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Bayesian evidence as a tool for comparing datasets
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We introduce a new conservative test for quantifying the consistency of two or more datasets. The test is
based on the Bayesian answer to the question, ‘“How much more probable is it that all my data were
generated from the same model system than if each dataset were generated from an independent set of
model parameters?”” We make explicit the connection between evidence ratios and the differences in peak
chi-squared values, the latter of which are more widely used and more cheaply calculated. Calculating
evidence ratios for three cosmological datasets [recent cosmic microwave background data (WMAP,
ACBAR, CBI, VSA), SDSS galaxy redshift survey, and the most recent SNe type 1A data] we find that
concordance is favored and the tightening of constraints on cosmological parameters is indeed justified.
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I. INTRODUCTION

The apparent mutual agreement of a wide range of
cosmological observations has led to the current climate
of “concordance” in cosmology [1-8]. The practice of
combining independent datasets, by the multiplication of
their associated likelihood functions, in order to increase
the precision of the parameters of the world model is now
standard, but quantitative consistency checking is empha-
sized to a much lesser degree. As all physicists will agree,
accurate cosmology is preferable to precision cosmology,
and it is this that motivates this short communication.

The purpose of this work is to demonstrate one applica-
tion of Bayesian model selection, that of checking that the
far simpler model of a universal set of parameters for
modeling all datasets is justified by the data themselves:
in doing so we make the connection between the Bayesian
formulation of the problem and the pragmatic approach
taken at much lower computational cost by the experimen-
tal community. In this work we show that, as is so often the
case, the standard approach is justified on the grounds of
common sense, and demonstrate the reduction of this
common sense to calculation via probability theory.

As usual, the route to model selection is via the Bayesian
evidence. The evidence for a model H from data d is just
the probability Pr(d | H), and can be calculated in principle
by marginalizing the unnormalized posterior probability
distribution function (pdf) over all M parameters 0 in the
model:

Pr(d | H) = / Pr(d | 0, H) Pr(0 | H)a0. (1)

In practice, calculating this integral is rarely feasible, but
other techniques exist to provide estimates of the evidence

1550-7998/2006/73(6)/067302(4)$23.00

067302-1

PACS numbers: 98.80.Cq

(see, for example, [9]). More detailed introductions to the
evidence and its central role in the problem of model
selection are available elsewhere [10,11]—here we make
the general remarks that the evidence increases sharply
with increasing goodness of fit, and decreases with increas-
ing model complexity (quantifying the principle of
Occam’s razor). We show later explicitly how these two
aspects come to the surface and, for the specific case of
Gaussian measurement errors, result in model selection
proceeding by the comparison of differences in the ubiq-
uitous chi-squared statistic with an ““Occam’ factor which
takes the form of an effective number of parameters. The
more general approach advocated here is applicable to any
likelihood functions [Pr(d | 8, H)], not just those having
Gaussian form, and takes into account the full extent of the
pdf’s involved. It is of course also sensitive to the parame-
ters’ prior pdf [Pr(0 | H)]: broader priors represent more
complex models and so naturally give lower evidence
values. Evidence is the natural tool for comparing datasets
in this way: it enables us to quantify such questions as “Is
the mismatch between two experiments large enough to
warrant investigation into possible sources of systematics
or new physics?”’

The simplest model for all the cosmological data in hand
is that they provide information on the same set of cosmo-
logical parameters: this is the standard assumption made in
all the joint analyses to date. Let H, represent the hypothe-
sis that ‘““there is one set of parameters that describes our
cosmological model.” In other words, we believe that we
understand both cosmology and our experiments to the
extent that there should be no further freedom beyond the
parameters specified. However, if we are interested in
accuracy as well as precision then we should take care to
allow for systematic differences between datasets: the most
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extreme case would be the one where the observations
were in such strong disagreement that they appeared to
give conflicting measurements of all the model parameters.
In this case one could consider the hypothesis H; that
“there is a different set of parameters for modeling each
dataset.” The conservatism of such a model comparison
exercise is readily apparent: the large increase in model
complexity incurred when moving from H, to H; means
that the joint analysis is intrinsically more favorable. This
means that any result in favor of H; may be taken as a clear
indication of discord between the two experiments. Note
also that this test is easily done given that the evidence
values will have been calculated for alternative purposes,
such as comparing two physical models in the light of each
dataset alone.

For checking dataset consistency then the quantity we
should calculate is the ratio of probabilities that each
model is correct, given the data:

Pr(H, | d) _ Pr(d | Hp) _Pr(Ho)

= . 2
PrHy [d)  Prd[Hy) Pr(Hy) @
The calculable part of Eq. (2) is the evidence ratio
Pr(d | H Pr(d | Hy)
_Pi(d | Hy) _ Prld | Hy 5

 Pr(d]|H, nPr(di [ H)’

where in the second line we have assumed that the indi-
vidual datasets d; under analysis are independent. (The
evidence integral factors out since the independent like-
lihoods do, and also because each likelihood depends only
on its own subset of parameters.) Interpretation of this
evidence ratio is aided by Eq. (2): for statement H, to be
more likely to be true than statement H;, the product of R
and the prior probability ratio must be greater than 1.
Suppose that an evidence ratio R of 0.1 were found: the
dataset combination (Hg) can still be justified, but only if
you are willing to take odds of ten to one on there being no
significant systematic errors in the system. Blindly multi-
plying N likelihoods together results, in general and ap-
proximately, in factors of improvement in precision of +/N:
the evidence ratio gives an indication of whether or not this
improvement is justified, in the form of an odds ratio
(which enforces honesty through the threat of bankruptcy).

Other criteria besides evidence have been used to com-
pare different models. Recently [12] have proposed the
Akaike and Bayesian information criteria to carry out
cosmological model selection. These criteria are approx-
imations to the full Bayesian evidence under rather restric-
tive assumptions and thus fall under the same framework.
The posterior Bayes factors proposed by [13] and also
discussed in [14] can be used as an alternative to evidence.
This quantity is the Bayesian evidence with the prior set to
the posterior and can be readily estimated as an average
likelihood of the Markov chains. It has some desirable
properties, such as no prior dependence in the limit of
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prior enclosing the entire volume of posterior. However,
it has no simple interpretation within the Bayesian frame-
work and will thus not be discussed in this paper. The use
of the evidence itself as a model selection tool has been
growing in cosmology (see e.g. [15-18]). Using evidence
to check dataset consistency has received much less atten-
tion. Application to a particular problem of CMB map
contamination can be found in [16]. In this work we
construct a much more general approach that can be ap-
plied to any setting in which a given model is tested against
more than one dataset. The price one has to pay for this
generality is that we are relatively insensitive to any par-
ticular inconsistency. We also aim to provide a short
tutorial, establishing the connection with the more conven-
tional y? statistics, followed by a simple analysis of current
state-of-the-art experiments.

II. CONNECTION TO x? ANALYSIS

Consider a general likelihood function of some model
parameter vector x, which can be (for reasons that will
become apparent in a moment) rewritten as

L(x) = Ly L(x), “4)

where L., is the likelihood at the most likely point in the
parameter space and the dimensionless function L contains
all the likelihood shape information. Assuming a uniform
prior spanning between — p and p in each direction, where
p is large enough to encompass all regions of high like-
lihood, gives the approximate evidence

- fide

=~ Linax o )

where M is the number of parameters in the model. If we
identify the numerator of the above fraction with the
volume associated with the likelihood V7, and the denomi-
nator with the available prior volume V, we have

logE = 10g<ﬁ> + logL jax- (©6)
Va
All the details of the overlap between prior and likelihood
is contained within the volume ratio, whereas the maxi-
mum likelihood value specifies the goodness of fit. Except
when the posterior pdf’s take simple analytic forms, this
volume factor must be calculated numerically and of
course takes up much of the effort in the evidence
calculation.

In the case where the measurement errors are Gaussian,
we can write the evidence ratio used in this work in terms
of the best-fit chi-squared values that may be calculated

during an analysis. It can be shown that
ViV 1
logR = log[ ——"| — - A%, 7
wr- (P2 Lo o

where A§? = %3, — (¥7 + t3). Defined this way, A §? is
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always positive (the goodness of fit cannot decrease with
the addition of the extra parameters) and we see that the
borderline case of logR = 0 corresponds to the difference
in chi squared between the two individual analyses and the
joint fit being equal to an effective number of parameters
(the difference in the number of degrees of freedom) given
by the logarithm of the volume factor.

Returning to the general case, if we retain the assump-
tion of a broad uniform prior, and if the likelihoods are well
approximated by multivariate Gaussians, then the volume
factor can be calculated analytically: in this case the ith
likelihood can be written as

Li=Liexpl-1x — £)F\x - 9] ®)

where F; is the Fisher matrix. This gives, for the likelihood
volumes,

v, = @mMPIF |2, ©

In the joint analysis, combining two Gaussian likelihoods
results in a new Gaussian, centered at a correctly weighted
mean of positions, but whose shape is given simply by

Ly =exp[—5(x — £)"(F| + F,)"'(x — %)}, (10)
and therefore
Vi, = QmMP2|F, + F,|'/2. (11

Note that in this case, due to the high symmetry of the
Gaussian approximation, the overlap integral V, is inde-
pendent of the distance between the best fitting points.
Therefore using A y? as a proxy for the Bayesian evidence
change is valid when the Gaussian approximation to the
posterior is a good one. In the simple case where F| = F,
(a parallel degeneracy) and V, = (2p)" again, the log
evidence becomes

_ 1 4 p 2
logR = z(Mlog[; |F|1/M:| — Ay ) (12)

The log term is typically of the order of unity: |F|'/* is the
geometrical average of the principal variances and hence
p2|F|~'/M is the square of the ratio of the prior width to the
characteristic likelihood width. Hence we recover the fre-
quentist rule of thumb that the increase in y? is justified if
the number of parameters drops by roughly the same
number. However the evidence considerations above allow
this rule to be calibrated to take into account both the prior
information supplied and the (potentially complex) shape
of the likelihoods; in general, V;, is not independent of the
individual peak positions, and so the simple A §> procedure
does not propagate all the information contained within the
likelihood functions.
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TABLE I. The priors assumed for the cosmological model
considered in this paper. The notation (a, b) for parameter x
denotes a top-hat prior in the range a < x < b.

Basic parameter Prior

wy, (0.005, 0.05)
®gm (0.01, 0.4)
Oy (—03,03)
h 04, 0.9)
ns 0.8, 1.2)
T (0.01, 0.7)
log10'04, (1,5)

III. COMPARING COSMOLOGICAL DATASETS

Datasets and method

We use a version of the COSMOMC software package
[14], modified to calculate evidence by the thermodynamic
integration method. We obtain consistent results using two
different methods to calculate the evidence reliably: the
error on the log evidence differences is conservatively
estimated to be of the order of unity. The details of the
evidence calculation method is presented elsewhere [19].

We have chosen three datasets for comparison:

(i) CMB: We use the “‘standard” selection of CMB
experiments: the WMAP data [20] together with
the latest VSA [21], CBI [3] and ACBAR data [22].
We also used a modified version of the likelihood
code that correctly accounts for the largest WMAP
scales [23]

(i1)) SN: We use the Riess et al. (2004) SN data. We use
both “gold” and “silver” datasets. We imple-
mented our likelihood code and checked that it
gives results consistent with Riess et al.

(iii) SDSS: Finally we use large scale power spectrum
measurements from the SDSS experiment [24—26].
We used the likelihood code by Tegmark [7]
adapted for cosMOMC by Leach (private
communication).

We investigate a 7-parameter cosmological model. In
Table I we show the uniform priors assumed for the pa-
rameters of our model. We take our priors to be compara-
tively broad to approximate the state of ignorance we may
have been in before any of the three experiments were
performed. This has the effect of giving the data as much
“freedom” as possible, and correspondingly making the
evidence test somewhat conservative.

IV. RESULTS AND DISCUSSION

In Table IT we give the values of R for various combi-
nations of datasets under discussion. We do not detect any
discrepancy between datasets: all combinations of the data-
sets weakly favor Hy. In the last line of Table II we report
on the value of R for all experiments combined. In princi-
ple, it is possible to have three experiments be pairwise
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TABLE II. The logarithm of R for various combinations of
datasets. See text for further discussion.

Dataset combination logR
CMB-SDSS 0.23
SDSS-SN 1.5
SN-CMB 1.6
CMB-SDSS-SN 4.5

consistent with each other, but not when all combined
together (imagine, for example, three degeneracy lines
forming a triangle). Comfortingly enough, the three-way
evidence test also abrogates H; and due to a large number
of extra parameters (i.e. twice as many as in other datasets)
it has also a more positive detection of concordance.

We have illustrated our methodology with application to
real cosmological data. As expected, the data are concord-
ant: any obvious conflict in the data would likely have been
noticed using the ““chi by eye” methods employed to date.
However, should such discrepancies occur in the future it is
imperative to have a method to quantify these discrepan-
cies in the most general settings where Gaussianity cannot
be assumed and ever more complex parameter spaces are
to be dealt with.
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A value of R less than unity (logR << 0) is a sign that we
should investigate the mismatch between datasets further.
This can be done by exploring more focused models, either
with new cosmological parameters (if the experiments are
reckoned to be well understood), or with additional nui-
sance parameters that quantify the possible systematic
errors in the data. Disentangling the degeneracy between
new physics and systematic error can only be done if the
additional parameters come with fresh information en-
coded in their prior pdf: this information is then folded
into the evidence ratio, providing the crucial difference
between this methodology and any method relying on
goodness of fit alone.
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