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Shape of the unitary triangle and phase conventions of the CKM matrix
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A shape of the unitary triangle versus a CP violating parameter � depends on the phase conventions of
the Cabibbo-Kobayashi-Maskawa quark-mixing matrix, because the CP violating parameter � cannot
directly be observed, so that it is not rephasing-invariant. In order to seek for a clue to the quark mass
matrix structure and the origin of the CP violation, the dependence of the unitary triangle shape on the
parameter � is systematically investigated.
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I. INTRODUCTION

Usually, it is taken that any phase conventions of the
Cabibbo-Kobayashi-Maskawa (CKM) [1,2] matrix are
equivalent to each other because of the rephasing invari-
ance. This is true, as far as the observable quantities are
concerned. However, quark mass matrices �Mu;Md� are
not rephasing invariant, although those are invariant under
rebasing: Mu ! M0u � AyMuBu, Md ! M0d � AyMdBd.
Sometimes, rephasing invariance is confused with rebasing
invariance. Most experimentalists have an interest in rela-
tions among the observed values (masses mqi and CKM
parameters jVijj), which are rephasing invariant. On the
other hand, most model builders take an interest in rela-
tions between mass matrix parameters and observable
quantities, where those relations are model-dependent
and are not rephasing invariant. Usually, model builders
put some ansatz on the mass matrices �Mu;Md�, which are
given on a specific flavor basis. Then, the ansatz will give a
constraint on the CP violating phases of the CKM matrix
V � UyuLUdL. We would like to emphasize that a CP
violating parameter � in the CKM matrix is not observable,
and it depends on the phase convention of the CKM matrix
(so that it depends on a mass matrix model). The observ-
able quantities which are related to CP violation are angles
��1; �2; �3� � ��;�; �� in the unitary triangle which are
defined in Eq. (1.3) later. Only when we take a specific
phase convention, the parameter � becomes observable, for
example, such as the �13 parameter in the standard phase
convention [3] of the CKM matrix. To investigate a phase
convention with a reasonable value of � means to inves-
tigate a corresponding specific flavor basis on which a
quark mass matrix model is described, although it is not
directly.

For example, by noticing that predictions based on the
maximal CP violation hypothesis [4] depend on the phase
convention, the author [5] has recently pointed out that we
can obtain successful predictions on the unitary triangle
only when we adopt the original Kobayashi-Maskawa
(KM) [1] phase convention and the Fritzsch-Xing [6] phase
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convention. If we put the ansatz on the standard phase
convention [3] of the CKM matrix, we will obtain wrong
results on the unitary triangle. For experimental studies,
what convention we adopt is not important, but, for model
building of the quark and lepton mass matrices, it is a big
concern. In the present paper, in order to look for a clue to
the origin of the CP violating phase � (what elements in
the quark mass matrices contain the CP violating phase �
and how the magnitude of � is), we will systematically
investigate whole phase conventions of the CKM matrix,
comparing with the present experimental data of the uni-
tary triangle.

Recent remarkable progress of the experimental B phys-
ics [7] has put the shape of the unitary triangle within our
reach. The world average value of the angle � [8] which
has been obtained from Bd decays is

sin2� � 0:736� 0:049 �� � 23:7��2:2�
�2:0�� (1.1)

and the best fit [8] for the CKM matrix V also gives

� � 60� � 14�; � � 23:4� � 2�; (1.2)

where the angles �, � and � are defined by

� � �2 � arg
�
�
V31V

	
33

V11V
	
13

�
;

� � �1 � arg
�
�
V21V

	
23

V31V
	
33

�
;

� � �3 � arg
�
�
V11V	13

V21V	23

�
:

(1.3)

Also we know the observed values [8] of the magnitudes
jVijj of the CKM matrix elements:

jVusj � 0:2200� 0:0026; jVcbj � 0:0413� 0:0015;

jVubj � 0:00367� 0:00047; (1.4)

ReVtd � 0:0067� 0:0008;

ImVtd � �0:0031� 0:0004:
(1.5)

Thus, nowadays, we almost know the shape of the unitary
triangle V	udVub � V

	
cdVcb � V

	
tdVtb � 0. We are interested
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what logic can give the observed magnitude of the CP
violation.

There are, in general, 9 independent phase conventions
[9] of the CKM matrix. In the present paper, we define the
expressions of the CKM matrix V as

V � V�i; k� � RTi PjRjRk �i � j � k�; (1.6)

where

R1��� �

1 0 0

0 c s

0 �s c

0
BB@

1
CCA; R2��� �

c 0 s

0 1 0

�s 0 c

0
BB@

1
CCA;

R3��� �

c s 0

�s c 0

0 0 1

0
BB@

1
CCA; (1.7)

(s � sin� and c � cos�) and

P1 � diag�ei�; 1; 1�; P2 � diag�1; ei�; 1�;

P3 � diag�1; 1; ei��:
(1.8)

The expressions V�1; 3�, V�1; 1� and V�3; 3� correspond to
the standard [3], original KM [2], and Fritzsch-Xing [6]
phase conventions, respectively.

By the way, the CKM matrix structure (1.6) is related to
a quark mass matrix model under the following specific
assumption: We assume that the phase factors in the quark
mass matrices Mf �f � u; d� can be factorized by the
phase matrices Pf as

Mf � PyfL ~MfPfR; (1.9)

where Pf are phase matrices and ~Mf are real matrices.
(This is possible for a mass matrix which has specific zero-
textures, for example, such as a model with nearest-
neighbor interactions (NNI) [10]. For details, see the ap-
pendix.) The real matrices ~Mf are diagonalized by rotation
(orthogonal) matrices Rf as

Ryf ~MfRf � Df � diag�mf1; mf2; mf3�; (1.10)

[for simplicity, we have assumed that Mf are Hermitian (or
symmetric) matrix, i.e. PfR � PfL (or PfR � P	fL)], so
that the CKM matrix V is given by

V � RTuPRd; (1.11)

where P � PyuLPdL. The quark masses mfi are only deter-
mined by ~Mf. In other words, the rotation parameters are
given only in terms of the quark mass ratios, and indepen-
dent of the CP violating phases. In such a scenario, the CP
violation parameter � can be adjusted without changing the
quark mass values. In the present paper, by fixing the
rotation matrices Ru and Rd (i.e. by fixing the quark
masses), we tacitly assume that the CP violation is de-
scribed only by the adjustable parameter �. Then, the
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expression of the law of the CP violation depends on the
phase conventions of the CKM matrix.

For example, the phase convention V�2; 3�

V�2; 3� � RT2 ��
u
13�P1���R1��23�R3��

d
12�; (1.12)

suggests the quark mass matrix structures

~Mu � R1��u23�R2��u13�DuRT2 ��
u
13�R

T
1 ��

u
23�;

~Md � R1��
d
23�R3��

d
12�DdR

T
3 ��

d
12�R

T
1 ��

d
23�;

(1.13)

with �23 � �d23 � �
u
23. Therefore, in order to seek for a clue

to the quark mass matrix structure, we interest in the
relations of the phase conventions (1.6) to the observed
unitary triangle shape.
II. REPHASING-INVARIANT QUANTITY J
VERSUS �

Of the three unitary triangles 4�ij� 
�ij� �
�12�; �23�; �31��, which denote the unitary conditionsX

k

V	kiVkj � �ij; (2.1)

we usually discuss the triangle 4�31�, i.e.

V	udVub � V
	
cdVcb � V

	
tdVtb � 0; (2.2)

because the triangle 4�31� is the most useful one for the
experimental studies.

The rephasing-invariant quantity [11] J is given by

J �
jVi1jjVi2jjVi3jjV1kjjV2kjjV3kj

�1� jVikj2�jVikj
sin�; (2.3)

in the phase convention V�i; k�, where the CP violating
phase � has been defined by Eq. (1.7). (We again would
like to emphasize that the parameter � is not observable in
the direct meaning, and it is model dependent. As we stated
in Sec. I, the observable quantities which are related to CP
violation are angles ��1; �2; �3� � ��;�; �� in the unitary
triangle.) Note that the 5 quantities (not 6 quantities) jVi1j,
jVi2j, jVi3j, jV1kj, jV2kj and jV3kj in the expression V�i; k�
are independent of the phase parameter �. (In other words,
only the remaining 4 quantities are dependent of �.)
Therefore, the rephasing-invariant quantity J is dependent
on the parameter � only through the factor sin�. A ‘‘maxi-
mal CP violation’’ means a maximal J, so that it means a
maximal sin�. Thus, the maximal CP violation hypothesis
depends on the phase conventions.

From the expression (2.3), for the observed fact 1�
jVusj2’jVcdj2�jVcbj2’ jVtsj2�jVubj2, the rephasing-
invariant quantity J is classified in the following four types:

�A�: J’ jVubjjVtdjsin�; �B�: J’ jVusjjVcbjjVubjsin�;

�C�: J’jVusjjVcbjjVtdjsin�; �D�: J’jVcbj2 sin�:

(2.4)
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TABLE I. Classification of V�i; k�: The cases are classified under the approximation of 1�
jVusj

2 ’ jVcdj
2 � jVcbj

2 ’ jVtsj
2 � jVubj

2. For the types of J, see Eq. (2.4) in the text.

Phase convertion Type of J �-independent ri � ’ �‘

V�1; 1� � RT1P2R2R1 A r1 � ’ �2

V�3; 3� � RT3P1R1R3 A r3 � ’ �2

V�1; 2� � RT1P3R3R2 B r1 � ’ �3

V�1; 3� � RT1P2R2R3 B r1 � ’ �3

V�2; 3� � RT2P1R1R3 B r2 � ’ �3

V�2; 1� � RT2P3R3R1 C r2 � ’ �1

V�3; 1� � RT3P2R2R1 C r3 � ’ �1

V�3; 2� � RT3P1R1R2 C r3 � ’ �1

V�2; 2� � RT2P1R1R2 D r2 No simple relation
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The corresponding phase conventions V�i; k� are listed in
Table I.

The present experimental values (1.2) suggest � ’ 90�.
Since only the cases V�1; 1� and V�3; 3� can give � ’ � as
seen in Table I, the ‘‘maximal CP violation hypothesis’’
(i.e. maximal sin� hypothesis) can give successful results
only for the cases V�1; 1� and �3; 3� [5].
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FIG. 1. sin�i �i � 1; 2; 3� versus � in V�1; 1�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
III. ANGLES �i VERSUS �

In the present section, we systematically investigate the
relations between the angles �‘ �‘ � 1; 2; 3� and the CP
violating phase � for each case V�i; k�.

The angles ��1; �2; �3� � ��;�; �� on the unitary tri-
angle 4�31� are given by the sine rule

r1

sin�1
�

r2

sin�2
�

r3

sin�3
� 2R; (3.1)

where R is the radius of the circumscribed circle of the
triangle 4�31�, and ri are defined by

r1 � jV13jjV11j; r2 � jV23jjV21j;

r3 � jV33jjV31j:
(3.2)

Then, the quantity J is rewritten as follows:

J � 2rmrn sin�‘ �
1

R
r‘rmrn

�
1

R
jV11jjV21jjV31jjV13jjV23jjV33j; (3.3)

where �‘;m; n� is a cyclic permutation of (1,2,3). From
Eqs. (2.3), (3.1), and (3.3), the angles �‘ are given by the
formula

sin�‘ �
jVi1jjVi2jjVi3jjV1kjjV2kjjV3kj sin�

jVm1jjVm3jjVn1jjVn3j�1� jVikj2�jVikj
: (3.4)

Of the three sides in the expression V�i; k�, only one side
ri is always independent of the phase parameter �. And, of
the three angle�i, only one (we express it with�‘), except
for the case V�2; 2�, is approximately equal to the phase
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parameter �. In Table I, we also list the side ri which is
independent of � and the angle �‘ which is approximately
equal to �.

The relations between �i �i � 1; 2; 3� and � are illus-
trated in Figs. 1–8. The curves have been evaluated by
using the explicit expression (1.6) [not by using the for-
mula (3.4)]. In general, there are five jVijj which are
independent of the phase parameter �. For the cases that
jVusj, jVcbj and jVubj are �-independent Vij, we have used
the observed values (1.4) as the input values, i.e. jVusj �
0:22, jVcbj � 0:0413 and jVubj � 0:003 67. When jVusj
(jVcbj) is �-dependent, but jVcdj (jVtsj) is �-independent,
we have, for convenience, used the input values jVcdj �
0:22 (jVtsj � 0:0413). When jVubj is �-dependent, but
jVtdj is �-independent, we have, for convenience, used
the input values jVtdj � 0:0084, which is a predicted value
of jVtdj in the case V�1; 1� with the maximal sin�.
However, for the case V�2; 2�, since both jVubj and jVtdj
are �-dependent, so that we cannot use such an approxi-
mate substitute. As seen in Table I, the case V�2; 2� needs a
small value of � compared with other cases, so that the case
is not so interesting. We omit the case V�2; 2� from the
present study.
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FIG. 2. sin�i �i � 1; 2; 3� versus � in V�3; 3�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 4. sin�i �i � 1; 2; 3� versus � in V�1; 3�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 3. sin�i �i � 1; 2; 3� versus � in V�1; 2�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 5. sin�i �i � 1; 2; 3� versus � in V�2; 3�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 6. sin�i �i � 1; 2; 3� versus � in V�2; 1�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 7. sin�i �i � 1; 2; 3� versus � in V�3; 1�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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FIG. 8. sin�i �i � 1; 2; 3� versus � in V�3; 2�. The curves sin�,
sin�, and sin� are denoted by a solid line, a dotted line, and a
dashed line, respectively.
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As seen in Figs. 1–8, of the maximal values of the three
sin�i �i � 1; 2; 3�, two can take �sin�i�max � 1, while one
(we express it with �s) always takes a smaller value than
one, i.e. �sin�s�max < 1. The angle �s with �sin�s�max < 1
is �1 for the cases A and B, and is �3 for the case C. If we
assume that nature chooses the value of the phase parame-
ter � such as sin�s is maximal, as shown in Table II, the
cases V�i; k� with i � k can predict reasonable values of
the angles �i �i � 1; 2; 3�.

A more straightforward ansatz is as follow: the value of
sin� has to take its maximal value sin� � 1. Then, all
cases V�i; k� can give reasonable values of the angles as
seen in Table II. However, this ansatz is merely other
expression of the observed fact (1.2). In the maximal CP
violation hypothesis, the hypothesis has been imposed on
the CP violating phase parameter �, which is not a directly
observable quantity. Therefore, the hypothesis could
choose specific phase conventions V�1; 1� and V�3; 3� (con-
sequently, specific quark mass matrix structures) as experi-
mentally favorable ones. In contrast to the maximal CP
violation hypothesis, the ansatz for the directly observable
quantities such as �sin��max � 1 cannot choose a specific
phase convention V�i; k� as a favorable one. It is unlikely
that the ansatz sin� � 1 gives a clue to the origin of the CP
violating phase in the quark mass matrices.
TABLE II. Maximal

�sin�s�max�<1� at � � �0

Type V�i; k� s �1 �2 �
A V�1; 1� s � 1 25:4� 64:6� 90
A V�3; 3� s � 1 23:2� 65:7� 91

B V�1; 2� s � 1 22:8� 91:0� 66
B V�1; 3� s � 1 23:2� 90:0� 66
B V�2; 3� s � 1 23:2� 90:0� 66

C V�2; 1� s � 3 22:5� 90:0� 67
C V�3; 1� s � 3 25:7� 88:9� 65
C V�3; 2� s � 3 25:6� 65:5�88:9� 65
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IV. RADIUS OF THE CIRCUMSCRIBED CIRCLE

When we see the unitary triangle from the geometrical
point of view, we find that the triangle 4�31� has the
plumpest shape compared with other triangles 4�12� and
4�23�, so that the triangle 4�31� has the shortest radius
Rmin of the circumscribed circle compared with the other
cases4�12� and4�23�. Therefore, let us put the following
assumption: the phase parameter � takes the value so that
the radius of the circumscribed circle R��� takes its mini-
mum value. The radius R��� is given by the sine rule (3.1).
Note that the side ri in the expression V�i; k� is independent
of the parameter �. Therefore, the minimum of the radius
R��� means the maximum of sin�i��� in the phase con-
vention V�i; k�. In Table III, we list values of ��1; �2; �3�
at � � �0 at which sin�i takes its maximal value. As seen
in Table III, all cases except for V�1; 1� and V�3; 3� [and
also V�2; 2�] can give favorable predictions. Therefore, this
ansatz is also not useful to select a specific V�i; k�.

If we put further strong constraint that the phase pa-
rameter � takes own value so that sin�i��� takes its maxi-
mal value sin�i � 1, then, we find that the possible
candidates are only two: V�2; 3� and V�2; 1�. [The other
cases cannot take the value sin�i � 1 under the observed
values (1.4) of jVusj, jVcbj and jVubj.] When we take
account of the forms of the quark mass matrices
�Mu;Md�which are suggested by Eq. (1.11) from a specific
phase convention V�i; k�, we are especially interested in the
phase convention V�2; 3�. The phase convention (1.12)
suggests the quark mass matrix structure (1.13). It is well
known that if we require the zero-texture �Md�11 � 0 for
the down-quark mass matrix Md, we can obtain the suc-
cessful prediction for jVusj [12]
jVusj ’

�������
md

ms

s
� 0:22: (4.1)
From the point of view of Mu-Md correspondence, if we
also apply the zero-texture hypothesis to the up-quark mass
matrix Mu, we obtain
sin�s hypothesis.

�sin�2�max � 1 at � � �0

3 �0 �1 �3 �0

:0� 115:3� 23:2� 66:8� 90:0�

:1� 66:8� 21:4� 68:8� 91:1�

:2� 114:8� 22:8� 67:2� 113:8�

:8� 66:9� 23:2� 66:8� 66:9�

:8� 113:2� 23:2� 66:8� 113:2�

:5� 157:5� 22:5� 67:5� 157:5�

:4� 26:9� 24:6� 65:4� 25:7�

:5� 153:3� 24:5� 65:5� 154:4�
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TABLE III. Minimal circumscribed circle hypothesis. The hy-
pothesis requires a maximal sin�i in the phase convention
V�i; k�. The underlined values are obtained by the maximal
sin�i requirement.

Type V�i; k� �1 �2 �3 �0

A V�1; 1� 25:4� 64:6� 90:0� 115:3�

A V�3; 3� 23:2� 66:8� 90:0� 67:8�

B V�1; 2� 22:8� 91:0� 66:2� 114:8�

B V�1; 3� 23:2� 90:0� 66:8� 66:9�

B V�2; 3� 23:2� 90:0� 66:8� 113:2�

C V�2; 1� 22:5� 90:0� 67:5� 157:5�

C V�3; 1� 25:7� 88:9� 65:4� 26:9�

C V�3; 2� 25:6� 88:9� 65:5� 153:3�
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jVubj ’ su13 ’

�������
mu

mt

s
� 0:0036 (4.2)

from �Mu�11 � �mu3 �mu1�cu13s
u
13c

u
23, where we have used

the quark mass values [13] at � � mZ. The prediction is in
excellent agreement with the observed value (1.4). [If we
put �Mu�11 � 0 on the mass matrix Mu which is suggested
from the phase convention V�3; 3�, we will obtain
jVub=Vcbj ’

���������������
mu=mc

p
� 0:059, which is in poor agree-

ment with the observed value jVub=Vcbj � 0:089�0:015
�0:014.]

Therefore, from the phenomenological point of view, we
are interested in the phase convention V�2; 3� rather than
the phase convention V�3; 3�.
V. CONCLUDING REMARKS

In conclusion, we have investigated the dependence of
the unitary triangle shape on the CP violating parameter �
which is dependent on the phase conventions of the CKM
matrix. The phase conventions are, generally, classified
into the 9 expressions V�i; k�, Eq. (1.6), which suggests
the quark mass matrix structures (1.9) with Eq. (1.11). If
we require that the angle � ( � �2) takes sin� � 1, all
cases can predict favorable values of ��1; �2; �3� as seen
in Table II.

However, we want to select a specific phase convention
V�i; k� in order to seek for a clue to the quark mass matrix
structure and the origin of the CP violation. Then, the most
naive and simplest hypothesis is the well-known ‘‘maximal
CP violation hypothesis,’’ which means the requirement
sin� � 1. The ansatz selects the cases V�1; 1� and V�3; 3�.
The relations between V�3; 3� and the quark mass matrices
�Mu;Md� have already discussed in Refs. [6,14].

Another selection rule is a minimal circumscribed circle
hypothesis, which requires a maximal value of sin�i in the
phase convention V�i; k�. The hypothesis selects all cases
except for V�i; i� (i � 1; 2; 3) as favorable ones. Only when
we put a stronger constraint sin�i � 1, we can selects
cases V�2; 3� and V�2; 1�. [In other cases, sin�i cannot
073002
take sin�i � 1 under the observed values (1.4) of jVusj,
jVcbj and jVubj.] We are interested in the case V�2; 3�
because the suggested quark mass matrices predict suc-
cessful relations jVubj ’

��������������
mu=mt

p
and jVusj ’

���������������
md=ms

p
under the simple texture-zero hypotheses �Mu�11 � 0 and
�Md�11 � 0, respectively.

Although, in the present paper, we did not discuss the
neutrino mixing matrix [15] U � UyeLU�L, where
UyeLMeUeR � De and Uy�LM�U	�L � D�, the expressions
V�i; k� will also be useful for studies of the neutrino mix-
ings. If we obtain data of CP violation in the lepton sector
in the near future, we can select a favorable expression
V�i; k� for the mixing matrixU, and thereby we will be able
to get a clue for investigating structures of Me and M�
individually.

APPENDIX: CONDITIONS ON A MASS MATRIX
WHICH IS FACTORIZED INTO A REAL MATRIX

BY PHASE MATRICES

We show that a mass matrix M with a specific texture-
zero can always be factorized by phase matrices PL and PR
as

M � PyL ~MPR; (A1)

where ~M is a real matrix, and

PL � diag�ei�
L
1 ; ei�

L
2 ; ei�

L
3 �;

PR � diag�ei�
R
1 ; ei�

R
2 ; ei�

R
3 �:

(A2)

When we denote

Mij � jMijjei�ij ; (A3)

we obtain 9 relations

�ij � ���
L
i � �

R
j �: (A4)

Although we have 6 parameters �Li and �Ri , the substantial
number of the parameters is 5. Therefore, we have 4
independent relations among the phases �ij. In order that
the phase parameters �ij are free each other, 5 of 9 mass
matrix elements must be zero.

Let us it in the concrete. From the relations (A4), we
obtain

�L1 � �R1 ��11 � �R2 ��12 � �R3 ��13; (A5)

�L2 � �R1 ��21 � �R2 ��22 � �R3 ��23; (A6)

�L3 � �R1 ��31 � �R2 ��32 � �R3 ��33: (A7)

By eliminating �Ri from the relations (A5)–(A7), we obtain
the following 4 independent relations among �ij:

�11 ��22 � �12 ��21; (A8)

�22 ��33 � �23 ��32; (A9)
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�33 ��11 � �31 ��13; (A10)

�12 ��23 ��31 � �21 ��32 ��13: (A11)

If a matrix element Mij is zero, the corresponding phase
parameter �ij becomes unsettled. Every relations (A8)–
(A11) contain such unsettled phases more than one in order
that the mass matrix M can always be transformed into the
real matrix ~M by phase matrices PL and PR as Eq. (A1).
Therefore, 4 zero-textures are, at least, required.

Of course, if the phase parameters �ij satisfy the rela-
tions (A8)–(A11), the mass matrix M can always be trans-
formed into a real matrix ~M as Eq. (A1) without texture-
zeros.

SHAPE OF THE UNITARY TRIANGLE AND PHASE . . .
073002
As such a typical mass matrix form which can be
factorized as Eq. (A1), a model with a NNI form [10] is
well known:

M �
0 a 0
a0 0 b
0 b0 c

0
@

1
A; (A12)

We should recall that Branco, Lavoura, and Mota [16] have
shown that any quark mass matrix form �Mu;Md� can be
transformed into the NNI form (A12) by rebasing without
losing generality. However, even the mass matrix form Mf

in Eq. (1.9) has a NNI form, in the present investigation, it
means a case that the NNI form is an original form without
rebasing.
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