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We study the condensation of closed-string tachyons as a time-dependent process. In particular, we
study tachyons whose wave functions are either space-filling or localized in a compact space, and whose
masses are small in string units; our analysis is otherwise general and does not depend on any specific
model. Using world-sheet methods, we calculate the equations of motion for the coupled tachyon-dilaton
system, and show that the tachyon follows geodesic motion with respect to the Zamolodchikov metric,
subject to a force proportional to its beta function and friction proportional to the time derivative of the
dilaton. We study the relationship between world-sheet RG flow and the solutions to our equations, finding
a close relationship in the case that the spatial theory is supercritical and the dilaton has a negative time
derivative.
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I. INTRODUCTION

Two outstanding problems in string theory are how to
understand the configuration space of the theory, and how
to understand time-dependent backgrounds. These prob-
lems are inseparable. The statement that two classical
vacua are connected in some configuration space is mean-
ingful if there is some dynamical process (or domain wall)
which interpolates between them.

In this paper we report modest progress towards under-
standing these issues in classical closed-string theory. To
do so, we will focus on a particular class of time-dependent
backgrounds: the decay of unstable vacua via closed-string
tachyon condensation. Such unstable vacua correspond to
two-dimensional conformal field theories (CFTs) with
relevant operators. The standard lore, based on the study
of many examples in open and closed-string theory, is that
perturbing the background by a tachyon condensate is
somehow equivalent to perturbing the world-sheet CFT
by the corresponding relevant operator; and that the end-
point of tachyon condensation is the endpoint of the renor-
malization group flow of this perturbed CFT. This is in
accord with a philosophy espoused by some since the mid-
1980s, that the (classical) configuration space of string
theory is the space of all two-dimensional quantum field
theories (c.f. [1–4]).1

This picture cannot be the complete story. To begin with,
the RG flows are governed by equations that are first order
in derivatives with respect to a world-sheet cutoff, whereas
the spacetime equations are second or higher order.
Secondly, except in cases where the closed-string tachyon
mode is localized in a noncompact space, the central
even this is too simple. In closed-string theory we
o take into account D-branes and Ramond-Ramond
Furthermore, it is not clear how to deal with
by massive fields. We will avoid all such back-
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charge of the perturbed world-sheet field theory must
strictly decrease along the renormalization group flow
[5,6]. However, under time evolution the central charge
of the theory cannot change, since it must remain critical.

We therefore wish to study the spacetime dynamics of
tachyons more directly. Inspired by [7–9],2 we consider the
following backgrounds. Begin with a CFT C with a set of
relevant and marginal operators Oa. Perturb the theory by
turning on couplings ua to these operators3:

�S u � S� � SC �
Z
d2z

�
��a�2uaOa �

1

4��0
�R�2�

�
:

(1.1)

Here �a is the dimension of Oa, � is a cutoff with dimen-
sions of length, and ua is a dimensionless coupling. We
have also included a dilaton � (which for the moment is
constant) coupling to the world-sheet curvature R�2�. The
theory (1.1) will not in general be conformal, and the
couplings ua, � will have beta functions ��a�u�, ����u�
which we assume are known. Note that at a fixed point ���

is equal to one-sixth the central charge.
Now we couple this theory to a scalar field representing

the time direction in the target space:

Su��� � S���� � SC �
Z
d2z

�
�

1

2��0
@� �@�

� ��a�2ua���Oa �
1

4��0
����R�2�

�
:

(1.2)
2In particular, this program was carried out for sigma models
without tachyons in [8,10].

3For convenience, we use a notation that assumes that C has a
Lagrangian description. If not, the perturbed theory may be
defined via the correlation functions hO1�x1� . . .On�xn�i �Su �
hO1�x1� . . .On�xn�e

�� �SiC.
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The fields ua, as well as the dilaton, are now time-
dependent. The target space equations of motion are the
conditions that the theory perturbed by Su��� is conformal.
We would then like to address two questions: (1) What are
the equations of motion? (2) How do their solutions re-
late—if at all—to the renormalization group flow of the
spatial theory �Su generated by the beta functions ��a? In
this paper, we answer both of these questions in the case
where the tachyons are light, i.e. �a � 2� �a � 1.

To answer the first question we use two different meth-
ods. First we use conformal perturbation theory, to qua-
dratic order in ua and lowest order in �a. We then do the
calculation using a background field method, to second
order in time derivatives and lowest order in ��a. The two
methods give the same equations of motion, which are
written in Eq. (3.6). These equations are essentially geo-
desic motion for ua with respect to �, with a force term
� ��a. We show that for consistency ��a must be the gra-
dient of ���, which thus acts as a potential energy, with
minima at the infrared fixed points. By energy conservation
it would seem that the tachyon field could never settle into
such a minimum, so time evolution could never give the
same endpoint as RG flow. However, we show that if the
dilaton is decreasing with time (which requires the spatial
theory to be supercritical) the equations of motion acquire
a friction term which will eventually (if our approxima-
tions do not break down) lead the couplings to settle at an
infrared fixed point. The combination of the force term and
the friction term thus provides the qualitative link between
the time evolution and the RG flow, answering the second
question.4 Depending on the details of the system and the
initial conditions the final state may or may not be at the
same fixed point as predicted by RG flow.

In general, the final spatial theory will have a lower
value of ���, and therefore a lower central charge, than
the initial theory. Does this not contradict the fact that the
total central charge cannot change? As we will see, what
happens is that the dilaton dynamically adjusts its slope so
that the full theory remains critical.5 In other words, central
charge is exchanged between C and �.

The plan of our paper is as follows. In Sec. II, we discuss
general aspects of conformal perturbation theory. We re-
view the computation of the one-loop beta functions, in the
renormalization scheme we adopt in this paper; we discuss
the scheme dependence of the answers; and we point out
that at order �3

a the beta functions cannot be the gradient
4It has been known at least since [11], based on the interpre-
tation of the time direction as the Liouville field, that in the limit
of large negative linear dilaton slope the time evolution becomes
identical to RG flow. The fact that, more generally, a negative
linear dilaton slope leads to friction in the dynamics has been
noted in several other papers on closed-string tachyon conden-
sation, including [12–14].

5The same effect was calculated in a different way in a
supercritical heterotic example in [15].
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with respect to the Zamolodchikov metric of a scalar
function. In Sec. III we derive the beta functions for
CFTs perturbed by relevant and marginal operators,
coupled to a scalar field, using both conformal perturbation
theory and the background field method. In Sec. IV we
discuss solutions to these equations, both in general and in
the case of a CFT containing a unitary minimal model, and
we discuss how the dynamics appears if we change the
renormalization scheme. In Sec. V we discuss the relation-
ship between our effective action and one computed by
tachyon scattering amplitudes; we discuss the relationship
of our theory to Liouville theory coupled to matter; and we
show that in the presence of a linear dilaton with large
slope, a class of trajectories are described by the standard
renormalization group equations. Finally, we discuss the
relation of our results to open string tachyon condensation.
In Sec. VI we conclude with a speculation regarding a
Hamilton-Jacobi formulation of the tachyon dynamics.
The appendices contain some useful technical results.
Appendix A is a review of the renormalization group
equations used to derive the beta functions. Appendix B
contains a calculation of the Zamolodchikov metric to
linear order in the renormalization group scheme used in
this paper. Appendix C contains a more detailed discussion
of the computation of the beta functions by the background
field method.
II. CONFORMAL PERTURBATION THEORY

In this work we are interested in perturbed two-
dimensional conformal field theories coupled to a scalar
field. In order to develop intuition for this system, Sec. II A
is dedicated to a brief review of some conformal perturba-
tion theory. In Sec. II B we discuss the scheme dependence
of the beta functions, and in Sec. II C we address the
question of whether they can be derived as gradients of a
scalar function.

A. Review

In this subsection we review a standard calculation
(c.f. [16,17]) of the beta functions of a perturbed conformal
field theory to quadratic order in the perturbations. Our
starting point is an ultraviolet fixed point described by a
nontrivial conformal field theory. This theory may or may
not possess a Lagrangian description (the examples we
have in mind are the c < 1 unitary minimal models [18]).

If the CFT can be described by an action SCFT, we are
interested in perturbed theories of the form

S � SCFT �
Z
d2z

X
a

��a�2uaOa�z� � SCFT � S0: (2.1)

where ua is a dimensionless coupling, �A is the dimension
of the spinless operator OA in the unperturbed CFT, and �
is a length scale that we will identify with the ultraviolet
cutoff. If a Lagrangian description of the UV theory does
-2



6In fact there are important examples of scheme changes
which are not analytic. This issue will not affect us in this paper,
but needs to be kept in mind. We would like to thank T. Banks
for pointing this out to us.
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not exist, then we can describe the perturbed theory via its
correlation functions:

Cn�x1; . . . ; xn� � hO1�x1� . . .On�xn�iu

� hO1�x1� . . .On�xn�e
�S0iCFT: (2.2)

The correlation function on the right-hand side is evaluated
in the CFT.

We will use the renormalization group equation:

�
�
@
@�
� �c@c

�
hOa1
�x1� . . .Oan�xn�i

�
X
k

�ckakhOa1
�x1� . . .Ock�xk� . . .Oan�xn�i � 0: (2.3)

Here �a is defined as the coefficient of OA in the trace of
the stress tensor,

� � ���aOa; (2.4)

while �ba is the matrix of anomalous scaling dimensions,
related to the beta functions by

@a�c � ��2��a��ca � �ca: (2.5)

The derivation of (2.3) is reviewed in Appendix A.
We can compute�a by applying Eq. (2.3) to the partition

function. Expand the partition function out to second order
in u:

Z�
�
e�
R
�2��auaOa

�

�

�
1�

Z
d2z��a�2uaOa�z�

�
1

2

Z
d2zd2y��b��c�4ubucOb�z�Oc�y� � . . .

�
: (2.6)

The calculation requires a choice of renormalization group
scheme, which specifies the cutoff dependence. We will
regulate the theory by cutting off the OPE singularities
following the prescription of [19]:

O b�z�Oc�y� �
X
a

1

�jz� yj2 � �2��abc=2
CabcOa

�
z� y
z

�
;

(2.7)

where �abc � ��a ��b ��c. Note that this will intro-
duce cutoff dependence even when the integrated operator
products in (2.6) are not singular. This is a specific choice
of scheme, which we dub the ‘‘Wilsonian’’ scheme; in
x II B we will discuss what happens when the scheme is
changed.

Setting �z � 1
2 �z� y�, �z � z� y, we can integrate over

�z to find the following:
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Z
d2z

Z
d2yOb�z�Oc�y�

� Cabc
Z j�zj2�R2��2

0

d2�z

�j�zj2 � �2��abc=2

Z
d2 �zOa� �z�

� 4�Cabc
�2��abc � R2��abc

�abc � 2

Z
d2 �zOa��z�: (2.8)

Here the IR cutoff has been implemented in such a way that
the �-dependent term, which gives rise to the beta function,
is conveniently independent of R. Using (2.3) we find the
following beta function:

�a � ��aua � 2�Cabcu
buc �O�u3� �no sum on a�;

(2.9)

where

�a � 2� �a (2.10)

is the deviation of the coupling from marginality.

B. Scheme dependence

The beta function (2.9) was calculated within a particu-
lar renormalization scheme. Changing one’s scheme
amounts to redefining the couplings, i.e. making a coor-
dinate transformation on the space of couplings. More
precisely, since the action (2.1) fixes the definition of the
couplings at linear order, scheme changes correspond to
coordinate transformations at quadratic and higher order6

ua ! ~ua � ua � babcu
buc �O�u3�: (2.11)

The beta functions transform like a vector under scheme
changes, so we have

~�a � ��a~ua � �2�Cabc � ��a � �b � �c�b
a
bc�~u

b~uc

�O�~u3�: (2.12)

We see that the coefficient of the quadratic term is scheme
dependent unless �a � �b � �c � 0. OPEs satisfying
�a � �b � �c � 0 are sometimes called ‘‘resonant’’, as
in the discussion [20]of boundary perturbations; the diver-
gence in (2.8) is logarithmic in this case, explaining the
scheme independence of the beta function.

One particularly simple scheme—which can only be
reached if there are no resonant OPEs—is the one in which
the beta functions are exactly linear in the couplings: �a �
��aua. While it has the advantage of simplicity, it may
miss interesting physics. When the perturbations in (2.1)
are nearly marginal, so that j�aj � 1, the beta functions in
(2.9) have nontrivial zeros for ua � �a, which is within the
realm of perturbation theory. These are nontrivial IR fixed
-3
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points; in string theory they are possible endpoints of
tachyon decay. Linearizing the beta functions pushes these
fixed points off to infinite coupling.

In the remainder of this paper we will be studying string
backgrounds, for which the full beta functions vanish. The
operators we perturb by will be nearly marginal.7 In this
case, we will treat �a as an expansion parameter (as in
[19,21]). If we are studying such backgrounds using con-
formal perturbation theory, we should perform a double
expansion in ua and �a. The scheme employed in the last
subsection was such that the result (2.9) was exact in �a.
Note, however, that by (2.12) all of the terms in (2.9) are
scheme independent at lowest order in �a.

Let us introduce one more interesting scheme, namely,
the one employed by Zamolodchikov in [6]. To define it,
we need to introduce his metric on the space of couplings

gab � ��a��bhOa���Ob�0�i (2.13)

(note that this definition is scheme-covariant, i.e. gab trans-
forms as a tensor under scheme changes). Then his scheme,
which we will denote by ~ua, is defined by the condition

~g ab�~u� � �ab �O�~u
2�: (2.14)

In this scheme he calculates, for primary operators, the beta
function to quadratic order in ~ua,

~�a � ��a~ua � �abc~ub~uc �O�~u3�; (2.15)

finding that the quadratic coefficient �abc depends on both
the OPE coefficient and the scaling dimensions. While he
calculates this dependence exactly, for our purposes it is
sufficient to note that the leading � dependence occurs at
cubic order:

�abc � 2�Cabc

�
1�

1

4
 00�1���a � �b � �c�

	 ��2
a � �

2
b � �

2
c �O��

4��

�
; (2.16)

where  is the digamma function.
Comparing (2.16) to (2.12), we see that

Zamolodchikov’s scheme is related to the Wilsonian one
used in Sec. II A by a coordinate transformation of the form
(2.11), with

babc � �
�
2
 00�1���2

a � �2
b � �

2
c �O��4��: (2.17)

Using this we can transform the metric (2.14) into the
Wilsonian coordinate system, finding that the leading cor-
7In principle one also has to solve the beta function equations
for all the couplings that are not nearly marginal. This can be
done by turning them on at order �2, where � is the typical
deviation from marginality of the nearly marginal operators,
giving a negligible ‘‘back-reaction’’ on the nearly marginal
couplings. In the string theory application of the next section,
this corresponds to the usual integrating out of the heavy fields.
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rection is of order �2u:

gab � �ab � � 00�1�Ccab�
2
cuc �O�u2� (2.18)

(where we have used the symmetry properties of the OPE
coefficients of primary operators). In Appendix B, the
metric is calculated directly to order �u in the Wilsonian
scheme, confirming the absence of a correction at that
order.

C. Gradient flow?

An interesting question is whether the beta functions �a

of a theory are in general the gradient of some scalar
function on the space of couplings. In the paper [6],
Zamolodchikov proves such a relation to second order in
ua and lowest order in �a:

gab�b �
1

24�2 @aC; (2.19)

where the index on �a is lowered with his metric (2.13),
and C is his C-function. However, this relation fails to hold
at higher order in �a. More precisely, since the cubic term
in (2.16) is not symmetric in the indices a and b, the one
form gab�

b is not closed and hence cannot be the gradient
of a scalar. (This fact is implicit in the discussion in [6].)
The problem is thus with the metric, not the C-function,
and it would be interesting to know whether there is
another metric on the space of couplings such that gradient
flow does work. We should note that an exact gradient flow
formula has been proven for boundary perturbations [22–
24]; it has the form (2.19) with C replaced by the boundary
entropy g and gab replaced by a smeared two-point
function.

III. CALCULATION OF THE BETA FUNCTIONS

Our goal is to describe the dynamics of tachyon con-
densation in string theory, and the relation of these dynam-
ics to two-dimensional renormalization group flows. To
this end, inspired by the discussion in [8], we study the
following models. C denotes a compact unitary CFT con-
taining relevant spinless operators Oa with dimensions �a.
We construct a string background by tensoring C with the
theory of a single free boson � representing an additional
target space direction. There may also be a spectator CFT
that contributes to the total central charge but otherwise
will not participate in the discussion. The relevant opera-
tors Oa correspond to tachyons in this background. We
consider perturbations of this tensor product theory:

Su��� � SC �
Z
d2z

�
�

1

2��0
@� �@�� ��a�2ua���Oa

�
:

(3.1)

For the sake of concreteness we have adopted a timelike
kinetic term for �, appropriate for considering the time-
-4



ON CLOSED STRING TACHYON DYNAMICS PHYSICAL REVIEW D 73, 066015 (2006)
dependent process of tachyon decay. All of our results,
however, generalize straightforwardly to a spacelike direc-
tion, appropriate for studying spatial tachyon profiles.
Because we consider only a single spacetime direction,
the metric G�� can be eliminated by a gauge choice; we
work in the gauge G�� � �1.

We assume that the beta functions ��a�u� for the per-
turbed CFT absent �,

�S u � SC �
Z
d2z��a�2uaOa; (3.2)

are known. Given this information, we want to know what
conditions ua��� must satisfy in order for Su��� to be a
CFT; in other words we want to know the beta functions
�a
ua����, as well as the beta function �G
ua���� for
G��. In this section we calculate �a and �G by two
different methods, which have slightly different domains
of applicability:
(1) I
8The
flow ge
choice
�a � �

9Thi
particu
contain
volume
what fo
are loc
n Sec. III A we use conformal perturbation theory.
For this we need to assume that the couplings ua, as
well as their deviation from marginality �a � 2�
�a, are small. The results are therefore most useful
in a situation in which the theory �Su has an infrared
fixed point which is close to C.
(2) I
n Sec. III B we use a background field method. This
does not require u to be small, but does require ��a

and �-derivatives of u to be small.
10If there is a spinless operator Oa with dimension close to
zero, then one should also consider the operators OaR

�2� and
Oa@� �@�. An example of this would be where C is a sigma
In both cases we find the following beta functions8:

1

�0
�a �

1

�0
��a �

1

2
�ua �

1

2
�abc _ub _uc;

1

�0
�G � �4�2gab _ua _ub;

(3.3)

where a dot denotes a derivative with respect to �, gab is
the Zamolodchikov metric of the theory �Su,9

gab�u� � ��a��bhOa�0�Ob���iu; (3.4)

and �abc is the connection for it.
Positivity of the Zamolodchikov metric implies that the

beta functions (3.3) have no fixed points aside from the
static ones ua��� � ua� , where ��a�u�� � 0. This is clearly
not satisfactory, since we are interested in studying rolling
tachyon solutions. The problem is that we have so far left
reader should not be concerned with the fact that the RG
nerated by these beta function may not respect the gauge
G�� � �1; we are interested only in finding fixed points
G � 0, not in following the RG flow otherwise.

s and all other correlators in this paper are normalized. In
lar, in the case of a geometrical target space the correlator
s a factor of 1 over the target space volume. In the infinite
limit gab therefore vanishes for localized modes. Hence
llows is valid only for bulk tachyons and tachyons that

alized in a compact space.
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out an important massless degree of freedom, namely, the
dilaton. Therefore, moving to a curved world-sheet, we add
a Fradkin-Tseytlin term10

S� �
1

4�

Z
d2z

���
g
p

�R�2� (3.5)

to the actions �Su and Su���, where in the former case � is a
constant and in the latter case it is a function of �.
Assuming that the dilaton beta function ����u� in the
theory �Su � S� is known, in Sec. III C we adapt sigma
model methods to compute its beta function �� in the
theory Su��� � S��u�, as well as its contribution to �a and
�G. We find the following:

1

�0
�a �

1

�0
��a �

1

2
�ua �

1

2
�abc _ub _uc � _� _ua;

1

�0
�G � �4�2gab _ua _ub � 2 ��;

1

�0
�� �

1

�0

�
��� �

Caux � 1

6

�
�

1

2
��� _�2:

(3.6)

In �� we have included a contribution caux=6 from the
ghost and spectator CFTs.

Like (3.3) and (3.6) has one more equation than dynami-
cal variable, so one might worry again that there will be no
solutions (or only a few trivial ones). This is not the case
for the following reason. The condition �a � �G � 0 is
sufficient for the action Su��� � S���� to define a CFT.
General field theory arguments (specifically the Wess-
Zumino consistency condition) imply that the conformal
anomaly is then a c-number rather than an operator, and
hence that �� is �-independent. The fact that �� is
conserved whenever �a � �G � 0 implies that ��a and
��� are related by

@a ��� � 4�2gab ��b; (3.7)

so that ����u� acts as a potential function on the space of
couplings ua.11 Eq. (3.7) can be proven as follows. Using
�a � �G � 0, we have
model with a large target space, in which case these operators
would correspond to spatially varying dilaton and metric fluc-
tuation. Similarly, if there is an Oa with dimension (1, 0), then
one should consider Oa

�@�. We will assume that backgrounds
exist such that these can be ignored to within our
approximations.

11Recall that in x II C we found an obstruction to gab ��b being
the gradient of a scalar function at order �3. This is higher order
in � than we work at in the method (1) calculation, so there is no
contradiction. By comparing (3.7) with (2.19) and noting that
����ua � 0� � cC=6, we see that, to lowest order in �, ��� �
�C=6.

-5



12The reason for this diffeomorphism is not entirely clear to us,
but it is necessary for agreement with the calculation of x III B,
as well as the tachyon beta functions calculated in [11,25–29].
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_�� �
@
@t

�
�� �

1

4
�G

�
� _ua�@a ��� � 4�2gab ��b�:

(3.8)

For this to vanish for all _ua requires (3.7). Being a con-
served quantity, �� is a constraint rather than a dynamical
equation of motion, and we have the same number of
equations as variables. In Sec. IV we will discuss solutions
to these equations. Note that, in view of (3.7), they are
derivable from the following spacetime action:

S �
Z
d�

�������������
jG��j

q
e�2�

�
G��� _�2 � �2gab _ua _ub�

�
1

�0

�
��� �

caux � 1

6

��
: (3.9)

A. Conformal perturbation theory method

In this subsection the beta functions for the theory Su���
defined in (3.1) are computed to quadratic order in u using
the following simple facts: (i) the conformal perturbation
theory beta functions (2.9) and (2.15) are expressed in
terms of the data of the CFT about which we are perturbing
(dimensions of operators and OPE coefficients); and (ii) if
the CFT is a tensor product of two CFT’s, as is the case for
Su����0, then that data is easily expressed in terms of the
data of the two factors. The result will be the beta functions
given in (3.3).

It will be convenient for us to work in Zamolodchikov’s
scheme, introduced in Sec. II B, where according to (2.14)
the connection �abc on the space of couplings is of order u.
Once we establish that (3.3) holds in this ‘‘normal’’ coor-
dinate system, general covariance on the space of cou-
plings demands that it hold in any coordinate system.

The unperturbed CFT is a tensor product of C and the
Gaussian model for �. The scaling operators for the prod-
uct theory are products of scaling operators in each factor.
Hence we expand the operator ua��� in scaling operators
eik� (as always the Oa are scaling operators), writing:

ua���Oa �
Z
dk~ua�k�Oka; Oka � eik�Oa; (3.10)

and the index a used to label the scaling operators in Sec. II
is replaced by a double index ka. In a product theory,
scaling dimensions add and OPE coefficients multiply, so
we have

�ka � �
1

2
�0k2 � �a; Ck1a

k2b;k3c
� ��k1 � k2 � k3�Cabc:

(3.11)

Using (2.15), we therefore have

~�a�k� � �
�
1

2
�0k2 � �a

�
~ua�k�

� 2�Cabc
Z
dk0~ub�k0�~uc�k� k0�; (3.12)
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or in position space

�a �
1

2
�0 �ua � �aua � 2�Cabcu

buc �
1

2
�0 �ua � ��a:

(3.13)

Note that there are order �3 corrections to both equalities
of (3.13).

The Fourier transform ~G���k� of the spacetime metric is
the coupling for the operator

O k̂ �
1

2��0
@� �@�eik�: (3.14)

This operator has dimension 2� 1
2�
0k2; however, since we

are working in a gauge whereG�� is constant the first term
on the right-hand side of (2.9) vanishes. In this gauge the
leading contribution to the beta function will be from the
quadratic term, for which we need the OPE coefficient

Ck̂11
k2a;k3b

, where 1 denotes the unit operator in C. This again
factorizes into a product of OPE coefficients in the respec-
tive theories, which are straightforwardly computed:

Ck̂11
k2a;k3b

� Ck̂1
k2k3

C1
ab;

Ck̂1
k2k3
� �

�
2
�0�k2 � k3�

2��k1 � k2 � k3�;

C1
ab � gab:

(3.15)

Thus we have

�G � �2�0gab� �uaub � ua �ub � 2 _ua _ub�: (3.16)

The terms in (3.16) with second � derivatives can be
removed by a diffeomorphism12 with ��� gab@��uaub�,
leaving

�G � �4�2�0gab _ua _ub: (3.17)

The diffeomorphism will add to �a a term _ua��, which is
cubic in u and therefore higher order than what we have
calculated.

B. Background field method

In this subsection we will derive the beta functions (3.3)
using a background field expansion in �, as in [27,30]. We
write ��z� � ��� ��z�, where �� is constant and � is a
small fluctuation. We then Taylor expand the trajectory,
ua��� � �ua � _ua�� 1

2 �ua�2 �    , where �ua � ua� ���,
_ua � _ua� ���, etc. In the background field method we treat
_ua and �ua as small coupling constants, whereas �ua may be

an arbitrary point in the space of couplings. We decompose
the action (3.1) into the action for the static theory u��� �
-6
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�u, plus perturbations parametrized by _ua and �ua:

Su��� � S �u �
Z
d2z��a�2

�
_ua��

1

2
�ua�2 �   

�
Oa:

(3.18)

The derivative expansion will work so long as the beta
functions are small all along the flow, that is, ��a�u� � ��
1. (Note that this � is not the same as the deviation from
marginality �a used in the previous subsection; however, it
will in general be of the same order.) Our equations will
imply that �u is also of order �. For clarity, we will first do
the calculation in the case that the ua parametrize a moduli
space of CFTs, that is ��a�u� � 0. We will then add in the
effects of nonzero beta functions.

The expansion of the partition function to second order
in � is:

Z�
�

1�
Z
d2z _ua��z�Oa�z��

1

2

Z
d2z �ua�2�z�Oa�z�

�
1

2

Z
d2z

Z
d2w _ua _ub��z���w�Oa�z�Ob�w��  

�
�; �u
;

(3.19)

where expectation values are evaluated in the static theory
(3.1)with ua��� � �ua. The OPEs of exactly marginal op-
erators are constrained to have the following form [31]:

O a�z�Ob�w� �
gab

jz� wj4
� �abcOa�z��2�z� w� �   

(3.20)

(in particular, for exactly marginal operators Cabc must
vanish, otherwise according to (2.9) ��a would be nonzero
at second order in u� �u). Here gab is the Zamolodchikov
metric and �abc its connection at the point �ua in coupling
constant space. Inserting (3.20) into (3.19), we find

Z �
�

1�
Z
d2z _ua��z�Oa�z�

�
1

2
� �ua � �abc _ub _uc�

Z
d2z�2�z�Oa�z�

�
1

2
gab _ua _ub

Z
d2z

Z
d2w

��z���w�

jz� wj4
�   

�
�; �u
;

(3.21)

The beta functions can be extracted from the logarithmi-
cally divergent parts of this expression. We can regulate
�2�z� by point-splitting, giving

��z���z� ��:��z���z� ��:� �0 ln�; (3.22)

yielding the beta function

�a �
�0

2
� �ua � �abc _ub _uc�: (3.23)

The logarithmically divergent part of the last term in (3.21)
can be isolated by writing jz� wj�4 � �@z@ �wjz� wj�2
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and integrating by parts with respect to z and �w. We obtain

1

2
gab _ua _ub

Z
d2z

Z
d2w

@��z� �@��w�

jz� wj2
: (3.24)

When regulated, either with a sharp cutoff or in the manner
of Sec. II A, this divergent integral leads to the beta func-
tion

�G � �4��0gab _ua _ub: (3.25)

Once the dilaton is included (as it will be in the next
subsection), the beta functions �a and �G can be derived
from the spacetime action (3.9) with ��� � cC=6. Hence
our calculation agrees with the well-known fact that for
moduli the coefficient of the kinetic term in the spacetime
action is given by the Zamolodchikov metric.

We now generalize to the case where the ua are nearly
but not exactly moduli, by considering corrections to (3.23)
and (3.25) due to small ��a. The full beta function can be
calculated in an expansion in derivatives and in �. A more
careful discussion of the beta functions, and of this expan-
sion, appears in Appendix C. Here we simply note that the
full beta functions to zeroth order in � and to second order
in derivatives will be (3.23) and (3.25) as given above. As
we can see from (3.18), the calculation to zeroth order in
derivatives and to first order in � is computed using the
action S �u and just gives us ��. The sum of these two
contributions is given in (3.3).

In the end we are interested in the case �a � �G �
�� � 0. Typical solutions will tie together the derivative
expansion and the expansion in �: that is, we can take �u
and _u2 to be of order �.

C. Inclusion of the dilaton

The final step in our calculation is to include the effects
of the dilaton. As we will see in Sec. IV, the dilaton is
unavoidably excited during tachyon condensation.

We will be considering dilaton couplings of the form
(3.5). This means that we are ignoring more general dilaton
profiles of the form

S0�a �
Z
d2z�a���OaR

�2�: (3.26)

This makes sense so long as the perturbations in (3.1)
correspond to nearly marginal operators whose OPEs close
only on other nearly marginal operators. In this case cou-
plings of the form (3.26) will be highly irrelevant, and can
be ignored.

The lowest-order contribution to the dilaton beta func-
tion comes from the conformal anomaly of the UV fixed
point (including the contribution of �) and the dimension
of ����:

�� �
caux � 1

6
�

1

2
�0 ��: (3.27)

In principle, computing the effects of the dilaton on �a and
-7
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[10] by Tseytlin. In particular, the solution (4.4) for motion on a
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�G, and the higher-order contributions to ��, requires
working on a curved world-sheet. Instead, we follow the
discussion in [32–34], and note that these terms arise from
the improvement term in the stress tensor due to S����. In
particular, the trace of the stress tensor receives the follow-
ing extra term:

�improve �
1

�0
@ �@���� � �

1

�0
� _�@ �@�� ��@� �@��

� � _� _uaOa �
1

4�0
_�2R�2� �

1

�0
��@� �@�;

(3.28)

where in the last line we have used the world-sheet equa-
tion of motion for �, which is of course satisfied by the
operator �. The corresponding terms in the beta functions
can be read off using (2.4): �aimprove � �

_� _ua, �Gimprove �

2 ��, ��
improve � �

_�2.

IV. SOLUTIONS TO TACHYON EQUATIONS OF
MOTION

In the previous section we derived the equations of
motion (3.6) for the tachyons. In this section we would
like to study solutions to these equations. In Sec. IVA we
will describe various trajectories corresponding to the time
evolution of a tachyon condensate, driven by various types
of potential energy functions. In Sec. IV B we discuss the
case in which � is a spacelike direction and the
�-dependent tachyon profile describes a domain wall.

An explicit example which can be studied using our
methods is a product CFT with one factor described by a
c < 1 unitary minimal modes [18,35].13 We will review
this system and the corresponding tachyon dynamics in
Sec. IV C.

In Sec. IV D we will discuss the issue of scheme depen-
dence for these trajectories.

A. Tachyon evolution for a variety of potentials

Let us collect the beta functions derived in Sec. III:

2

�0
�a � �ua � �abc _ub _uc � 2 _� _ua � gab@bV;

1

2�0
�G � �gab _ua _ub � ��;

1

�0
�� � V �

1

2
��� _�2;

(4.1)

where for convenience we define

V�u� �
1

�0

�
����u� �

caux � 1

6

�
; (4.2)

and redefine gab by a factor of 2�2: gab �
2�2��a��bhOa�0�Ob���i.
13The equations of motion for this system, and some qualitative
features of their solution, were also described by Sen [13]
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As discussed at the beginning of Sec. III, �� is con-
served when �a � �G � 0. In order to eliminate the sec-
ond derivative term in ��, we define

H �
1

�0
�� �

1

4�0
�G � V � _�2 �

1

2
gab _ua _ub: (4.3)

�a � 0 and �G � 0 can then be considered as the equa-
tions of motion for the tachyon and dilaton, respectively,
and H � 0 as the Hamiltonian constraint.

The question we would like to address in this subsection
is the following: Imagine we are given the positions and
velocities of ua and � at some initial time �i (possibly
�i � �1), satisfying H � 0 and any other constraints.
What can we predict for the long-time behavior of the
system?14

The first thing to note is that it is not possible to decouple
the dilaton when the tachyon is evolving. In particular,
given the positive definiteness of the Zamolodchikov met-
ric, �G � 0 implies that ��> 0 as long as _ua � 0. The
second point is that the qualitative features of the dynamics
depend strongly on the initial value of _�. The term�2 _� _ua

in �a implies that _�< 0 leads to damped motion for u,
while _�> 0 leads to antidamped motion. Since ��> 0,
once the motion is antidamped it will always be anti-
damped. Antidamped motion is unpredictable, and will
quickly leave the regime of validity of (4.1). Therefore
we must restrict ourselves to trajectories for which _� � 0
at all times.

Let us consider the case that V is constant, i.e. ��a�u� �
0. In this case ua parametrizes a moduli space of CFTs,
which are supercritical, critical, or subcritical depending
on the sign of V. According to the equation �a � 0, ua���
will follow a geodesic of gab, with a speed that decreases
due to the dilaton friction. If we parametrize the geodesic
by the proper distance u from the initial point, then the
trajectory u���, ���� can be computed exactly. In the
supercritical case V > 0, the solution is

u��� � u0 �
���
2
p

arctanh exp��2
����
V
p
����0��;

���� � �0 �
1

2
ln sinh�2

����
V
p
����0��;

(4.4)

where the parameters�0, u0, and �0 are fixed by the initial
conditions. We see that u travels a finite distance as �!
1. On the other hand, in the critical case V � 0, u slows
down but travels an infinite distance as _� asymptotically
approaches zero from below:
moduli space first appeared there. (We would like to thank the
referee for pointing this reference out to us.) Also, the paper [36]
by Suyama, which appeared shortly after the first version of this
paper, has substantial overlap with this subsection.

-8
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u��� � u0 �
1���
2
p ln����0�;

���� � �0 �
1

2
ln����0�:

(4.5)

In the subcritical case V < 0, the Hamiltonian constraint
shows that _u2 can never go to zero; instead, as it decreases
_� passes through zero and becomes positive, after which

the motion becomes antidamped.
Now let us consider the more interesting case where

V�u� is not constant. As above, ua cannot come to a stop
in a region with V < 0. If it remains in a region for which
V � 0, then it will eventually settle into a minimum of V.
In particular, we can have a transition from a local maxi-
mum of the potential at � � �1 to a local minimum at
� � �1. In this time-dependent tachyon condensation
process, leading from a supercritical CFT to a less super-
critical (or critical) CFT, the dilaton responds so that in the
final state it is linear with the correct slope to make the full
theory critical. For this class of damped trajectories, the
story is similar to standard RG flows, in that the trajectory
interpolates between RG fixed points. There will be quali-
tative differences at intermediate times;, in particular, the
tachyon may (depending on the height of the potential and
the strength of the damping) oscillate about the minimum
before settling down. Furthermore, whether the endpoint is
the same as the IR fixed point of the RG flow depends on
the details of the potential landscape and the strength of the
damping. However, in the limit of infinite damping (infi-
nitely large linear dilaton slope), the trajectory is clearly
identical to the RG flow, as can be argued by considering
the time direction as a Liouville field [11].

We should note that when studying tachyon evolution
using conformal perturbation theory, this approximation is
quite fragile. If the tachyon mixes with marginal or nearly
marginal operators such as additional graviton or dilaton
modes (which will appear in our formalism as operators of
the form Oa and OaR�2�), these modes can become large.
This can be seen, for example, in [37]. On the other hand,
as long as V and @bV remain small, the derivative expan-
sion is still a good one.

As we have emphasized, the equations of motion (4.1)
are valid when the beta functions (i.e. gradients of V) are
small. An example of a situation where this occurs, namely,
along the RG flows connecting the minimal models, will be
discussed in Subsec. IV C below. But what happens in the
more common situation where the tachyon masses (and
hence beta functions) are of order one in string units? In
one direction, if we take the spatial theory to be highly
supercritical and give the dilaton a large negative slope,
then we still have the result of [11] that the time evolution
will follow the RG flow (their argument does not depend on
having small beta functions). In the other direction, if we
start from a critical theory (or a supercritical one with a
positive dilaton slope) the antidamping observed above
066015
suggests (but of course does not prove) that the dynamics
will lead either to a singularity or to strong string coupling
in finite time.

Finally, we remind the reader that in this paper we deal
exclusively with bulk tachyons or tachyons that are local-
ized in a compact space. Let us make a few comments
regarding tachyons localized in noncompact spaces. First,
as mentioned in Footnote 9 above, as the target space
volume goes to infinity, the Zamolodchikov metric com-
ponents gab for localized operators go to zero, so the
dilaton equation of motion reduces to �� � 0. (Keep in
mind that here � represents the zero mode of the dilaton;
localized modes may well get excited and play an impor-
tant role in the dynamics [38].) As above, _� will be zero or
nonzero depending on whether the spatial theory is critical
or supercritical, but in this case there will be no back-
reaction on it (essentially, it is locked down by the bound-
ary conditions at infinity). _� will still serve to damp or
antidamp the tachyon dynamics (via the term �2 _� _ua in
�a); in particular, for large negative values of _� the time
evolution will mimic RG flow. Finally let us note that,
unlike in the bulk tachyon case, here there is no obstruc-
tion, either in RG flow or in time evolution, for an initially
critical background to go to another critical one: no ob-
struction for RG flow because the C-theorem does not
apply to noncompact target spaces, and no obstruction
for time evolution because _� will remain zero at all times.

B. Domain walls

If � is a spacelike variable then the flow of ua, � in �
will describe a domain wall solution. One example of such
a background is a perturbed conformal field theory with
subcritical central charge, coupled to a Liouville field. For
such so-called ‘‘Liouville flows’’ [14,39], all the terms in
(4.1) and (4.3) change sign, except those involving V. The
discussion above therefore holds with the same words if we
simply change the sign of V. A specific example is the
‘‘hairy black hole’’ constructed in [40].

C. Review: Minimal models coupled to a scalar field

We would like to give the reader an explicit example of a
set of perturbed CFTs that are within reach of our approx-
imations. Recall [18,35] that there are a set of bosonic c <
1 solvable unitary ‘‘minimal’’ CFTsMp labeled by integers
p � 3, 4, 5, . . . with central charge

cp � 1�
6

p�p� 1�
: (4.6)

These have a Landau-Ginzburg description in two dimen-
sions [41,42], as the IR limit of a 2d scalar field theory with
a polynomial potential:

S �
Z
d2z
@’ �@’� g’2�p�1��: (4.7)
-9
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A subset of the conformal primaries of Mp have a
description as powers of ’ in the Landau-Ginzburg de-
scription. One such operator is the least relevant field O �
’2p�4 with dimension

� � 2�
4

p� 1

Let u be the dimensionless coupling to this field. Then in
the Wilsonian scheme,

��u � �

�
4

p
�O

�
1

p2

��
u� �

�
4���
3
p �O

�
1

p

��
u2

� �u� �bu2 (4.8)

A perturbation by O flows under the renormalization group
to a new IR fixed point at uIR �

�
�b , which is well within

the realm of perturbation theory for �� 1, p� 1. We
might expect from the Landau-Ginzburg description of this
operator that this RG flow corresponds to the flow p!
p� 1. This has been checked by computing the central
charge at the new fixed point [6,43]. Note that if we expand
� about the new fixed point, u � uIR � �, the beta func-
tion is

��� � ��� �bu3 (4.9)

The leading term indicates that about this new fixed point,
the corresponding operator is irrelevant, as Zamolodchikov
has shown [6]. In this paragraph we have not added the
additional constant term equal to the central charge of Mp.

Now couple this theory to a scalar field and let u �
u���. The equations of motion are:

0 � �u� _� _u��u� �bu2 �    : (4.10)

This describes the motion of a particle in the potential

V�u� � �
1

2
�u2 �

�b
3
u3 � constant: (4.11)

The full potential will include a constant term from the
central charge of the other CFT factors in the string back-
ground. If V > 0 when u � uIR, and _�< 0, then the
tachyon will interpolate between the RG fixed points u �
0 and u � uIR, perhaps oscillating about u � uIR before
settling there at �! 1. As described in Sec. IVA, the
dilaton slope will adjust itself in this limit to maintain a
critical central charge.15

In this case, we expect that both conformal perturbation
theory and the derivative expansion remain valid for the
class of damped trajectories discussed above, since in this
case the depth of the potential is of order �3 and its
derivatives are order �2.
15This background has been constructed in closed-string field
theory in [44].
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D. Scheme dependence

Other schemes may appear simpler, but obscure inter-
esting physics. For example, absent resonant OPEs, we
may perform a change of coordinates u! ~u�u� which
linearizes ��. In examples such as that in Sec. IV B, this
will push the IR fixed point uIR off to infinite coupling.
Nonetheless, our analysis above indicates for a class of
damped trajectories, the system should reach uIR in finite
time and oscillate about this point. This will be reflected by
the fact that the transformation of the �u term will induce
large (of order 1=�) terms proportional to _~u2. The velocity
of ~u will have to become infinite.

We may also try to linearize �a by choosing U�u;��
such that

�U � � �U� �U (4.12)

If U begins near 0 with positive velocity, it will evolve
monotonically to infinity in infinite time, completely ob-
scuring the behavior described in Sec. IVA. This coordi-
nate transformation must be highly nonlocal in time.
V. RELATION TO KNOWN RESULTS

In this section we will explore the relationship between
our calculations and other pictures of tachyon dynamics. In
Sec. VA we will compare our spacetime effective potential
computed in conformal perturbation theory to the result
computed from tachyon scattering amplitudes in the case
of nearly massless tachyons. In Sec. V B we will discuss
this relationship between our solutions, backgrounds of
Liouville theory coupled to matter, and standard renormal-
ization group flows. In Sec. V C we will review an argu-
ment [8,11] that for linear dilaton backgrounds with large
slope, there is a class of trajectories that are described by
the standard renormalization group equation _u � ��.
Finally, in Sec. V D we will discuss the well-studied case
of open string tachyon decay, and how this would appear in
our picture.

A. Effective action from scattering amplitudes

In conformal perturbation theory, our equations of mo-
tion can be derived from an effective action whose poten-
tial is the Zamolodchikov C-function. (In the derivative
expansion of Sec. III B, this is merely a plausible conjec-
ture). This result is hardly surprising, and for nearly mar-
ginal Oa has been noted, for example, in Sec. 15.8 of [45].
For such light tachyon fields, the tree-level effective action
can be probed by computing scattering amplitudes, isolat-
ing the potential by expanding the amplitudes in �a and in
�-derivatives. The mass term in such cases is automatic.
The cubic term �V � Cabcuaubuc is guaranteed up to an
overall coefficient, as the three-point function will be
proportional to the OPE coefficients of the theory.
-10



17One response people have offered to us is to draw an analogy
to the Hamilton-Jacobi formulation of the ‘‘holographic renor-
malization group’’ [52,53] in the context of the AdS/CFT
correspondence. In this formulation the evolution equations

ON CLOSED STRING TACHYON DYNAMICS PHYSICAL REVIEW D 73, 066015 (2006)
B. Relation to 2d gravity in conformal gauge

When the dilaton is linear in�, � � � 1
2Q�, the sum of

(3.1) and (3.5) is the ansatz [7,46] for 2d gravity (i.e.
Liouville theory) in conformal gauge, coupled to a CFT
with central charge c � 25� 3Q2. This fact is partial
motivation for the statement that there should be a rela-
tionship between the time evolution Eqs. (4.1) and the
renormalization group flow of the theory (2.1). We would
like to discuss the relation of our solutions to existing lore
about Liouville theory.

Recall that in a derivative expansion, the beta function
equations are:

�a � �ua �Q _ua � ��a � 0: (5.1)

(We set �0 � 2, and neglect the connection term.) Let us
consider the case where u is small, so that ��a ���aua.
Equation (5.1) has the solution [7,46]

ua��� � da� exp��a��� � d
a
� exp��a��� (5.2)

where

�a� �
Q
2
�

������������������
Q2

4
� �a

s
: (5.3)

These solutions define the ‘‘gravitational dressing’’ of
Oa.16 Note that because � is timelike, the sign in front
of �a is opposite that of the standard gravitational dressing
formula.

The existence of these two branches of the gravitational
dressing formula are the result of (5.1) being second order
in time derivatives. From the standpoint of time-dependent
backgrounds, both should be kept. In studies of Liouville
theory, it was argued that the solutions u� e��� should be
discarded from the theory [48–50]. The requirement that
operators e�� appearing in the action must satisfy � � Q

2 is
known as the ‘‘Seiberg bound’’. This bound was based on
several criteria. First, in Liouville theory, � is the confor-
mal factor, and operators e���O grow or decay in the
infrared when O is a relevant or irrelevant operator, re-
spectively. Secondly, typical studies of Liouville theory
focus on c < 1 matter coupled to Liouville gravity. The
Liouville field is a spacelike direction and the cosmologi-
cal constant operator e�� acts as a Liouville wall’’, truncat-
ing the spectrum to operators satisfying the Seiberg bound.
Finally, calculations in the matrix model for 2d matter
coupled to gravity matched Liouville theory calculations
with the Liouville dependence of ua satisfying this bound.

Not all of these arguments have force. For the second
point, when � is a timelike direction, one typically does
not truncate the spectrum. One merely sets initial condi-
tions at some fixed �0 and evolves the background for-
ward. The two branches reflect the fact that the low-energy
16These formulae were used for the case Q � 0 to describe the
onset of tachyon condensation in the critical dimension in [47].

066015
target space dynamics is governed by second-order equa-
tions. We will discuss an open string example below where
the two branches are crucial to describe the complete
physics of tachyon condensation. For the final point,
sources for ‘‘wrong branch’’ modes have been identified
as being sourced by a specific type of D-brane in 2d string
theory backgrounds, and given a matrix model interpreta-
tion [51]. The first point, regarding the renormalization
group prescription, is more confusing. Typically one does
not specify the initial ‘‘velocity’’ �@�u in RG flows. We
will return to this point in the conclusion, and offer a
suggestion.

C. Recovering first-order RG flows

If one begins with a nonconformal theory, or a confor-
mal theory with c � 26, and couples it to 2d gravity, the
theory should become conformal when the scale factor of
the metric is integrated over. This scale factor acquires
dynamics and is described in conformal gauge by the
Liouville field. The coupling of operators to this field
should be related to the underlying RG flow of (2.1), as
the latter is precisely a function of the scale dependence of
the theory.

The differences between tachyon dynamics and standard
RG trajectories are clear from the previous section. First, if
e2� is the scale factor of the metric, one would expect
couplings with dimension �� to depend on � as �S�R
d2xe��uaOa. The actual formulae (5.2) and (5.3), are

more complicated even when Q� 0. More strikingly, the
RG equations are first order in time.17

Nonetheless, we can see in Sec. IVA that for a class of
trajectories, there are qualitative similarities. For systems
such as those described in Sec. IV B, antidamped motion
leads to a relaxation to an IR fixed point as �! 1.

More generally, we recover motion that is first order in
time when the Eqs. (4.1) satisfy a ‘‘slow roll’’ condition
such that some term in the � _u2 � _� _u part of the tachyon
beta function dominates the other two-derivative terms.
This can occur when one coupling, such as the dilaton,
has a first derivative larger than the others, but small higher
derivatives. A related example is inflaton dynamics in
standard slow roll inflation; there the coupling of the scale
factor to the inflaton dominates the inflaton equations of
motion, and so long as this scale factor itself changes
slowly, the classical inflaton dynamics are effectively first
order in time.18
naively appear to be first order in time. We will address this
analogy in our conclusion.

18A. L. would like to thank Gary Shiu for reminding him of this
analogy.
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As a particular example, imagine a 2d CFT coupled to
2d gravity, very close to a fixed fixed point of the CFT. Let
the Liouville field at zeroth order be described by a linear
dilaton profile � � Q�, with Q small enough for the
derivative expansion to be valid, and perturb the CFT by
a nearly relevant operator so that �� Q. We can self-
consistently choose a set of trajectories such that the terms
�u� � _u2 terms in �a are negligible. The approximate
evolution equation is:

Q _u � � ��� �u� . . . (5.4)

The second derivative terms are of order �2. For small u,
when �� can be treated as linear, this corresponds to choos-
ing the ‘‘allowed’’ branch �� of the gravitational dressing
formula. This equation leads to the ‘‘gravitationally
dressed scaling dimensions’’ found by [54] in light cone
gauge. This was pointed out by [8] and the argument runs
as follows. The natural physical scale in such models is the
2d cosmological constant. This is the gravitationally
dressed coupling to the identity operator in the CFT19:

�2 � e�� (5.5)

For this to have dimension 2, we can choose the value

� �
Q
2
�

���������������
Q2

4
� 2

s
(5.6)

corresponding to the allowed branch. We can then define

@
@�
�
�
2

�
@
@�

(5.7)

At lowest order in u, the effect is to change the effective
scaling dimension of O to ~�, defined via:

�@�u �
2

�Q
����

2�
�Q

u � �~�u (5.8)

This matches the light cone gauge calculation in [54].
If we were to allow ourselves to take Q! 1, as in

[8,11], then �Q! 2, and (5.8) becomes the standard re-
normalization group equation. Although this is a semiclas-
sical limit of Liouville theory, it is unclear to us whether or
not terms higher order in Q change this answer dramati-
cally. Nonetheless, since the answer makes sense, we offer
the following comments. First, because we have turned off
the ‘‘wrong branch’’ solutions, �-derivatives of u��� are
order 1=Q. Secondly, in the gravitational dressing formulae
for c < 1 minimal models coupled to gravity, Q is order
one and one might also expect corrections. Nonetheless the
gravitational dressing formulae which can be derived
within our approximations are consistent with matrix
model computations (c.f. [50] for a review and references.)
19This operator is problematic in our approximation scheme—
if it appears in the 2d action, it will only have small values and
small � derivatives for large negative �. Even this requires fine
tuning so that the ‘‘wrong branch’’ dressing does not also appear.

066015
Perhaps there is a scheme in which these formulae are
exact.

D. D-brane decay

We conclude with a discussion of the well-studied case
of D-brane decay via open string tachyons, and relate it to
the picture developed here. More generally, it should be
little trouble to adopt our picture to boundary
perturbations.

Consider a c � 25 conformal field theory times a time-
like scalar field �. This scalar could be the Liouville mode
of 2d gravity in conformal gauge. Sen [55] has shown that
the following boundary interaction

�S � 	
I

cosh� �
I
V��� (5.9)

is an exactly marginal boundary operator describing the
decay of a D-brane at� � 0. The point is that the potential
on the world-sheet gives an energetic cost to boundaries
supported away from V � 0 [56].

This coupling follows naturally from the formalism
above:, in particular, it is a solution to the following
equations:

�u� ��u � �u� u � 0 (5.10)

which we take to be the boundary analog of the tachyon
beta function equations of this system.

The general solution to (5.10) is

u��� � ae� � be�� (5.11)

Different values of a, b correspond to different tachyon
profiles in time. The solution b � 0 therefore describes the
decay of the open string tachyon. a � 0 describes the time-
reversed version of this decay. a � b describes a tachyon
pulse arranged such that the tachyon begins and ends in the
closed-string background, and at � � 0 is in the open
string background—this is conjectured to be an ‘‘S-brane’’
[57].

A lesson of this exercise is that in open string theory,
both branches in (5.3) have a potentially physically sen-
sible interpretation, so we should keep them. It seems
sensible to do the same in closed-string theory as well.

Another point is that there are qualitative differences
between the case of open and closed-string tachyon decay.
In the closed-string case, for tachyons which are not local-
ized, we cannot decouple closed-string radiation. Rather,
as in the example discussed in Sec. IV B, the tachyon can
settle into the new minimum of the effective potential,
transferring the potential energy released into the slope
of the linear dilaton.
-12
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IV. CONCLUSIONS

A. A speculation

Polyakov, in Sec. 9 of [9], proposes a Hamilton-Jacobi
formulation of the renormalization group equations
coupled to two-dimensional gravity. (Indeed, [9] was a
major inspiration for this present paper). The initial con-
ditions are the coupling constants �u of a two-dimensional
field theory C �u. The Hamilton-Jacobi functional is the
partition function Z� �u� of this field theory coupled to 2d
gravity; �u becomes the coupling at some particular back-
ground value of the Liouville mode. (This picture has been
discussed further in [58], in which the authors have also
noted the relation to the ‘‘holographic RG’’ equations
which emerge from the AdS/CFT correspondence.)

While there is much that we do not understand about
[9,58], they imply an interesting picture for the spacetime
dynamics. A renormalization group trajectory is deter-
mined entirely by the couplings at some cutoff scale.
When we couple the theory C to an additional scalar,
such as the Liouville mode, by allowing the couplings in
C to depend on �, this cutoff scale is exchanged for a
background value �� of the scalar, and solutions to the
conformal invariance conditions are specified by u� ��� �
�u and _u� ���.

In this work we have tried to interpret the equations of
motion for the tachyon as being some sort of modified
‘‘gravitational’’ renormalization group equations, which
can be written in terms of the data of the underlying non-
conformal quantum field theory C �u. Can the additional
initial conditions also be given an interpretation which is
more intrinsic to the underlying field theory?

In a Hamiltonian formulation, one specifies initial coor-
dinates and momentum. If the initial coordinates in the
Hamilton-Jacobi formulation are the couplings �u of the
underlying 2d field theory, then the initial momenta are:

�p a �
@
@ �ua

Z� �u� � �
Z
d2z

�
@ub���
@ �ua

Ob�z�
�

(6.1)

Our speculation is that to specify trajectories of gravita-
tionally dressed RG flows, one would specify both the
couplings to and the vevs of O in C �u.

This is almost identical to the dual interpretation of the
boundary conditions on bulk fields in the AdS/CFT corre-
spondence [59,60]. While the analogy is not precise, it is
worth exploring. Studying the Hamilton-Jacobi version
[53] of the holographic renormalization group equations
[52] for a general class of backgrounds may provide some
insight as to how to think about this extra data in the
context of renormalization group flows in field theory.

B. Additional questions

There are many questions that remain. For example, we
have worked with a highly restricted class of backgrounds.
We have set G�� � �1, and we have set couplings of the
066015
form ua@�Oa and �aOaR�2���� to zero. Furthermore, our
description is not covariant from the spacetime point of
view. It would be useful to further explore spacetime gauge
transformations in this framework. This may be an impor-
tant part of understanding the Hamilton-Jacobi formulation
discussed above.
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APPENDIX A: DERIVATION OF THE
RENORMALIZATION GROUP EQUATION

Our starting point is an ultraviolet fixed point described
by a nontrivial 2d conformal field theory. These theories
may be non-Gausssian—the examples we have in mind are
the c < 1 unitary minimal models [18].

If the CFT can be described by an action SCFT, we are
interested in perturbed theories of the form

S � SCFT �
Z
d2z

X
A

��A�2uAOA�z� � SCFT � �S: (A1)

where ua is a dimensionless coupling, �A is the dimension
of OA in the unperturbed CFT, and � is a length scale that
we will identify below with the cutoff. If a Lagrangian
description of the UV theory does not exist, then we can
describe the perturbed theory via the correlation functions:

Cn�x1; . . . ; xn� � hO1�x1� . . .On�xn�iu

� hO1�x1� . . .On�xn�e
��SiCFT (A2)
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The correlation function on the right-hand side is meant to
be evaluated in the CFT.

When the perturbing operators are not exactly marginal,
the theory (A1) will run under renormalization group trans-
formations. We will review the derivation of the renormal-
ization group equations for �n given by Zamolodchikov
[6], albeit with slightly different notation. These equations
describe the response of Cn to a rescaling of the arguments
xk. We will rewrite them in a form which describes the
response of Cn to a rescaling of the cutoff.

The Ward identity for scale transformations is:

�X
k

xk 
@
@xk
� D̂k

�
hOA1

�x1� . . .OAn�xn�i

� �
Z
d2zhOA1

�x1� . . .OAn�xn���z�i (A3)

where

��z� � ��AwOA��A�2 (A4)

is the trace of the stress tensor.20 The operator D̂ is the
dilatation operator acting on O:

O A�x� 	x� � OA�x� � 	D̂OA �O�	
2� (A5)

The ‘‘beta functions’’ �Aw are here defined as the coeffi-
cients of the Weyl anomaly. We have defined the sign of the
beta function to correspond to particle physics conventions
(so that the beta function is negative for asymptotically free
theories).

The right-hand side of (A3) can be rewritten in terms of
a derivative of the correlation function with respect to u as
follows. Derivatives of �n with respect to the couplings u
can be broken up into two pieces. One comes from the
change of the basis of operators � as a function of the
couplings, while the second comes from the change in the
action:

@

@uC
hOA1

�x1� . . .OAn�xn�i �
Xn
k�1

hOA1
. . .BcOak�xk� . . .

	OAn�xn�i �
Z
d2z��c�2

	 hOA1
�x1� . . .OAn�xn�OC�z�i

(A6)

If we contract (A6) with�Cw and equate the terms with � in
20The explicit factor of ��A�2 guarantees that the stress tensor
has engineering dimension 2 near the UV fixed point. �Aw is the
dimensionless beta function for the dimensionless coupling uA.
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(A6) and (A3), we find that:��X
k

xk 
@
@xk
� �k

�
��Cw

@

@uC

�
hOA1

�x1� . . .OAn�xn�i � 0;

(A7)

where

�OA�x� � �D̂� �Cw@C�OA�x� � ��CA�A � �CA�OC�x�

(A8)

defines the anomalous dimension operator �. Note that the
definition of � differs from that in [6] by a sign and an
additional factor of �A. Here it is the deviation of the
dimensions of OA from their values at the UV fixed point.

We can turn (A7) into a differential equation in terms of
the cutoff. If the only dimensionful parameter in the theory
is �, then:

�n�x1; . . . xn� � hOA1
�x1� . . .OAn�xn�i

� �
�
P
k

�K

F
�

�
jxi � xjj

�
; (A9)

Therefore,

X
k

xk 
@
@xk

�n � �
�
�
@
@�
�
X
K

�K

�
�n; (A10)

so that we get the RG equation�
�
@
@�
� �C@C

�
hOA1

�x1� . . .OA1
�xn�i

�
X
k

�CkAk hOA1
�x1� . . .OCk�xk� . . .OAn�xn�i � 0 (A11)

Zamolodchikov has also shown [5,6]

@A�C � ��2� �A��CA � �
C
A (A12)

that where we have used our definition of � as the deviation
from the dimension of the operator at the UV fixed point.21

Eq. (A12) is also consistent with � having dimension
exactly 2.
APPENDIX B: THE ZAMOLODCHIKOV METRIC
AT ORDER u IN THE WILSONIAN SCHEME

Using Eq. (A6), we find that the derivative of the two-
point function with respect to the coupling is:
H�x� ! H�x��1� dt� � dt�:

This can be checked by studying the case of a scalar field. Note
also that there are various factor-of-two differences between the
conventions in [6] and those of this work.
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d
duc
hOa�x�Ob�y�iju�0 �

@
@uc
hOa�x�Ob�y�iju�0 ��k

a;chOk�x�Ob�y�i ��k
b;chOa�x�Ok�y�i

� �
Z
d2z��c�2hOc�z�Oa�x�Ob�y�i ��k

a;chOk�x�Ob�y�i ��k
b;chOa�x�Ok�y�i

� �
F � �
jx�yj�abc

jx� yj�a��b
�
��k��a�k

a;cg
�0�
kb

jx� yj�k��b
�
��k��b�k

b;cg
�0�
ak

jx� yj�a��k
(B1)
Here

BcOa � ��b��a�b
a;cOb;

where the factors of � render � dimensionless, and

hOA�x�Ob�y�iju�0 �
g�0�ab

jx� yj�a��b
: (B2)

In other words, g�0�ab is the Zamolodchikov metric at the
fixed point. Furthermore, we define: �ab;c � �k

b;cg
�0�
ka

The integrated three-point function is defined as:

Z
d2z��c�2hOa�x�Ob�y�Oc�z�i

�
1

jx� yj�a��b
F

�
�

jx� yj

�
abc
: (B3)

Note that this will contain cutoff-dependent terms in
general.

If we define the Zamolodchikov metric for u � 0 as

gab�u� � ��a��bhOa���Ob�0�i; (B4)

then (B1) implies that g will vanish to linear order in the
couplings if

F abc�1� � �ab;c ��ba;c (B5)

To lowest order in u, we can use the RG equations to find
�ab;c. This is because at linear order the exponential

e�
R
uO does not need to be regulated: all of the divergen-

ces come from the contraction of the leading term in this
exponential with the operator insertions in the correlator.
The partial derivative of the two-point function with re-
spect to the cutoff is:

�
�
@
@�
hOa�x�Ob�y�i

�
x��;y�0

�
�F 0�1�abc���b��a��ab;c

���a��b��ba;c�uc���a��b

(B6)

The �a@a term gives us, using (B1),
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�c
@
@uc
hOa�x�Ob�y�ijx��;y�0 � ��

c��F �1�abc ��ab;c

��ba;c��
��a��b

� �2��c�
�F �1�abc

��ab;c

��ba;c�u
c���a��b

(B7)

where c is summed over.
Assuming that � begins at order u, we can add all of the

O�u� terms together in (A11)to find:

�F 0�1�abcu
c � �2� �c�F �1�abcu

c � �2� �ac;b��ab;c

� �2��bc;a��ba;c � �kag
�0�
kb � �

k
bg
�0�
ak � 0 (B8)

where �ab;c � �a ��b ��c.
If we can compute F , then � is determined to the extent

that we need to by (B8). If we do not impose a cutoff, the
three-point function (B3) is determined by conformal in-
variance:

hOa�x�Ob�y�Oc�z�i �
Cabc

jx� yj�ab;c jx� zj�ac;b jy� zj�bc;a

(B9)

If �a � 2� �a, �a � 1, then these integrals will not be
IR divergent, but they potentially have UV divergences.
However, if we conttinue �a to a region where these
divergences are absent, then the integral over z can be
done without imposing an additional cutoff [6]:Z

d2z��c�2hOa�x�Ob�y�Oc�z�i

� �Cabc
���c � 1���1� �a��b��c

2 ���1� �b��a��c
2 �

���a��c��b
2 ����b��c��a

2 ���2� �c�

	
1

jx� yj�a��b��c�2

�
Pabc��a;�b;�c�

jx� yj�a��b

�
�

jx� yj

�
�c�2

�
Iabc�jx� yj�

jx� yj�a��b
:

(B10)

(Note that the definition of � in this paper is twice that used
in [6].) However, for most of this paper we are adopting a
scheme where the OPEs of operators in the action are cut
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off regardless of whether the OPEs lead to singularities. As
in [6], the difference will appear as a renormalization of the
operators:Z

d2z��c�2hOa�x�Ob�y�Oc�z�i

�
Iabc

jx�yj�a��b
�h�b̂cOa��x�Ob�y�i�hOa�x��b̂cOb��y�i

(B11)

The cutoff dependence is determined by dimensional
analysis:

h�b̂cOA��x�Ob�y� . . .i � ��k��aBkachOk�x�Ob�y� . . .i

(B12)

We can rewite the numerator in the last line of (B1) as

d
duc
hOa�x�Ob�y�i �

�Iabc � �̂ab;c � �̂ba;c

jx� yj�a��b
(B13)

where

�̂ ab;c � �ab;c � Bab;c Bab;c � Bkacgkb (B14)

Similarly, we can rewrite (B8):

�I 0�1�abcuc � �2��c�I�1�abcuc � �2��ac;b��̂ab;cuc

� �2� �bc;a��̂ba;cuc � �kag
�0�
kb � �

k
bg
�0�
ak � 0: (B15)

Now the cutoff-independent part Iabc of the three-point
function can be written as:

Iabc � �Cabc
���c � 1���1� �a��b��c

2 ���1� �b��a��c
2 �

���a��c��b
2 ����b��c��a

2 ���2� �c�

	

�
�

jx� yj

�
�c�2

(B16)

We can expand this ratio of gamma functions to leading
order in �� 2:

Pabc � Cabc
4��2��c�

�2� �ab;c��2��bc;a�
�1�O��2� ��3��

(B17)

Equation (B16) implies that I 0�1�abc � ��c �
2�I�1�abc. Therefore the first two terms of (B15) cancel,
leaving:

�2��ac;b��̂ab;c��2��bc;a��̂ba;c��kag
�0�
kb��

k
bg
�0�
ak �0

(B18)

To quadratic order in perturbation theory, based on (A12),
�ca � �4�Ccabu

b. The Eq. (B18) is solved if we set:

�̂ ab;c �
2�Cabc

2� �ac;b
: (B19)

This means that (B1) is zero, and the Zamolodchikov
metric has no linear term, if
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I �1�abc �
4�Cabc�2��c�

�2��ac;b��2� �bc;a�
: (B20)

This follows from the leading form (B17).

APPENDIX C: THE BETA FUNCTIONS AT
SECOND ORDER IN DERIVATIVES

In Sec. III B, we computed the beta function of (3.1) to
lowest order in a perturbation series in�-derivatives and in
�a � 2� �a. In this appendix we will exhibit more ex-
plicitly the expansion in �. Although the calculation sim-
plifies at the order in which we are working, we will show
where higher-order terms could appear.

The major issue that arises is the proper treatment of
infrared divergences. These divergences plague us for two
reasons. First, the derivative expansion is one about a
massless scalar field theory in two dimensions. In this
theory the scalar fields themselves are not well defined as
quantum operators, due to infrared divergences. Secondly,
the perturbations in (3.1) are naively relevant, at order �a.
Such perturbations generically lead to infrared divergen-
ces. These divergences signal that matrix elements of
operators are nonanalytic in the coupling constants and in
derivatives with respect to �. The ultraviolet properties of
the theory should be free of these divergences. Let us
discuss our treatment of each of these issues in turn.

The definition of the scalar field � haunts us for the
following reason. In (3.18), we can treat _u, �u, . . . as
couplings to composite operators made up from Oa and
powers of �. As we stated above, � are not good quantum
operators in two dimensions, due to the large infrared
divergences of massless fields in two dimensions.
However, because we are interested in the ultraviolet prop-
erties of our model, we should be able to regulate these
divergences, taking care to insure that the beta functions do
not depend on the IR regulator. Following [19], we can
regulate the divergences by adding a small mass R�1 � m
to �, leading to the propagator

h��z���0�i � 2K0�m�jzj2 � �2�� (C1)

if jzj, �� m�1, then this can be approximated by

h��z���0�i � ln
�
jzj2 � �2

R2

�
(C2)

which is the propagator we were using in Sec. III B. In
practice we will use this latter form of the propagator, as we
will be needing to impose additional infrared cutoffs as
well. Note that the sign of the propagator is that of a scalar
field with the ‘‘wrong sign’’ kinetic term, corresponding to
a timelike target space direction.

In the limitm! 0, we should think of the beta functions
for these composite operators as follows. The theory (3.1)
will contain divergences multiplying operators of the form
fa���Oa. One cancels these divergences with cutoff-
dependent counterterms, of the form �ua�Oa, according
-16
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to one’s renormalization scheme. These should be good
operators—for example, �u may take the form of an
exponential of �.

The beta functionals �a�u���� are derivatives of the
counterterms u� with respect to the cutoff �. One may
expand the original divergent terms Fa���Oa as well as
the counterterms:

fa���Oa � �f
a� ��� � � _fa� ��� � : �2: �fa� ��� � . . .�Oa

ua����Oa �

�
ua�� ��� � _ua�� �����

1

2
�ua�� ���: �2: � . . .

�
Oa

(C3)

The beta functions �a;k for the ‘‘operators’’ �kOa are the
logarithmic derivatives of @k��u

a with respect to the scale
�.

In general, we should be able to expand about any point
��, to find the beta functions for ua� ��� as a function of ��.

This means that �a;k should satisfy consistency conditions
[61], e.g.

�a;1 � �@��a�u���� � � _ub@b�a (C4)

We will keep �a;k explicit, however, and find that (C4) is
indeed satisfied at the order in which we are working.

The next set of infrared problems will arise because we
are studying perturbations by operators ua���Oa which are
naively relevant. However, as we have discussed in x III B,
we are performing a double expansion in�-derivatives and
in �a � 2� �a, with �a the same order as two derivatives.
We implement this by expanding the OPE coefficients:

Oa�z�Ob�w� �
Ccab�u;

�2

jzj2��2�

�jz� wj2 � �2�1��ab;c=2
Oc��z�

�
Ccab�u; 1�Oc��z�

jz� wj2 � �2 �1�O��� � . . .� (C5)

where �ab;c � �a � �b � �c, and �z � 1
2 �z� w�. TheO���

terms will include logarithms of jzj2 � �2, while the addi-
tional terms will include terms analytic in �2

jzj2��2 .
Because Oa are treated as marginal, we can write the

OPEs at lowest order in � as (c.f. [31]):

Oa�z�Ob�w� �
Ccab�u�

jz� wj2 � �2 Oc��z�

� �cab�u�Oc� �z��2�z� w� � . . . (C6)

The second term corresponds to a contact term, and the
reason for the sign in front of it will become clearer below.
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The first term on the left hand side is known to lead to
anomalous dimensions proportional to Cabc. For our as-
sumptions to be self-consistent, C must also be order �.

For the theory (3.1), we can write the RG equation for
the partition function as:

�
@
@�
Z� � �a�u� ����

@

@ua� ���
Z� �

X1
k�1

�a;k
@

@u�k�
Z� � 0;

(C7)

where

u�k� �
@k

@ ��k u�
��� (C8)

We would like to compute � to second order in �a and in
�-derivatives, assuming that we know the beta functions
and anomalous dimensions for (3.2). The expansion of the
partition function to second order in � is:

Z �
�
e
�
P
a

R
d2z��a�2ua� ���Oa�z�

	

�
1�

Z
d2z��a�2 _ua� �����z�Oa�z�

�
1

2

Z
d2z��a�2 �ua� ����2�z�Oa�z�

�
1

2

ZZ
d2zd2w��a��b�4 _ua� ��� _ub� �����z���w�

	Oa�z�Ob�w� � . . .
��

�;u� ���
(C9)

Here the expectation values are all taken in the tensor
product of (3.2) with the free scalar theory for �.

We will use the regulator (2.7) for OPEs of the operators
Oa, and (C2) for the OPEs of �. Note that using (C2) to
compute composite operators of the form eik� will lead to
OPEs of these operators of the form (2.7).

There are divergences in (C9) that arise from defining
the exponential. These divergences, inserted into (A11),
give the beta functions ��a�u� ��� � �� @

@� u
a� ��� of the

theory (3.2). We are taking these as given. The new diver-
gences that appear to this order come from:
(1) T
-17
he OPE singularities of the fields within the paren-
theses of (C9) with each other, using (2.7) and (C2).
(2) T
he OPE singularities of the fields in parentheses of
(C9) with the exponential.
We first expand perform the contractions in (C9) to write
Z at lowest order in � and � derivatives as:
Z� �
�
e
�
P
a

R
d2zua� ���Oa�z�

�
1�

Z
d2z _ua�zOa�z� �

1

2

Z
d2z �ua� ���

�
ln
�2

R2

�
Oa�z� �

1

2

Z
d2z �ua: �2: Oa�z�

�
1

2

Z
d2zd2y

Cabc _ub _uc

�jyj2 � �2�
ln
�
jyj2 � �2

R2

�
Oa�z� �

1

2

Z
d2zd2y

Cabc _ub _uc

�jyj2 � �2�
: �2: Oa�z�

�
1

2

Z
d2z�abc�u� _ub _uc ln

�
�2

R2

�
Oa�z� �

1

2

Z
d2z�abc�u� _ub _uc: �2: Oa�z� . . .

��
(C10)
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The normal ordering symbols correspond to the composite
operators with the contractions explictly subtracted.

Now we would like to perform the integrals d2y in the
third and fourth lines. In fact, since C is order O���, these
are automatically higher order in �. Furthermore, if we
include additional higher-order terms from the expansion
in �, these will give us integrals of the form

Z
d2z

�k�lnjzj
2��2

R2 �
k

jzj2 � �2 ���k
�
ln
�2

R2

�
k�1

where k � 1. These ‘‘nonlocal’’ terms correspond to over-
lapping divergences and will drop out of the computation
of the beta functions. Such terms appear at higher order
than the order we are working in. We have checked that at
order �@2

�, and at second order in u, such nonlocal terms
also cancel.

The resulting ‘‘local’’ terms in the partition function are:

Z� �
�
e
�
P
a

R
d2zua� ���Oa�z�

�
1�

Z
d2z _ua�zOa�z�

�
1

2

Z
d2z �ua� ���

�
ln
�2

R2

�
Oa�z�

�
1

2

Z
d2z �ua: �2: Oa�z�

�
1

2

Z
d2z�abc�u� _ub _uc ln

�
�2

R2

�
Oa�z�

�
1

2

Z
d2z�abc _ub _uc: �2: Oa�z� . . .

��
(C11)

The first step in our calculation is to compute the explicit
derivative �@�� in (C7). This will act both on the explicit
factors on � in (C10), and on the expectation values hOi in
(3.2). The latter are determined by the RG Eq. (A11) for
(3.2):

0 � �
@
@�
hOa�z�i � ��b

�Z
d2yOb�y�Oa�z�

�
� ��bBca;bhOci � ��cahOc�y�i

� �
@
@�
hOa�z�i � ��b

Z
d2y

Ccba
�jy� zj2 � �2�1��abc=2

	

�
Oc

�
y� z

2

��
� ��cahOc�y�i (C12)

Here we have defined

~� a
b � ��ab � ��c�a

b;c (C13)

where ��, �� are the anomalous dimensions and beta func-
tions for (3.2), and BaOb � �k

b;aOk, with B defined in
(A6).

Keeping only terms to second order in derivatives or to
first order in �, we find:
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�
@
@�
Z� � �

Z
d2z� ��a�u� ���� � �ua� ��� � �abc _ub _uc�

	 hOa�z�i� �
Z
d2z��a _ua � _ud ~�adh�Oa�z�i�

�
Z
d2zd2w _ub ��ch�Ob�z�Oc�w�i� � . . .

(C14)

where we have dropped terms proportional to �kO for k >
1.

The local terms in ��@a are:

�a
@
@ua

Z� �
Z
d2z�a�u�Oa�z�

�
Z
d2zd2w _ub�ch�Ob�z�Oc�w� � . . .

(C15)

The derivative ��a;1�@ _ua in (C7) gives us:

�a;1
@
@ _ua

Z �
Z
d2z��a;1�h�Oa�z�i (C16)

Combining Eqs. (C14)–(C16), we find that:

�a � � �ua � �abc _ub _uc � ��a (C17)

The beta function for _ua� ��� is:

��a;1� � ��2� �a� _ua � �ab _ub

�
Z
d2w

Cabc�
�bca�2

�jwj2 � �2��bca=2
_ub��c � ��c�

� ��2� �a� _ua � �ab _ub � higher derivative terms

(C18)

Using the relation (A12), we find that (C4) is satisfied to
the order in which we are working.

Our final task is to interpret the contact term �. As in
[31], we claim that it is a connection compatible with the
Zamolodchikov metric in (3.2). We must modify the argu-
ment, since the operators are nearly rather than exactly
marginal; in our case the statement made in [31] is only
true to order O��a�.

The argument runs as follows. The Zamolodchikov met-
ric is defined for us as the two-point function

gab � ��a��bhOa���Ob�0�iu;� (C19)

Now, let us take a derivative of this term with respect to the
coupling u:

@cgab � �k
a;chOk���Ob�0�i ��k

b;chOa���Ok�0�i

�
Z
d2zhOc�z�Oa���Ob�0�i (C20)

To evaluate the second term, we require the OPE coeffi-
cients. To leading order in �, these are given by (C6), so
that
-18
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@cgab � �kacgkb � �kbcgak � �k
a;chOk���Ob�0�i ��k

b;chOa���Ob�0�i �
Z
d2z

Cabc
�jz� �j2 � �2��jzj2 � �2��2�2�

(C21)
As we stated below (C6), the final term is orderO���. Now,
at lowest order in �, Oa are exactly marginal, as �� are by
assumption O��� for general u. For exactly marginal op-
erators, we may choose a basis such that � � 0. Any
obstruction to this will appear at the order � at which the
theory fails to be conformal. This is a particular choice of
scheme in (3.2).
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Therefore, to lowest order in �,

rcgab � @cgab � �kacgkb � �kbcgak � 0 (C22)

and so we can regard � as the Christoffel connection for the
metric g.
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