of the mass matrix elem
inverted mass ordering for four representative values of �13. The be
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ter range in the normal mass ordering but for all values of
�13 [23,24]. As emphasized recently in [24], and repro-
duced here in Fig. 1, current data implies that not too large
�13 values and m1 between 10�3 and 10�2 eV leads to
vanishing jmeej (the ‘‘chimney’’). For rather large
sin22�13 * 0:15, all values of m1 & 0:001 eV can lead to
jmeej � 0. For m1 � 0 and cos2��� �� � �1 the effec-
tive mass vanishes for rather large values of �13, namely

sin 22�13 ’ 4sin2�12

�����������
�m2

�

�m2
A

s
; (11)

whose best-fit value is 0.24 (1	: 0.19–0.28; 3	: 0.14–
0.40). If �13 � 0 and cos2� � �1, then

m1 � sin2�12

����������������
�m2

�

cos2�12

s
(12)

leads to jmeej � 0. The best-fit value ofm1 is 4.5 meV (1	:
3.7–5.1 meV, 3	: 2.8–8.4 meV). The implied values of the
sum of neutrino masses are smaller than current limits from
cosmology, but merely 1 order of magnitude below. Next
generation observations [25] will probe such values.

III. THE MASS MATRIX ELEMENTS me� AND me�

In general the e� element of m� is given by

me� � c13��e2i�m2 �m1�s12c12c23

� ei��e2i�m3 � e2i�m2s2
12 �m1c2

12�s23s13�: (13)
ent mee against the smallest neutrino mass for the normal and
st-fit and 3	 ranges of the oscillation parameters are used.
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FIG. 2 (color online). The absolute value of the mass matrix element me� against the smallest neutrino mass for the normal and
inverted mass ordering for three representative values of �13. The normal (inverted) mass ordering is given on the left (right) side. The
best-fit and 3	 ranges of the oscillation parameters are used. The corresponding plot for me� looks basically identical.
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Varying the three phases between �� and � and using the
best-fit values and 3	 ranges of the oscillation parameters
as input we plot this element as a function of the smallest
mass in Fig. 2.

It is always helpful to consider certain extreme cases. In
this and the following Sections, we will analyze the cases
�13 � 0 and �23 � �=4.

(i) �13 � 0:

�me���13�0 � �e2i�m2 �m1�s12c12c23 (14)

This formula indicates that there is a lower limit on
the e� element:

jme�j�13�0 *

8>>><
>>>:
s12c12c23

�����������
�m2

�

p
NH;

s12c12c23
�m2

�

2
��������
�m2

A

p IH;

s12c12c23
�m2

�

2m0
QD:

(15)

For the best-fit values this number is roughly
0.003 eV for NH, 0.0003 eV for IH, and for QD
with m0 � 0:5 eV we have 2:6 � 10�5 eV. There is
also an upper limit for IH and QD, reading
073012
2s12c12c23

�����������
�m2

A

q
and 2s12c12c23m0, respectively.

We conclude that for �13 � 0 the e� entry can not
vanish, but has a very low lower limit. Ignoring this
small effect, we have

jme�j�13�0 ’

8>><
>>:

1
2

�����������
�m2

�

p
c23 sin2�12 NH;

c23 sin2�12

�����������
�m2

A

q
sin� IH;

m0c23 sin2�12 sin� QD:

(16)

The scale of me� for zero �13 and NH is roughly�����������
�m2

�

p
=
���
8
p
’ 0:002 eV, for IH and QD there can be

almost total cancellation. Numerically, we have for
the best-fit values and the 1 and 3	 ranges 2.9 (2.6–
3.2, 2.0–3.8) meV for NH, 0–30.7 (0–35.4, 0–
45.7) meV for IH and for QD with m0 � 0:5 eV
one gets 0–0.33 (0–0.35, 0–0.40) eV. The range
for me� in case of IH and QD is much larger than
for NH, because—in addition to the oscillation pa-
rameters—the mass matrix element is proportional
to sin�.
-4
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(ii) �23 � �=4:

�me���23��=4 �
c13���

2
p ��e2i�m2 �m1�s12c12 � ei��e2i�m3 � e2i�m2s2

12 �m1c2
12�s13�

) jme�j�23��=4 ’

8>>>>><
>>>>>:

c13��
2
p je2i�

�����������
�m2

�

p
s12c12 � ei��e2i�

�����������
�m2

A

q
� e2i�

�����������
�m2

�

p
s2

12�s13j NH;�����������
�m2

A

q
c13��

2
p j�e2i� � 1�c12s12 � ei��c2

12 � e
2i�s2

12�s13j IH;

m0
c13��

2
p j�e2i� � 1�c12s12 � e

i��e2i� � c2
12 � e

2i�s2
12�s13j QD:

(17)
Numerically, we have for the best-fit values and the
1 and 3	 ranges 2.9 (0–7.1, 0–12.3) meV for NH,
0–30.7 (0–34.8, 0–40.6) meV for IH and for QD
with m0 � 0:5 eV one gets 0–0.33 (0–0.38, 0–
0.43) eV. In Fig. 2 one can see that for NH and
the best-fit oscillation parameters the value
sin22�13 � 0:03 allows for complete cancellation
for all allowed values ofm1. Whenm1 is negligible,
this can be understood by noting that when
sin22�13 � 0:03, the two leading terms in the for-

mula Eq. (17), namely
�����������
�m2

�

p
s12c12 and

�����������
�m2

A

q
s13,
FIG. 3 (color online). Neutrino observables for me� � 0. The
upper plot is the smallest mass against the Majorana phase � and
the lower plot is the smallest mass against the effective mass.
The blue (dark) dots are for the normal ordering, the yellow
(light) dots for the inverted ordering. We varied the oscillation
parameters within their 3	 ranges.

073012
happen to be almost identical. For smaller (larger)
�13 the first (second) term dominates and no can-
cellation for hierarchical neutrinos is possible. In
case of IH and QD the e� element can always
vanish. This requires the first term in Eq. (17) to
be small, thereby implying sin� ’ 0, which leads
to little cancellation in 0��� (see Eq. (9)):

jmeej
me��0
�13�0 ’

( �����������
�m2

A

q
c2

13 IH;

m0c2
13 QD:

(18)

We plot in Fig. 3 the correlation between some of the
observables which result if me� � 0. All oscillation pa-
rameters are varied in their 3	 ranges. The upper plot is a
scatter plot of the smallest mass against the Majorana
phase � for both mass orderings. As expected from the
above considerations, for an inverted ordering and for
quasidegenerate masses sin� is very small. Consequently,

the effective mass is basically given by
�����������
�m2

A

q
or m0, and

the small band of values of jmeej for large masses is a
TABLE I. Mass matrices with two zeros and the resulting
correlations [13,14].

Matrix Correlation

0 0 a
0 b d
a d e

0
@

1
A only NH; jUe3j ’

���
R
p

2 cot�23
sin2�12������������
cos2�12

p

0 a 0
a b d
0 d e

0
@

1
A only NH; jUe3j ’

���
R
p

2 tan�23
sin2�12������������
cos2�12

p

a 0 b
0 0 d
b d e

0
@

1
A QD; both orderings; jUe3j ’

R
2 j

cot2�23

cos� j sin2�12

a b 0
b 0 d
0 d e

0
@

1
A same as above

a b 0
b d e
0 e 0

0
@

1
A QD; both orderings; jUe3j ’

R
2 j

tan2�23

cos� j sin2�12

a 0 b
0 d e
b e 0

0
@

1
A same as above

a b d
b 0 e
d e 0

0
@

1
A QD; both orderings; jUe3j ’

cot2�12 cot2�23

cos�
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consequence of sin� ’ 0. Moreover, the gap between the
maximal effective mass for NH and the minimal effective
mass for IH is sizably larger than without the restriction
me� � 0 (cf. the lower plot of Fig. 3 with Fig. 1). This will
make it easier to distinguish the normal from the inverted
hierarchy via 0���. Note that mee and me� can vanish
simultaneously [13,14]. The resulting correlation of pa-
rameters in this case and in all other allowed two zero
cases is for the sake of completeness reproduced in Table I.

The results for the e� element of m� are very similar to
the ones for me�: the explicit form of me� is

me� � c13��m1 � e2i�m2�s12c12s23

� ei��e2i�m3 � e2i�m2s2
12 �m1c2

12�c23s13�; (19)

i.e., it is obtained fromme� by exchanging s23 with c23 and
c23 with �s23. A plot of me� against the smallest neutrino
mass is basically indistinguishable from the plot of me�
073012
against the smallest mass. This is the obvious consequence
of the (approximate) �-� exchange symmetry [26] of the
neutrino mass matrix in the charged lepton basis.
IV. THE MASS MATRIX ELEMENTSm��,m�� AND
m��

The �� entry of the mass matrix reads

m�� � m1�c23s12 � e
i�c12s13s23�

2

� e2i�m2�c12c23 � e
i�s12s13s23�

2

� e2i�����m3c2
13s

2
23: (20)

In Fig. 4 we plot this element as a function of the smallest
neutrino mass for both mass orderings and for the best-fit
values and 3	 ranges of the oscillation parameters.

Let us again analyze the form of m�� in our two special
cases:
(i) �13 � 0:

�m����13�0 � c2
23�e

2i�m2c
2
12 �m1s

2
12� � e

2i�����m3s
2
23

) jm��j�13�0 ’

8>>>>>><
>>>>>>:

s23

����������������������������������������������������������������������������������
�m2

As
2
23 � 2

���������������������
�m2

��m2
A

q
c2

12c
2
23c2�������

r
NH;�����������

�m2
A

q
c2

23

��������������������������������������
1� sin22�12sin2�

p
IH;

m0jc
2
23�e

2i�c2
12 � s

2
12� � e

2i�����s2
23j QD:

(21)

�����������q

The scale of m�� for zero �13 and NH is roughly�����������

�m2
A

q
=2 ’ 0:02 eV. For IH it is approximately the

same value, but cancellations up to 50% are pos-
sible. For QD there can be complete cancellation,
which we will discuss below. Numerically, for the
best-fit values and the 1 and 3	 ranges, we have
20.2–26.3 (15.8–31.1, 6.4–41.3) meV for NH,
8.9–23.5 (6.6–27.9, 2.4–37.9) meV for IH. For
QD with m0 � 0:5 eV it holds 0.0–0.5 (0–0.5,
0–0.5) eV. Actually, there is a slight difference
between normal and inverted ordering if neutrinos
are quasidegenerate in mass, see below.
For zero �13 the elementm�� cannot vanish for NH
and IH. For NH and the best-fit values, the ��
entry has only a rather small range, centered around�����������

�m2
A

q
=2. The value of m�� is in case of IH noth-

ing but the effective mass jmeejmultiplied with c2
23.

If � � 0 then m�� takes its maximal value
�m2
Ac

2
23 � c2

23jmeej. Moreover, as shown in
Sec. III, the e� and e� elements are very small in
this case. If neutrinos are quasidegenerate, Eq. (21)
indicates that m�� vanishes if c2

23�e
2i�c2

12 � s
2
12� �

e2i�����s2
23 vanishes. In case of �23 � �=4 this

expression is zero for sin� � 0 and sin��� �� �
1. Looking at Fig. 4, however, one sees that for
vanishing �13 the curve for minimal jm��j and
normal ordering does not coincide with the one
for inverted ordering, and in addition is nonzero.
To understand this, let us define 2r� � �m2

�=m
2
0

and 2rA � �m2
A=m

2
0, which allows from Eq. (4) to

write m1 � m0, m3 ’ m0�1� rA� and m2 ’
m0�1� r�� for the normal ordering and m3 � m0,
m1 ’ m0�1� rA� and m2 ’ m0�1� rA � r�� for
the inverted ordering. Within this approximation,
the formulae for m�� in case of normal and in-
verted ordering read:
�m���
QD
�23��=4;�13�0 ’

� 1
2m0�s

2
12 � c

2
12e

2i��1� r�� � e
2i������1� rA�� normal;

1
2m0�s

2
12�1� rA� � c

2
12e

2i��1� rA � r�� � e
2i������ inverted:

(22)

For both possibilities, the term proportional to e2i����� dominates the other two. However, for the inverted ordering
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FIG. 4 (color online). The absolute value of the mass matrix element m�� against the smallest neutrino mass for the normal and
inverted mass ordering for three representative values of �13. The normal (inverted) mass ordering is given on the left (right) side. The
best-fit and 3	 ranges of the oscillation parameters are used. The corresponding plot for m�� looks basically identical.
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the sum of the two remaining terms can exceed the
contribution from the third, leading term. Hence,
the �� entry can vanish for the inverted ordering.
In case of normal ordering, however, the sum of the
two subleading terms is always smaller than the
third, leading term and therefore the minimal value
of the �� element is nonzero. For m0 � 0:3 eV it
is given by 1

2m0��1� rA� � c2
12�1� rA � r�� �

s2
12� �

1
2m0�rA � c2

12r�� ’ 0:0018 eV. This agrees
well with the value in Fig. 4. Note also that from
Eq. (22) one finds that the minimal values of m��
are different for normal and inverted ordering, with
this difference given also by 1

2m0�rA � c
2
12r��. This

is in contrast to mee, me� and me�, which show no
073012
such difference for neutrino masses larger than
0.1 eV. It is easy to show that, for �13 � 0, the
difference between the minimal value of mee for
normal and inverted ordering is of order m0rA.
However, since the minimal value of jmeej is
much larger than this difference (namely of the
order m0 cos2�12), the difference cannot be seen
in Fig. 1. For me� and me� it turns out that the
difference between the minimal values for normal
and inverted ordering vanishes.
Nevertheless, the approximate expression for QD
in Eq. (21) indicates the presence of an interesting
correlation between � and �23, obtained when one
requires the �� entry to vanish. At the end of this
-7



2 � e
i�s12s13�

2 � e2i�����m3c
2
13�

������������������������������������������������������
2
���������������������
�m2

��m2
A

q
c2

12c2������� NH;

s2
12 � 2ei��1� e2i��c12s12s13j IH;

2 � e
2i�����c2

13 � 2ei��1� e2i��c12s12s13j QD:
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Section we will study this in detail.
(ii) �23 � �=4:

�m����23��=4 �
1

2
�m1�s12 � e

i�c12s13�
2 � e2i�m2�c1

) jm��j�23��=4 ’

8>>>>>>><
>>>>>>>:

1
2 c

2
13

����������������������
�m2

Ac
2
13 �

r
1
2

�����������
�m2

A

q
je2i�c2

12 �

1
2m0je2i�c2

12 � s
2
1

(23)
Numerically, one gets 0.9–1.2 (0.8–1.4, 0.1–1.8)
meV for NH, 8.9–23.5 (2.9–25.9, 0–31.3) meV
for IH and for QD with m0 � 0:5 eV we have 0–
0.50 eV (0–0.50 eV, 0–0.51 eV). Comparing the
expressions with the case of vanishing �13 in
Eq. (21) we see that the corrections are rather small.
One notable difference is that m�� can vanish now
for IH.
FIG. 5 (color online). The absolute value of the mass matrix elem
inverted mass ordering for three representative values of �13. The nor
best-fit and 3	 ranges of the oscillation parameters are used.
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Again, the (approximate) �-� symmetry implies that
m�� ’ m��. The explicit form of m�� is

m�� � m1�ei�c12s13c23 � s23s12�
2 � e2i�m2�c12s23

� ei�s12s13c23�
2 � e2i�����m3c2

13c
2
23: (24)

It is obtained fromm�� by exchanging s23 with c23 and c23

with �s23.
ent m�� against the smallest neutrino mass for the normal and
mal (inverted) mass ordering is given on the left (right) side. The
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The mass matrix element m�� reads:
jm��j �
1

2
cos2�23ei��m1 � e2i�m2� sin2�12s13

�
1

2
sin2�23�e

2i�m2c
2
12 �m1s

2
12

� e2i��e2i�m3c
2
13 � �m1c

2
12 � e

2i�m2s
2
12�s

2
13��:

(25)
The first term is suppressed by the close-to-maximal �23

and the smallness of �13. One can show that m�� is
obtained from m�� by exchanging c2

23 with �c23s23, s2
23

with c23s23 and c23s23 with 1=2�c2
23 � s

2
23�. A plot of jm��j

as a function of the smallest mass is given in Fig. 5 and
looks rather similar to the cases of jm��j and jm��j. Note
that for �13 � 0 the minimal values for the normal and
inverted ordering show differences. Moreover, for the nor-
mal mass ordering and quasidegenerate massesm�� cannot
vanish when �13 � 0. This can be explained in analogy to
the issues discussed above for m��. Nonzero �13 and
normal ordering allow for zerom�� only in the QD regime.
In case of NH and IH, the �� entry can not vanish.

It is clear from the above discussion that an interesting
correlation in case of a vanishing ��, �� or �� element
can occur only if neutrinos are quasidegenerate. Let us
summarize the form of the three relevant mass matrix
elements for QD:
FIG. 6 (color online). QD neutrinos, vanishing ��, �� or �� entri
�23 and �� �.

073012
jm��j
QD ’ m0jc2

23�e
2i�c2

12 � s
2
12� � e

2i�����s2
23j;

jm��j
QD ’ m0js2

23�e
2i�c2

12 � s
2
12� � e

2i�����c2
23j;

jm��j
QD ’ m0c23s23j�e2i�c2

12 � s
2
12� � e

2i�����j:

(26)

Recall that for �13 � 0 the �� element cannot vanish if
neutrinos are normally ordered. Including finite values of
�13 will lead to modifications of the order sin�13 in the
above formulae. It is apparent that correlations between the
phases and �23 are implied. For the �� entry we can
immediately see from Eq. (26) that for �23 >�=4 the
mass matrix element cannot vanish. Consequently, a van-
ishing �� element is not possible for �23 <�=4. However,
finite values of �13 will allow for values of �23 slightly
below (above) �=4. Exactly maximal �23 � �=4 will lead
to vanishing �� or �� entries if sin� � 0 and sin���
���1. For the�� entry there is no dependence on �23, and
m���0 is only possible for values of the phases corre-
sponding to sin�� sin������0. In Fig. 6 we show for
two values of �13 scatter plots of � against sin2�23 and of
�� � against sin2�23, confirming these considerations.
We choose two values of �13 and varied the remaining
oscillation parameters within their 3	 ranges.

We see, in particular, that close-to-maximal atmospheric
mixing implies small sin�, which indicates very little
cancellation in the effective mass. In Fig. 7 we give scatter
plots of the smallest mass against jmeej, obtained by de-
manding m�� and m�� to vanish and by varying the
oscillation parameters within their 3	 ranges. In case of
an inverted ordering, m�� � 0 is possible for all masses,
es and the resulting correlation between �23 and �, and between
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FIG. 7 (color online). The effective mass jmeej in case of m�� � 0 and m�� � 0 for sin22�13 � 0:1. The normal (inverted) mass
ordering is given on the left (right) side.
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whereas m�� � 0 works only for m3 * 0:01 eV. Note that
mee � 0 will not be possible if m��, m�� or m�� also
vanish [13,14]. For normal ordering, m�� � 0 is possible
when m1 * 0:02 eV, whereas m�� � 0 works only for
m1 * 0:1 eV. The small band of values of jmeej for large
masses is a consequence of sin� ’ 0.

As summarized in Table I, m�� and m�� can vanish
simultaneously. Also m�� and me� (or me�) and m�� and
me� (or me�) can vanish at the same time. Vanishing of
m�� will only be possible if no other entry of m� is zero.

V. CONCLUSIONS AND SUMMARY

We have studied the allowed ranges of the individual
mass matrix elements in the charged lepton basis. Areas of
parameter space in which they can vanish have been ana-
lyzed, their phenomenological consequences have been
studied and a limited number of correlations has been
found. Let us summarize the main features:

(i) the ee element, or the effective mass, can vanish for
all values of �13, but only for small values of m1 in
the normal mass ordering. As a function of the small-
est neutrino mass, it has from all six independent
elements the most interesting structure;

(ii) the e� and e� entries are very much alike. If �13 �
0, they can not vanish. For nonzero �13 there can be
a texture zero for all mass values. However, the
inverted hierarchy and the quasidegenerate spec-
trum require that sin� ’ 0, which implies little can-
cellation in the effective mass. Consequently,
distinguishing the normal from the inverted hier-
archy is easier in this case;
073012
(iii) the �� and �� entries are also very much alike. In
case of �13 � 0, vanishing is only possible for a
smallest mass larger than ’ 0:01 eV. For nonzero
�13 and normal ordering, zero entries also require
that m1 * 0:01 eV, whereas for an inverted order-
ing all mass values allow for complete cancellation.
For quasidegenerate masses, �23 lies below �=4 if
m�� � 0 and above �=4 if m�� � 0. Again,
sin� ’ 0 is required, which translates into little
cancellation for jmeej;

(iv) the �� entry cannot vanish if �13 � 0 and the
masses are normally ordered. Nonzero �13 and
normal ordering allows for zero m�� if m1 *

0:1 eV, but m3 can be larger than a few times
0:001 eV for an inverted ordering. Vanishing in
case of NH or IH is not possible. Again, for quasi-
degenerate neutrinos sin� ’ 0 is required, which
translates into little cancellation for jmeej.

We finish by stressing once more that typically the require-
ment of a vanishing element (except for mee, of course)
leads to little cancellation for the effective mass.
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