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Quantum effective action in spacetimes with branes and boundaries

A. O. Barvinsky and D. V. Nesterov
Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991, Russia

(Received 26 February 2006; published 24 March 2006)
1550-7998=20
We construct quantum effective action in spacetime with branes/boundaries. This construction is based
on the reduction of the underlying Neumann type boundary value problem for the propagator of the theory
to that of the much more manageable Dirichlet problem. In its turn, this reduction follows from the
recently suggested Neumann-Dirichlet duality which we extend beyond the tree-level approximation. In
the one-loop approximation this duality suggests that the functional determinant of the differential
operator subject to Neumann boundary conditions factorizes into the product of its Dirichlet counterpart
and the functional determinant of a special operator on the brane—the inverse of the brane-to-brane
propagator. As a byproduct of this relation we suggest a new method for surface terms of the heat kernel
expansion. This method allows one to circumvent well-known difficulties in the heat kernel theory on
manifolds with boundaries for a wide class of generalized Neumann boundary conditions. In particular,
we easily recover several lowest-order surface terms in the case of Robin and oblique boundary onditions.
We briefly discuss multiloop applications of the suggested Dirichlet reduction and the prospects of
constructing the universal background-field method for systems with branes/boundaries, analogous to the
Schwinger-DeWitt technique.
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I. INTRODUCTION

Prospective goal of the present paper is to develop
background-field method [1,2] for brane models in grav-
ity/string theory and cosmology. Current status of brane
concept essentially relies on the analysis of quantum prop-
erties beyond the tree-level approximation. This is espe-
cially important in the problem of low strong coupling
scale in brane induced gravity models which incorporate
an infinite sequence of strongly coupled higher dimen-
sional operators. Their calculation is most efficient in the
language of quantum brane effective action. This, in its
turn, requires application of the covariant method of back-
ground field [1,2] in which the propagators of the theory
within certain approximation are calculable in the external
(mean) fields of a generic form.

The peculiarity of brane models is that their bulk propa-
gators, rather than being defined in infinite spacetime with
simple falloff conditions, are subject to nontrivial bound-
ary conditions on branes. Since the fields are subject to
dynamical quantum fluctuations on timelike branes, these
boundary conditions belong to the class of generalized
Neumann boundary conditions involving on branes the
values of fields together with their normal and tangential
derivatives. Finding such propagators (usually based on the
method of images) is a very hard task, especially for fields
with spins, when their Green’s functions have numerous
spin-tensor indices.

On the contrary, Green’s functions with Dirichlet bound-
ary conditions are much easier to obtain—the method of
images gives them as relatively simple linear combinations
of known propagators in spacetime without boundaries
(defined by mirror image continuation across the original
boundary [3]). It turns out that Feynman diagrammatic
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technique based on Neumann type Green’s function can
be systematically reduced to that of the Dirichlet type, and
the goal of the present paper is to develop the needed
technique. This technique is based on the duality between
the Dirichlet and Neumann boundary value problems,
recently discovered in [4] at the tree level. Here it will be
extended to the one-loop and multiloop levels.

The action of a (free field) brane model generally con-
tains the bulk and the brane parts

S��� �
1

2

Z
B
dX��X�F

$

�r���X�

�
Z
b
dx
�
1

2
’�x���@�’�x� � j�x�’�x�

�
; (1.1)

where the bulk �d� 1�-dimensional and the brane
d-dimensional coordinates are labeled, respectively, by
X � XA and x � x�, and the boundary values of bulk fields
��X� on the brane/boundary are denoted by ’�x�

��X�jb � �j � ’�x�: (1.2)

The kernel of the bulk Lagrangian in given by the second
order differential operator F�r�, whose derivatives r �
@X are integrated by parts in such a way that they form
bilinear combinations of first-order derivatives acting on

two different fields (this is denoted by F
$

�r�). Integration
by parts in the bulk gives nontrivial surface terms on the
brane/boundary. In particular, this operation results for a
symmetric operator F�r� in the Wronskian relation for
generic test functions �1;2�X�
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Z
B
dd�1X��1

~F�r��2 ��1F� �r��2�

� �
Z
@B
ddx��1

~W�2 ��1W� �2�: (1.3)

This relation can be regarded as a definition of the first-
order Wronskian operator W � W�r� on the boundary/
brane b � @B of spacetime bulk domain B. Arrows every-
where here indicate the direction of action of derivatives
either on �1 or �2.

The brane part of the action contains as a kernel some
local differential operator ��@�, @ � @x. Integration by
parts here is irrelevant for our purposes, because b is
considered to be either closed compact or having trivial
vanishing boundary conditions at infinitely remote bound-
ary @b. j�x� plays the role of sources located on the
boundary. The order of the operator ��@� in derivatives
depends on the model in question. In the Randall-Sundrum
model [5], for example, for certain gauges it is just an
ultralocal multiplication operator generated by the tension
term on the brane. In the Dvali-Gabadadze-Porrati model
[6] this is a second order operator induced by the brane
Einstein term, ��@� 	�=� where � is a very low DGP
scale of the order of magnitude of the horizon scale,
responsible for the cosmological acceleration [7]. In con-
text of Born-Infeld action in D-brane string theory with
vector gauge fields ��@� is a first-order operator [8].

In all these cases the action (1.1) with dynamical (not
fixed) boundary conditions ’�x� for bulk fields naturally
gives rise to generalized Neumann boundary conditions of
the form

� ~W�r� � ��@���Nj � 0; (1.4)

which involve normal derivatives of ��X� contained in
~W�r� and generically also the tangential to the boundary

derivatives contained in ��@� (and possibly in ~W�r�).
These boundary conditions when imposed on all brane
boundaries of the bulk along with regularity requirements
at the bulk infinity uniquely define the Neumann type bulk
propagator of the theory, brane-to-brane propagator, etc.
and, therefore, uniquely specify all orders of perturbation
theory for both tree-level and quantum effective action.

Main result which we want to advocate here is that all
the Neumann type ingredients of the perturbation theory
can be systematically reduced to those of the Dirichlet
boundary conditions

�Dj � 0: (1.5)

In particular, the tree-level brane effective action, obtained
from (1.1) by integrating out the bulk fields subject to
boundary conditions (1.2) reads as
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S brane�’� �
1

2

Z
b
dxdy’�x�Fbrane�x; y�’�y�

�
Z
b
dxj�x�’�x�; (1.6)

F brane�x; y� � � ~WGDW� jj�x; y� � ��@���x; y� (1.7)

with the brane-to-brane operator Fbrane�x; y� expressed in
terms of the Dirichlet Green’s function GD�X; Y� of the
operator F�r� in the bulk. This expression implies that the
kernel of the Dirichlet Green’s function is being acted upon
both arguments by the Wronskian operators with a subse-
quent restriction to the brane. Double vertical bar indicates
that both points of the operator kernel are restricted to the
brane and labeled by corresponding low case letters. That
is, if the embedding of the boundary/brane in the bulk is
denoted by X � e�x�, then this explicitly means:

~WGDW� jj�x; y� � ~W�rX�GD�X; Y�W� �rY�jX�e�x�;Y�e�y�:

(1.8)

It is obvious that Fbrane�x; y� is essentially nonlocal, its
local part being presented by the last term of (1.7)—the
contribution from the brane. The Green’s function
Gbrane�x; y� of the brane operator,

Z
b
dzFbrane�x; z�Gbrane�z; y� � ��x; y�; (1.9)

is the brane-to-brane propagator of the bulk theory, and
with the conventions of the above type this reads as the
following expression for the brane restriction of the
Neumann Green’s function GN�X; Y� of F�r�

GNjj�x; y� � Gbrane�x; y�: (1.10)

The duality relations (1.7) and (1.10) were derived in [4]
for a simplest case of ��@� � 0. Below we generalize them
to the case of a nontrivial ��@� and, moreover, extend them
beyond the tree level. In particular, in the one-loop ap-
proximation we show that the functional determinant of the
bulk operator F�r� subject to the generalized Neumann
boundary conditions (1.4) factorizes into the product of the
Dirichlet type determinant of F�r� and the functional
determinant of the brane-to-brane operator Fbrane of the
boundary (d-dimensional) theory—the fact briefly re-
ported in [9]. This implies the following additive property
for the one-loop effective action

� 1-loop �
1

2
TrN lnF �

1

2
TrD lnF�

1

2
tr lnFbrane;

(1.11)

where TrD;N denotes functional traces of the bulk theory
subject to Dirichlet and Neumann boundary conditions,
while tr is a functional trace in the boundary
d-dimensional theory.

Certainly, beyond tree level the effective action contains
ultraviolet divergences, so that this one-loop Dirichlet-
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Neumann reduction property (1.11) should be understood
within certain regularization. Below we will use the di-
mensional regularization with the dimension d continued
to the complex plane playing the role of regularization
parameter. In principle, other regularizations are possible,
and their admissible types will be discussed in Sec. II
below.

As a byproduct of (1.11) we suggest a new technique for
surface terms of the local heat kernel expansion in space-
times with boundaries. Heat kernel gives a proper-time
representation for the functional determinant of (pseudo)-
differential operators and, therefore, serves as a basic tool
for the calculation of effective action in background-field
formalism [1,2,10–12]. In the presence of boundaries its
local expansion is modified by additional surface terms
which amend easily calculable bulk terms well known in
physics context as Schwinger-DeWitt coefficients.
Calculation of these surface terms [3] presents a strong
challenge of both technical and sometimes conceptual
(nonperturbative) nature, especially for the so-called
oblique boundary conditions [13] which contain deriva-
tives tangential to the brane and arise, in particular, in
Born-Infeld context [8]. Interestingly, Neumann-Dirichlet
duality relations suggest an alternative method of their
calculation, which in view of simplicity and universality
has essential advantages as compared to the conventional
approach of [12–15].

The paper is organized as follows. In Sec. II we derive
the algorithms (1.7), (1.10), and (1.11). In Sec. III we
demonstrate them on several simple examples. In Sec. IV
we calculate several lowest-order surface terms of the heat
kernel for a wide class of generalized Neumann boundary
conditions including, in particular, the case of oblique
ones. In the concluding Sec. V we briefly discuss the
extension of the technique to multiloop orders, its pecu-
liarities in gauge theories and other problems of the curva-
ture expansion in spacetimes with boundaries, which will
be fully considered in the forthcoming papers [16,17]. In
Appendix A the classical Feynman derivation of the gauss-
ian functional integral in spacetime with boundaries is
briefly revisited, and Appendix B is devoted to the deriva-
tion of the heat kernel for a special case of the brane-to-
brane operator.
1Note that the Wronskian relation (1.3) specifies W�r� only up
to arbitrary symmetric operator acting on the boundary (like
��@�), while Eq. (2.6) fixes it uniquely.
II. NEUMANN VS DIRICHLET PROBLEMS

We begin this section with specifying in more detail the
structure of the second order bulk operator F�r�. As a
kernel of the bulk action in (1.1) it should be symmetric
and have the following general form

F�r� � �@Aa
AB@B � b

A@A � @A�b
A�T � c: (2.1)

Its coefficients are some general coordinate dependent
matrices acting in the vector space of ��X� labeled by
some spin-tensor indices which we do not specify here.
066012
With respect to these indices the coefficients aAB and c are
symmetric �aAB�T � aAB, cT � c.

The Lagrangian of the bulk part of (1.1) for this operator,
containing the first-order derivatives, is of the form

1

2
�F
$

�r���
1

2
@A�aAB@B���bA@A��

1

2
�c�: (2.2)

With one integration by parts, this Lagrangian differs by
the total derivative term from the expression in which the
operator F�r� acts entirely to the right. For two different
test functions �1;2 this reads as

�1F
$

�2 � �1� ~F�2� � @A��1
~WA�2� (2.3)

in terms of the local Wronskian operator

~W A�r� � aAB@B � b
A (2.4)

and can also be rewritten as a local Wronskian relation

�1
~F�r��2 ��1F� �r��2 � �@A��1

~WA�2 ��1W�
A�2�:

(2.5)

Integrating (2.3) over the bulk we have the equation
Z
B
dd�1X�1F

$

�2 �
Z
B
dd�1X�1� ~F�2�

�
Z
b
ddx�1

~W�2

��������: (2.6)

It determines the boundary/brane Wronskian operator ~W
which is given by the normal projection of the local op-
erator (2.4) at the boundary (up to the measure factor
involving the ratio of determinants of the bulk metric
GAB and induced on the brane metric g��), ~W �

�
���
g
p
=
����
G
p
� ~W?. Similar integration of (2.5) yields Eq. (1.3)

of Introduction.1

Now consider the functional integral in the brane model
with the action (1.1)

Z �
Z
D� exp��S����; (2.7)

where the integration runs over the bulk fields ��X� and
also over its boundary values ’�x�, (1.2), on the timelike
branes. Integration over the latter follows from the dynami-
cal nature of ’�x� which are subject to independent quan-
tum fluctuations. This gaussian path integral equals

Z � �DetGN�
1=2 exp��S��N��; (2.8)

where�N is a stationary point of the action (1.1) satisfying
the following problem with the inhomogeneous Neumann
boundary conditions

F�r��N�X� � 0; � ~W � ���Nj � j�x� � 0; (2.9)
-3
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and GN is the Neumann Green’s function of the bulk
operator—the solution of the following problem

F�r�GN�X; Y� � ��X; Y�; � ~W � ��GN�X; Y�jb � 0:

(2.10)

For completeness in Appendix A we present the deriva-
tion of the gaussian integral (2.8) by Feynman’s method
[18] which clearly shows how the boundary conditions
enter the calculation of the preexponential part of this
algorithm. This derivation, in particular, gives the varia-
tional definition of the corresponding functional determi-
nant which goes far beyond its matrix (finite-dimensional)
analogue. It is important that the boundary value problem
(2.9) naturally follows from the action (1.1) and Wronskian
relations for F�r�, because the variation of the action is
given by the sum of bulk and brane terms

�S��� �
Z
B
dX��� ~F�� �

Z
b
dx�’� ~W�� ��� j�j

(2.11)

which separately should vanish (remember that the action
should be stationary also with respect to arbitrary varia-
tions of the boundary fields �’).

The solution of (2.9) has the following form in terms of
the Neumann Green’s function

�N�X� � �
Z
b
dyGN�X; y�j�y� � �GNjj;

GN�X; y� � GN�X; Y�jY�e�y�;
(2.12)

and the stationary action as a functional of the boundary
source j�x� equals

S��N� �
1

2

Z
B
dX�� ~F�� �

Z
b
dx
�

1

2
�� ~W � ���� j’

�

� �
1

2

Z
b
dxdyj�x�GN�x; y�j�y� � �

1

2
jGNjjj

(2.13)

GN�x; y� � GN�X; Y�jX�e�x�;Y�e�y� � GNjj: (2.14)

Here to simplify the formalism we used condensed nota-
tions by omitting the sign of integration over boundary/
brane coordinates.2 Thus finally we have

Z � �DetGN�
1=2 exp

�
1

2
jGNjjj

�
: (2.15)
2We will never use this rule for bulk integration which will
always be explicitly indicated together with the corresponding
integration measure. It is useful to apply this rule for integral
operations on the brane, though, because these operations never
lead to surface terms and in our context have properties of formal
matrix contraction and multiplication. In the case of the one-
dimensional bulk this rule applies literally, and it can be ex-
tended to higher dimensions without any risk of confusion.
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Alternatively one can calculate the same integral by
splitting the integration procedure into two steps—first
integrating over bulk fields with fixed boundary values
followed by the integration over the latter

Z
D��. . .� �

Z
d’

Z
�j�’

D��. . .�: (2.16)

This allows one to rewrite the same result in the form

Z �
Z
d’Z�’�; (2.17)

Z�’� �
Z
�j�’

D� exp��S����; (2.18)

where the inner integral over bulk fields in view of gaus-
sianity is again given by the contribution of a saddle point
�D

Z�’� � �DetGD�
1=2 exp��S��D��: (2.19)

This saddle point configuration satisfies the problem with
the inhomogeneous Dirichlet boundary conditions

F�r��D�X� � 0; �Dj � ’�x�; (2.20)

and the preexponential factor of (2.19) is given by the
functional determinant of the Dirichlet Green’s function
subject to

F�r�GD�X; Y� � ��X; Y�; GD�X; Y�jX � 0: (2.21)

In terms of this Green’s function and using condensed
notations we have

�D�X� � �
Z
b
dyGD�X; Y�W�

��������Y�e�y�
’�y� � �GDW� j’;

(2.22)

S��D� �
1

2

Z
b
dxdy’�x��� ~WGDW� �x; y� � ��x; y��’�y�

�
Z
b
dxj�x�’�x�

�
1

2
’�� ~WGDW� jj � ��’� j’; (2.23)

where ~WGDW� jj is defined by Eq. (1.8) in Introduction.
Note that the last expression is exactly the tree-level brane
effective action obtained from the original action (1.1) by
integrating out the bulk fields subject to boundary condi-
tions ’�x�,

S brane�’� � S��D�’��: (2.24)

Substituting (2.19) with (2.23) into (2.17) we again
obtain the gaussian integral which is saturated by the
saddle point ’0 of the above brane action (2.23)

’0 � ��� ~WGDW� jj � ��
�1j; (2.25)

and the final result reads
-4
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Z � �DetGD�
1=2�Det�� ~WGDW� jj � ����1=2


 exp
�
1

2
j�� ~WGDW� jj � ���1j

�
; (2.26)

where det denotes the functional determinants in the
d-dimensional boundary theory.

Comparison of its tree-level and one-loop (preexponen-
tial) parts with those of (2.15) then immediately yields two
relations

GNjj � �� ~WGDW� jj � ��
�1 � Gbrane; (2.27)

�DetGN�
1=2 � �DetGD�

1=2�det�� ~WGDW� jj � ����1=2:

(2.28)

They underlie the algorithms (1.6), (1.7), (1.10), and (1.11)
advocated in Introduction and give the possibility in a
systematic way to express all the quantities in brane theory
in terms of the objects subject to Dirichlet boundary
conditions.

As mentioned in Introduction, the relation between
functional determinants (2.28) should be understood within
some ultraviolet regularization. It should regulate the both
bulk functional integrals (2.7), (2.8), (2.18), and (2.19) as
well as the boundary functional integral over ’ � ’�x� (of
d-dimensional theory) in (2.16) and (2.17). The simplest
procedure which regularizes all three integrations without
violating the basic relation (2.16) consists in the analytic
continuation in d to the domain of convergence of relevant
Feynman integrals. Other types of regularization do not
seem to violate (2.16) too, however they can qualitatively
change the setting of the boundary value problem under-
lying the obtained algorithms. For example, the regulari-
zation by higher derivatives, as well as certain versions of
the Pauli-Villars regularizations, increases the order of
differential operators. This changes the order of the normal
derivative in the boundary conditions (1.4) and even the
number of the latter, so that the Dirichlet-Neumann reduc-
tion stops working or has to be essentially modified. For
this reason, in what follows we will use dimensional regu-
larization as the simplest and most efficient scheme. As we
shall see in Sec. IV, it correctly generates the ultraviolet
finite heat kernel underlying the calculation of functional
determinants by the Schwinger proper-time method and,
thus, confirms the validity of the chosen regularization
technique.
III. SIMPLE EXAMPLES

A. One-dimensional problem

The simplest case of the Dirichlet-Neumann duality
relation can be demonstrated on the example of the one-
dimensional Sturm-Liouville problem on the segment of
finite length y� � y� � l
066012
F�r� � m2 �
@2

@y2 ; y� � y � y�: (3.1)

Its Wronskian operator on the two boundaries of this seg-
ment is given by

~Wj� � �@y; (3.2)

and the Dirichlet and Neumann Green’s functions are
correspondingly

GD�y; y0� � �
sinhm�y0 � y�� sinhm�y� y��

m sinhml

 ��y0 � y� � �y$ y0�; (3.3)

GN�y; y0� �
coshm�y0 � y�� coshm�y� y��

m sinhml

 ��y0 � y� � �y$ y0�: (3.4)

Since the boundary of the one-dimensional bulk consists
of two points y�, the full brane operator (1.7) has the form
of the two-dimensional matrix with the elements corre-
sponding to the � entries on the two zero-dimensional
‘‘branes’’ (for simplicity we take the case of � � 0)

F brane �
m

sinhml
coshml �1
�1 coshml

� �
: (3.5)

On the other hand, the restriction of the Neumann Green’s
function (3.4) to the boundary is given by

GNjj �
1

m sinhml
coshml 1

1 coshml

� �
: (3.6)

This is a matter of a simple verification to check that these
two matrices are inverse to one another which is just the
relation (1.9).

To check the one-loop duality relation one can write the
Dirichlet and Neumann functional determinants of F�r� as
products of eigenvalues of the corresponding spectra.
Interestingly, for this simple problem the Dirichlet spec-
trum

F�r��D
k � �Dk �

D
k ; �D

k �y�� � 0; (3.7)

�Dk �
�2k2

l2
�m2; k � 1; 2; 3; . . . (3.8)

coincides with the Neumann spectrum

F�r��N
k � �Nk �

N
k ; @y�

N
k �y�� � 0; (3.9)

�Nk �
�2k2

l2
�m2; k � 0; 1; 2; 3; . . . (3.10)

except one eigenmode k � 0. This constant mode,
�N

0 �y� � const, is just absent in the spectrum of the
Dirichlet problem. Therefore

det NF�r� � detDF�r��0; (3.11)

and this immediately confirms the relation (2.28) in view of
-5



3In this section we denote the functional trace in the �d�
1�-dimensional bulk and on the d-dimensional boundary, respec-
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denoted by hats.
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the fact that

detFbrane � m2 � �0: (3.12)

B. Half-space with the Killing symmetry in extra
dimension

Another example is of field-theoretic nature. It corre-
sponds to �d� 1�-dimensional half-space with the
d-dimensional boundary plane. Let the operator be given
by the �d� 1�-dimensional d’Alembertian with mass and
let the boundary be located at the position y � 0 of the
extra-dimensional coordinate y � Xd�1,

F�r� � m2 ���d�1� � m2 ��� @2
y; � � ��d�;

(3.13)

XA � �x�; y�; y  0; (3.14)

Xjb � �x; 0� (3.15)

The d-dimensional part of the full d’Alembertian can in
principle be curved and nontrivially depending on
x-coordinates. We only assume the possibility of separa-
tion of variables, so that y is a Killing direction in the bulk.

For such a setting the Wronskian operator is given by the
normal derivative with respect to the outward-pointing
normal and equals

~W � �@y; (3.16)

while the exact Dirichlet and Neumann Green’s functions
are

GD;N�y; y
0� �

1

�
�e��jy�y0j � e���y�y0��; (3.17)

� �
�����������������
m2 ��

p
; (3.18)

where the minus and plus signs refer, respectively, to the
Dirichlet and Neumann cases.

According to (1.7) the brane-to-brane operator equals

F brane � � ~@yGD�y; y
0�@�yjy�y0�0 � �; (3.19)

while from (3.17)

GNjj � GN�0; 0� �
1

�
; (3.20)

which confirms the relations (1.7) and (1.10).
To check (1.11) let us write a variational definition of the

functional determinants for both Dirichlet and Neumann
boundary conditions with respect to general variations of
the d-dimensional part of the full operator �F � ���.
We have

� ln detGD;N � �TrGD;N�F � tr
Z 1

0
dyGD;N�y; y���;

(3.21)

where we decomposed the �d� 1�-dimensional functional
trace into the operation of integrating over y the coinci-
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dence limit of the corresponding y-dependent kernel and
the d-dimensional functional trace tr. Then, substituting
(3.17) we have

��ln detGN � ln detGD� � tr
Z 1

0
dy

1

�
e�2�y��

� �� ln det�; (3.22)

which, in view of (3.19), in the infinitesimal variational
form fully confirms (1.11).
IV. BOUNDARY TERMS OF THE LOCAL HEAT
KERNEL EXPANSION

Neumann-Dirichlet duality can be used for the calcula-
tion of the boundary terms in the local expansion of the
heat kernel. In the absence of boundaries with trivial falloff
conditions at infinity, the heat kernel

K�sjx; y� � e�sF�r���x; y� (4.1)

turns out to be a very efficient tool of the covariant dia-
grammatic technique for quantum effective action in
curved spacetime and in external fields of a very generic
form [1,10–12]. Its efficiency is based on the possibility of
expanding this kernel in asymptotic series in integer
powers of s! 0 with the coefficients ân�X; Y� which
satisfy simple recurrent equations. These coefficients,
often called in the physics context the Schwinger-DeWitt
or HAMIDEW coefficients, can be explicitly found in the
coincidence limit y � x as local invariants built in terms of
spacetime curvature of the bulk metric GAB, fibre bundle
connection and other background fields. Thus, they give
rise to local low energy expansion of the effective action in
inverse powers of the mass parameter m2 ! 1, when the
inverse propagator of the theory is supplied with the mass
term, F�r� ! F�r� �m2.

In spacetime with boundaries the situation becomes
more complicated, because, similarly to Green’s functions,
the heat kernel should be obtained from that of the infinite
spacetime by the method of images. This leads to the
expansion of the functional trace of the heat kernel in
half-integer powers of the proper-time parameter
[3,12,19,20]

Tr�d�1�e�sF�r��sm
2
�

1

�4�s��d�1�=2
e�sm

2



X1
n�0

�snAn � s
n=2Bn=2�: (4.2)

Together with the volume (bulk) terms of the Schwinger-
DeWitt type,3
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An �
Z
M
dd�1XG1=2�X�trân�X;X�; (4.3)

this expansion acquires surface integrals at the boundary
Bn=2 which are built of local invariants incorporating also
such local characteristics of the surface as its extrinsic
curvature K�� and the curvature of the induced metric g��,

Bn=2 �
Z
@M

ddxg1=2�x�bn=2�x�: (4.4)

Here G�X� and g�x� denote the determinants of the bulk
and brane metrics, so that trân�X;X� and bn=2�x� turn out to
be the bulk and boundary scalars.

In contrast to the bulk Schwinger-DeWitt coefficients
ân�X;X� which are universal and independent of the type
of boundary conditions, the surface terms essentially de-
pend on the latter, and their calculation is much less
universal and often very cumbersome. For the operator of
the form

F�r� � �GABrArB � P̂�
1

6
R1̂; (4.5)

with second order covariant derivatives rA forming a
covariant �d� 1�-dimensional D’Alembertian in the met-
ricGAB and P̂ denoting some matrix-valued potential term,
few lowest Schwinger-DeWitt coefficients read as

â 0�X;X� � 1̂; â1�X;X� � P̂; . . . : (4.6)

The corresponding surface terms for the Dirichlet and
simple Neumann boundary conditions

bD;N0 �x� � 0; (4.7)

bD1=2�x� � �

����
�
p

2
tr1̂; bN1=2�x� �

����
�
p

2
tr1̂; (4.8)

bD;N1 �x� �
1

3
K tr1̂;

. . .

(4.9)

involve the trace of the extrinsic curvature of the boundary
K � g��K�� [3,12].

For the generalized Neumann (Robin) boundary condi-
tions

�rn � Ŝ���X�j@M � 0 (4.10)

the last of the above coefficients is modified by the matrix-
valued potential term Ŝ [12]

bR1 �x� � tr
�

2Ŝ�
1

3
K1̂

�
: (4.11)

This modification is even more sophisticated in the case
of the so-called oblique boundary conditions [13], which
include the tangential to the boundary (d-dimensional)
covariant derivatives D�
066012
�
rn � 	̂

�D� �
1

2
�D�	̂

�� � Ŝ
�
��X�

��������@M
� 0: (4.12)

These derivatives enter the boundary conditions with the
dimensionless matrix-valued vector coefficients 	̂�. For
the generic case their contribution to bn=2 is not known,
but in the case of commuting matrices

�	̂�; 	̂�� � 0 (4.13)

lengthy calculations of [13–15] lead to the following ex-
pressions for few lowest-order surface densities (see also
[12,14] for higher order bn=2)

bO1=2�x� �

����
�
p

2
tr
�

2���������������
1� 	̂2

p � 1̂
�
; (4.14)

bO1 �x� � tr
�

2

1� 	̂2
Ŝ�

1

3
K1̂�

�
1

1� 	̂2
�

arctanh
����������
�	̂2

p
����������
�	̂2

p
�




�
K�K�� 	̂�	̂�

	̂2

��
; (4.15)

where

	̂ 2 � 	̂�	̂�: (4.16)

It is important to note that these matrix functions are non-
polynomial in 	̂� because of the dimensionless nature of
these matrices. This means that their contribution to any
given surface coefficient bn=2 cannot be obtained by the
perturbation theory in 	̂�, which is the main reason of
difficulties in their derivation.

Let us now give a simple derivation of these coefficients
by the technique of the previous section. To begin with,
note that the Wronskian operator for (4.5) is defined by the
normal derivative with respect to outward-pointing normal
nA to the boundary

~W � rn; rn � nArA: (4.17)

Introduce the covariant operator ��D� corresponding to the
generalized Neumann boundary condition (4.12) and the
d-dimensional brane action, from which these boundary
condition can be obtained by the variational procedure of
Sec. II. Obviously, they read

� � ��D� � �	̂�D� �
1

2
�D�	̂

�� � Ŝ; (4.18)

S�d��’� �
1

2
’�’ � �

1

2

Z
b
dxg1=2’T�	̂�D� � Ŝ�’�x�;

(4.19)

provided the following symmetry property of matrices 	̂�

and Ŝ holds (which we assume in what follows)

	̂ �T � �	̂�; ŜT � Ŝ: (4.20)
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According to the Shwinger-DeWitt proper-time method
[1,10] the functional determinants of massive operators are
given by the proper-time integrals of the corresponding
heat kernels. In view of the representation (4.2) this gives
the following inverse-mass expansions in the Dirichlet and
generalized Neumann cases

TrD;N ln�F�r� �m2� � �TrD;N
Z 1

0

ds
s
e�sF�r��sm

2

� �

�
m2

4�

�
�d�1�=2

�X1
n�0

��n� d�1
2 �

m2n An

�
X1
n�1

��n�d�1
2 �

mn BD;Nn=2

�
: (4.21)

The heat kernel trace (4.2) is always ultraviolet finite, and
the one-loop divergences originate from the proper-time
integration diverging at s � 0. In dimensional regulariza-
tion (with d analytically continued to the complex plane)
they arise here as gamma-function poles for first few terms
of nonnegative powers in the mass parameter (in even
dimension d� 1 for bulk Schwinger-DeWitt coefficients
and both even and odd d� 1 for surface terms).

The Dirichlet and Neumann expressions (4.21) differ
only by the contributions of surface integrals, their total
difference, on the other hand, being defined from the dual-
ity relation (1.11). Subtracting the Dirichlet version of
(4.21) from the Neumann one, one therefore obtains

Tr �d� lnF
brane � �

1

2

�
m2

4�

�
d=2 X1

n�1

��n�d�1
2 �

mn�1



Z
ddxg1=2

bNn=2 � b
D
n=2����

�
p ; (4.22)

where the brane-to-brane operator Fbrane is defined by
Eq. (1.7) in Introduction for a particular case of the bound-
ary operator (4.19). Thus, the difference of the boundary
terms for Neumann and Dirichlet cases can be disentangled
from the functional determinant of Fbrane in relevant orders
of the 1=m-expansion. In view of the ultraviolet finiteness
of the heat kernel (finiteness of the coefficients bN;Dn=2 ) the
divergences of this functional determinant should have the
structure of gamma-function coefficients in the right hand
side of (4.22), which serves as a consistency check of the
whole procedure.

Though the operator Fbrane is itself not exactly known,
all we need is its inverse-mass expansion which is equiva-
lent to the bulk-brane curvature expansion of the Dirichlet
Green’s function GD of F�r�. Moreover, it is defined on
the brane manifold without a boundary (or with trivial
regularity conditions at infinity). All this essentially facil-
itates the solution of the problem. As we show in the
following examples, choosing the brane operator (1.7) for
��D� of the form (4.18) we easily calculate the lowest-
order surface terms, and this procedure can undoubtedly be
extended to all bn=2.
066012
A. Simple Neumann boundary conditions

For simplest Neumann boundary conditions with
��D� � 0 the brane-to-brane operator (1.7) was obtained
in the leading order approximation in Sect. III B,
Eq. (3.19). It reads

F brane � � �
�����������������
m2 ��

p
�O�R;K�; (4.23)

where O�R;K� denotes corrections due to the bulk curva-
ture and extrinsic curvature of the boundary. Therefore, the
inverse-mass expansion for its determinant is dominated by

Tr�d� lnF
brane �

1

2
Tr�d� ln�m

2 ��� �O�R;K�

� �
1

2

�
m2

4�

�
d=2

���d=2�
Z
ddxg1=2 tr1̂

�O�R;K� (4.24)

withO�R;K� � O�md�1�. From the n � 1 term of (4.22) it
follows then that

bN1=2 � b
D
1=2 �

����
�
p

tr1̂; (4.25)

which fully agrees with (4.8). The dependence of (4.24) on
dimensionality (yielding the logarithmic divergence for
even d) is exactly the same as in the n � 1 term of (4.22)
which, as expected, guarantees the ultraviolet finiteness of
the obtained difference bN1=2 � b

D
1=2.

B. Robin boundary conditions

For Robin boundary conditions (4.10) with ��D� � �Ŝ

F brane �
�����������������
m2 ��

p
� Ŝ�O�R;K�: (4.26)

The functional determinant of this operator can be obtained
by perturbation theory in the dimensional quantity Ŝ

Tr�d� lnF
brane �

1

2
Tr�d� ln�m2 ��� � Tr�d�

Ŝ�����������������
m2 ��
p

�O�R;K; Ŝ2�: (4.27)

Only the first order in Ŝ contributes to bR1 in the Robin case,
and to zeroth order in the curvature this term equals

�Tr�d�
Ŝ�����������������

m2 ��
p � �

1

	�1=2�
Tr�d�

Z 1
0
dss�1=2e�s�m

2���Ŝ

� �
Z 1

0

ds������
�s
p

e�sm
2

�4�s�d=2

Z
ddxg1=2 trŜ

�O�R;K�

� �

�
m2

4�

�
d=2 ��1�d2 �

m
����
�
p

Z
ddxg1=2 trŜ

�O�R;K�: (4.28)

Therefore, from the n � 2 term of (4.22) it follows that
-8
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bR1 � b
D
1 � 2 trŜ�O�K�; (4.29)

which fully agrees with (4.9) and (4.11).

C. Oblique boundary conditions

For simplicity consider the case of oblique boundary
conditions (4.12) with Ŝ � 0. Then the surface operator
(4.19) is ��D� � �	̂�D� �O�D	̂�, and the brane-to-
brane operator reads

F brane �
�����������������
m2 ��

p
� 	̂�D� �O�R;K;D	̂�; (4.30)

where together with curvature terms we disregard terms
with covariant derivatives of 	̂�. With the same accuracy

TrlnFbrane��
Z
ddxtr

Z 1
0

d



e�


�����������
m2��
p

�
	̂�D���x;y�
��������y�x

:

(4.31)

Here we denote the proper-time parameter by 
 to empha-
size that it has the dimensionality different from s (length
rather than length squared), which in its turn is explained
by the dimensionality of (4.30).

In contrast to the Robin case further calculations cannot
be performed by perturbations in powers of the term
	̂�D�, because the vector coefficient 	̂� is dimensionless,
and the perturbation theory in this term will not generate
asymptotic expansion in inverse mass.4 Instead, with the
same accuracy of zeroth order in the curvature one can
disentangle this term in the exponential as a matrix-valued
shift operator

exp��

�����������������
m2 ��

p
� 
	̂�r����x; y�jy�x

� e
	̂
�r�K�
jx; y�jy�x � K�
jx� 
	̂; x� (4.32)

acting on the heat kernel of the operator
�����������������
m2 ��
p

,

K�
jx; y� � exp��

�����������������
m2 ��

p
���x; y�: (4.33)

Note that in view of the commutativity assumption (4.13)
this nontrivial matrix-valued function is uniquely defined
without any matrix-ordering prescription.5

As shown in Appendix B, in flat �d� 1�-dimensional
space without boundaries

K�
jx; y� � 2

�
m2

2�Z

�
�d�1�=2

K�d�1�=2�Z�; (4.34)
4In other words, the leading symbol of the pseudodifferential
operator (4.30)—the highest (first) order in derivatives part of

Fbrane—is given by
����������
�@2
p

� 	̂�@�, and it should be treated as a
whole without breaking into pieces.

5Apparently, the commutativity assumption can be removed.
For noncommuting matrices Eq. (4.32) will still be valid under
the symmetric matrix-ordering prescription in the right hand
side. This symmetrization follows from the symmetry of the
Taylor series coefficients.
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where

Z � Z�
jx; y� � m
����������������������������
jx� yj2 � 
2

q
(4.35)

and K��Z� is the modified Bessel (MacDonald) function.
Because of

Z�
jx� 
	̂; x� � m

���������������
1� 	̂2

q
(4.36)

the 
-integration in (4.31) gives

Tr lnFbrane � �
Z
ddxg1=2 tr

Z 1
0

d



K�
jx� 
	̂; x�

� �

�
m2

2�

�
�d�1�=2 2

m

Z
ddxg1=2 tr

1���������������
1� 	̂2

p


Z 1

0
dZ

K�d�1�=2�Z�

Z�d�1�=2
; (4.37)

whence in view of the integral (Eq. 6.561.16 of [21])Z 1
0
dxx��K��x� � 2���1

����
�
p

�
�
�2�� 1

2

�
(4.38)

we finally have

Tr �d� lnF
brane � �

1

2

�
m2

4�

�
d=2

�
�
�
d
2

�



Z
ddxg1=2 tr

1���������������
1� 	̂2

p �O�md�1�:

(4.39)

Therefore, from the n � 1 term of (4.22) it follows that

bO1=2 � b
D
1=2 �

����
�
p

tr
1���������������

1� 	̂2
p (4.40)

which fully agrees with (4.14) for oblique boundary con-
ditions with Ŝ � 0. Similarly, one can check the
Ŝ-dependent term of (4.15) for the case of nonvanishing Ŝ.

The approximation of zero bulk and brane curvatures in
all the above examples can be used as a starting point of the
perturbation theory in O�R;K� (and in other dimensional
background-field quantities like D�	̂

� and P̂). Then the
Neumann-Dirichlet duality method of the above type will
give extrinsic curvature terms of (4.15) and all higher order
surface terms in the heat kernel expansion (4.2).
V. CONCLUSIONS

Thus, the algorithms (1.7), (1.10), and (1.11) allow one
to reduce calculations of brane effective action to those of
the Dirichlet boundary conditions. This reduction tech-
nique can obviously be extended to multiloop orders by
applying the same trick of splitting the functional integra-
tion into two steps, as in (2.16), (2.17), and (2.18), also in
the nonlinear case. The resulting Feynman diagrammatic
technique from combinatorical viewpoint is not so simple
as in (1.11), but still manageable. In addition to the bulk
Dirichlet type propagator GD it has the brane-to-brane
propagator Gbrane —the Green’s function of Fbrane. The
-9
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modification of Feynman diagrams, therefore, consists in
the insertions into the bulk diagrams of the Dirichlet type
the lines connecting bulk vertices to the brane by the brane-
to-boundary propagators

��D�X�
�’�y�

� �GD�X; Y�W
 

jY�e�y� (5.1)

(cf. Eq. (2.22)) and also developing the d-dimensional
diagrammatic technique on the brane with the propagator
Gbrane. This technique will be considered in more detail in
[16]. In gravitational brane models the question of gauge
invariance (especially with respect to general coordinate
transformations) becomes very important, while at present
even the details of Faddeev-Popov gauge fixing procedure
in spacetimes with boundaries are not clearly studied [9].
Therefore, gauge properties of Neumann-Dirichlet duality
will be a major aspect of [16], where gravitational Ward
identities in brane models will be established (they are
briefly reported in [9]).

As a byproduct, the Neumann-Dirichlet reduction tech-
nique suggests also a new method of calculating surface
terms of the heat kernel expansion. Given the Dirichlet
type terms, those of the generalized Neumann case can be
obtained from (4.22). This allows one to circumvent the
limitations of the conventional method for these terms. In
particular, we were able to recover correct expressions for
few lowest surface contributions to the Schwinger-DeWitt
expansion and, in case of oblique boundary conditions,
perhaps even extend their validity beyond the commutative
case (4.13) (see footnote after Eq. (4.33) on the symmetric
matrix-ordering prescription).

Of course, the success of Neumann-Dirichlet reduction
programme depends on our ability to find the Dirichlet
Green’s function GD and the corresponding brane-to-brane
operator Fbrane. The latter is a nonlocal pseudodifferential
operator, so the problem of efficiently handling its non-
locality arises. For a wide class of problems Fbrane was
found in the zero curvature approximation as

F brane�D� �
�����������������
m2 ��

p
� ��D� �O�R;K�: (5.2)

Despite nonlocality, local expansion of its functional de-
terminant is still manageable. For ultralocal ��D� � �Ŝ,
as in Robin case, it is easily available by perturbations. It is
more complicated in the case of oblique boundary condi-
tions, when the leading symbol of Fbrane�D� gives rise to
the propagation off light cone on the brane (in the physical
theory with the Lorentzian signature)—the phenomenon
called generalized causality in [10].6 Finally, in brane
6Related phenomenon of loss of strong ellipticity, which is the
unboundedness of the operator spectrum from below in the
Euclidean theory [22] or the presence of ghost modes in the
Lorentzian case, takes place when 1� 	̂2 acquires zero or
negative eigenvalues leading to singularities in the algorithms
(4.14) and (4.15)

066012
induced gravity models with the operator ��D� 	�=�
generated by the brane Einstein term (� is the DGP scale
[6,7]), the calculational technique still has to be worked out
[17].

Final comment of this paper concerns the (bulk and
boundary) curvature expansion of the Dirichlet Green’s
function. Classical method of images for this expansion
is known [3], and this method for the Dirichlet case is much
simpler than for the generalized Neumann boundary con-
ditions. Still further efforts are necessary to convert it into a
regular systematic calculational scheme comparable in its
universality to the Schwinger-DeWitt technique in space-
time without branes/boundaries [10,11]. The progress in
this direction will be reported in forthcoming papers
[16,17], and here it remains to express a hope that at least
the general shape of background-field method for quantum
effective action in brane theory becomes visible.
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APPENDIX A: GAUSSIAN PATH INTEGRAL IN
SPACETIME WITH BOUNDARIES

Feynman’s calculation [18] of the gaussian functional
integral (2.8) is based on the integral

Z�F; J� �
Z
D� exp��S��; J��: (A1)

Here instead of the source j�x� at the boundary, as in (1.1),
the action has the source J�X� to the integration field ��x�
in the bulk

S��; J� �
Z
B
dX

�
1

2
��X�F

$

�r���X� � J�X���X��

�
1

2

Z
@B
dx’�x���@�’�x�: (A2)

To find the dependence of (A1) on J�X� consider the sta-
tionary point of this action with respect to arbitrary varia-
tions of ��X� both in the bulk and on the boundary.
Similarly to (2.9) this field satisfies the generalized
Neumann boundary value problem

F�r��N�X� � J�X� � 0; � ~W � ���Nj � 0: (A3)

Now make the shift of the integration variable in (A1) by
�N

� � �N ��: (A4)
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Under this replacement the action decomposes in the part
S��; 0� quadratic in � and the part independent of �.
Linear in � term is absent (both in the bulk and on the
boundary) in view of the stationarity of the action at�N , so
that

S��; J� � S��; 0� � S��N; J�; (A5)

S��N; J� �
1

2

Z
B
dXdYJ�X�GN�X; Y�J�Y�: (A6)
066012
Therefore

Z�F; J� � Z�F; 0� exp��S��N; J��; (A7)

which justifies the exponential (tree-level) part of (2.8).
To find the prefactor, consider the variation of the inte-

gral (A1) at J � 0 with respect to the operator F�r� and
make the following set of obvious identical transforma-
tions using the above Eqs. (A6) and (A7)
�FZ�F; 0� � �
Z
D�

�
1

2

Z
B
dX��X��F

$

�r���X�
�

exp��S��; 0��

� �
Z
D�

�
1

2

Z
B
dX

�
�J�X�

�F
$

�r�
�

�J�X�

�
Z�F; J�

��������J�0
� �

1

2

Z
B
dX�F

$

�r�GN�X; Y�
��������Y�X

Z�F; 0�: (A8)

$

Here �F�r� means arbitrary variations of the coefficients
of the operator, �aAB�X�, �bA�X�, �c�X�, and the double
arrow implies symmetric action of two first-order deriva-
tives of F�r� on both arguments of GN�X; Y� similar to
Eq. (2.2)
Z
B
dX�F

$

�r�GN�X; Y�
��������Y�X

�
Z
B
dX��aAB�X�@YA@

X
B

� 2�bA�X�@XA

� �c�X��GN�X; Y�
��������Y�X

� Tr�F
$

�r�GN: (A9)

Therefore, from (A8) one gets

�F lnZ�F; 0� � �
1

2
Tr�F
$

�r�GN � �
1

2
� ln DetF

�
1

2
� ln DetGN: (A10)

This expression in the variational form justifies the repre-
sentation of the prefactor in (2.8) in terms of the functional
determinant of the Neumann Green’s function (or the
inverse of the determinant of F�r� subject to Neumann
boundary conditions). Simultaneously, it gives the varia-
tional definition of these functional determinants which
specifies how the Neumann boundary conditions enter
them and how the action of differential operators should
be understood in the sense of integration by parts. The
derivation of the gaussian integral (2.19) with fixed fields at
the boundary can be done along the same lines [18] and
leads to a similar variational definition with GD replacing
GN .

APPENDIX B: HEAT KERNEL OF THE SQUARE-
ROOT TYPE OPERATOR

The heat kernel (4.33) obviously satisfies the following
Dirichlet problem K�
jx; y�:
��@2

 ���m2�K�
jx; y� � 0; (B1)

K�0jx; y� � ��x� y�: (B2)

Similarly to (2.22) its solution is given by the ‘‘brane-to-
bulk propagator’’

K�
jx; y� � �G�d�1�
D �x; 
jy; 
0�W

 

j
0�0; W
 

� �@
 


0 ;

(B3)

where G�d�1�
D �x; 
jy; 
0� is the �d� 1�-dimensional

Dirichlet Green’s function of the operator ��d�1� � @2

 �

� on half-space 
  0

�m2 ���d�1��G�d�1�
D �x; 
jy; 
0� � ��
� 
0���x; y�; (B4)

G�d�1�
D �x; 0jy; 
0� � 0: (B5)

By the method of images one can construct it in terms of
G�d�1��x; 
jy; 
0�—the Green’s function in full space with-
out boundary,

G�d�1�
D �x; 
jy; 
0� � G�d�1��x; 
jy; 
0�

�G�d�1��x; 
jy;�
0�: (B6)

For the massive case it reads

G�d�1��x; 
jy; 
0� �
1

2�

�
m2

2�Z

�
�d�1�=2

K�d�1�=2�Z�;

Z � m
������������������������������������������
jx� yj2 � �
� 
0�2

q
:

(B7)

Substituting (B6) and (B7) into (B3) and using recurrent
relation between the modified Bessel functions of different
orders one obtains (4.34).
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