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We argue that the holographic description of four-dimensional Bogomol’nyi-Prasad-Sommerfield black
holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory
is not a single AdS, X S? but a coherent ensemble of them. We verify this in a particular class of
examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black
holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that
O(e™") nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave
function of the multicenter black holes gets mapped to the Hartle-Hawking wave function of baby
universes. This provides a concrete realization, within string theory, of effects that can be interpreted as
the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to
a loss of quantum coherence, in accord with general arguments.
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I. INTRODUCTION

The study of quantum aspects of black holes has led to
important progress in a deeper understanding of quantum
gravity. One basic notion is that of black hole entropy,
which was predicted by Bekenstein [1] and Hawking [2],
through semiclassical reasoning, to be one quarter of the
area of the horizon in Planck units. More recently it was
shown in the context of string theory [3] that for special
classes of black holes the microstates of the black hole
consist of bound states of suitable configuration of branes
(see [4-6] for reviews of this subject). In particular it was
found that the semiclassical reasoning of Hawking agrees
with the leading large charge entropy of black hole micro-
states constructed within string theory.

However, in string theory one can go further and com-
pute, in addition, the subleading corrections to the black
hole entropy. More specifically, in the context of certain
extremal black holes obtained in compactifications of
type II strings on Calabi-Yau three-folds these corrections
are captured by topological string amplitudes [7]. These
results recently have led to a concrete formulation of the
quantum corrected black hole entropy to all orders in string
perturbation theory [8]. This states that the partition func-
tion of a statistical ensemble of black hole states Zgy is
given by the norm-squared of the topological string wave
function' on the corresponding Calabi-Yau three-fold:

'In this paper, we refer to the topological string partition
function ¢, = exp(3>,F,) as a wave function following the
interpretation [9,10] of the holomorphic anomaly equations [11]
for ., as representing the background independence of the
geometric quantization of the tangent space to the moduli space
of the Calabi-Yau three-fold.
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Since in this relation the string coupling constant is in-
versely proportional to the charge, large charge black holes
get mapped to the weak coupling limit of topological
strings.

The appearance of the notion of a wave function in the
above formula, at first sight, sounds surprising since we are
dealing with a partition function. This was explained in
[12], where it was identified as a Hartle-Hawking wave
function associated to a radial quantization, as contrasted
to the usual temporal quantization, of the Euclidean black
hole geometry. In particular, as was observed in [12], the
Bogomol’nyi-Prasad-Sommerfield monopoles (BPS) mini-
superspace Hilbert space J{ ,, (for type IIB compactifica-
tions) corresponds to the geometric quantization of the
phase space H*(M), where M is the corresponding
Calabi-Yau three-manifold. Moreover, fixing the electric/
magnetic fluxes (Q, P) leads to a distinguished state in this
Hilbert space

|0, P) = e(i#)/Z(QIX’*P1F1)|()’ 0) € H,,

where X/, F; are suitable (canonically conjugate) opera-
tors, with the property that the black hole state degeneracy
Q(Q, P) corresponds to

2(0.7) = (.Plo.P) = [TTd¢'lwign(@)P
1

In the real polarization on H>(M), this wave function is
related to the topological string partition function via
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Some aspects of the background independence of the black
hole entropy and its relation to this Hilbert space has been
discussed in [13] .

The prediction (1.1) has been verified in a number of
examples [14—19] In particular, in the context of a T2
embedded in the Calabi-Yau manifold, it was shown in
[14] that the bound state of D4-, D2-, and DO-branes maps
to the partition function of U(N) two-dimensional Yang-
Mills (YM) theory on T2. Here the number of D4-branes
corresponds to the rank N of the gauge group and the
chemical potentials for D2- and DO-branes can be identi-
fied with some combination of the theta angle and the
gauge coupling of the Yang-Mills theory. The fact that in
this case the Yang-Mills partition function takes the form
of the norm-squared of a holomorphic object follows from
the results in [20] where the "t Hooft large N limit of Yang-
Mills theory was studied.

However, as was noted in [14], there are additional
nonperturbative corrections (behaving like e V) to the
large N limit which destroy the holomorphic factorization
property (1.1). The lack of exact factorization is best
understood in the free nonrelativistic fermion formulation
of Yang-Mills theory where the two Fermi surfaces are
entangled at finite N. Our main goal in this paper is to study
these corrections and interpret their physical meaning in
the dual superstring theory.2

What we find is that the correction terms to the large N
limit of the D-brane gauge theory can be interpreted as
arising from multicenter black holes [22], a special case of
which correspond to the Brill instantons [23]. This, in
particular, leads to the statement that, while the perturba-
tive 1/N expansion holographically describes a single
black hole, via its nonperturbative O(e V) effects, the
gauge theory is actually dual to a coherent ensemble of
black holes. This is an interesting twist to the notion of
holography and may lead to a resolution to the puzzles
raised in [24] in the context of AdS, holography. From the
viewpoint of radial quantization [12], our conclusion is
therefore that the Hartle-Hawking wave function is not a
single universe wave function but rather the wave function
for an ensemble of baby universes.

In particular, in this language we find that the suitable
wave function belongs to the “third quantized” Hilbert

>These nonperturbative effects also explain the origin of
apparent discrepancies in some of the examples studied in
[21], where computations are done in the strong coupling re-
gime, g, >> 1. Because of the nonperturbative corrections, we
expect O(1) corrections to the perturbative formula (1.1) in this
regime and thus we find the question is reversed: Why did some
of the examples in [21] work at all?
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space, where we have one Hilbert space per baby universe.’
We find that in order to capture nonperturbative corrections
we need to consider the total Hilbert space

H = PHE.
n=0

We find that, if we fix the total flux corresponding to
electric/magnetic charges (Q, P), the complete quantum
state | (Q, P)) receives contribution from the Hartle-
Hawking wave function of an arbitrary number of baby
universes and belongs to &, FH . It takes a particularly
simple form. The n universe state is essentially given by

l4,(Q, P)) =

Q1 +..+0p=0,

P +..+Py=P
with a suitable range of sum over charges (and modulo
some positivity constraint) and where

® 0, P,).

This multiuniverse wave function is related to the net black
hole entropy (Q, P) by the formula

Z(_l)n_lcnflﬁpn(Q’ P)llpn(Qr P)> = Q(Q’ P):
n=1

where C,, the nth Catalan number, counts the number of
planar binary trees with (n + 1) branches, i.e. the number
of distinct ways the baby universes can be produced. The
sign factor (—1)"~! is perhaps unexpected. This extends
the analysis of [12] to the wave function of universes which
are spatially disconnected.

There is a natural interpretation of this simple factoriza-
tion structure from the viewpoint of the dual gravity solu-
tions, which turn out to be multicenter black hole solutions
[22]. Each of the component wave functions is associated
to the near-horizon geometry of the corresponding black
hole. The structure we have found for the multibaby uni-
verse wave function suggests that there is no loss of quan-
tum coherence, in line with the predictions of Coleman
[26]. Essentially, this is because if we measure the fluxes
through one baby universe (Q;, P;), the corresponding
wave function is fixed to be |Q;, P;) and is independent
of the other fluxes (Q,, P,),«; or the degrees of freedom on
the other universes.

The organization of this paper is as follows: In Sec. Il we
review the two-dimensional Yang-Mills partition function
and its large N limit. We also review its relation to black
hole entropy. In Sec. Il we consider @(e ") corrections to
the large N limit of Yang-Mills theory and their relation to
BPS partition functions of D-brane systems. We give an
interpretation of these effects in terms of multiple wave

*String theoretic realization of baby universes has recently
been discussed in a different context in [25].
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functions. In Sec. IV we review the relevant multicenter
gravity solutions. Finally, in Sec. V we interpret the non-
perturbative large N corrections in the context of the holo-
graphically dual gravity solutions.

I1I. TWO-DIMENSIONAL YANG-MILLS AND
TOPOLOGICAL STRING THEORY

A. Topological strings on local 7>

Let us briefly review the setup of [14] that relates
topological strings, two-dimensional Yang-Mills theory,
and black hole degeneracies. The starting point is a non-
compact Calabi-Yau manifold M given by the total space
of the following rank two vector bundle over a two-torus

O(m)® O(—m) — T2 2.1

Here m is a given integer. This noncompact space can be
considered as the local neighborhood of an elliptic curve
embedded in a compact Calabi-Yau manifold.

We will consider the A-model topological string on the
geometry (2.1). The string partition function ¢,,(t, g) will
depend on the cohomology class t € H"!(T?) of the com-
plexified Kihler form k on 72 and the string coupling
constant g,. It has a perturbative expansion of the form

op(t, &) = eXng?g TF, (),
8=0

where F,() is the contribution at genus g in string pertur-
bation theory. The stringy contributions to these perturba-
tive terms can be viewed as generated by world-sheet
instanton effects. If the Gromov-Witten invariant N,
denotes the “number” of instantons of degree d and genus
g (it is in general a rational number), then

Fy(t) = > Ngge .

d=0

These contributions are only nonzero for g = 1. In addi-
tion to these world-sheet instanton effects, there are clas-
sical contributions at genus zero and one, given by certain
intersection numbers. In general, for a noncompact target
space these are a bit ambiguous, but in the case of M these
can be computed to be [14]
} 17 ‘ 1
After including these classical parts, the net partition func-
tions F,(¢) are quasimodular forms of weight (6g — 6)
under the usual action of SL(2,Z) on 7= it/2m. For
example, [27,28]

F(t) = —logn,

Fy(t) =

103 680 (10E3 — 6E,E, — 4Eq),

with 1 the Dedekind eta function and E, the Eisenstein
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series, being (quasi)modular functions of weight n. This
modularity can be understood from applying mirror sym-
metry to the 72 that turns 7 into the complex modulus of
the dual elliptic curve [29] and has been rigorously proven
in [30]. Furthermore, if a suitable antiholomorphic depen-
dence is added, in accordance with the holomorphic anom-
aly of the string partition function [31], full modularity is
restored [32].

B. D-branes and two-dimensional Yang-Mills theory

We will now consider a type IIA compactification on the
Calabi-Yau space M. We can wrap N D4-branes, which we
take to cover the base 72 and one of the two complex fiber
directions. (This breaks the symmetry m — —m.) This will
give us a 4 + 1-dimensional supersymmetric U(N) gauge
theory, that describes a point particle in the four noncom-
pact dimensions. We can further consider bound states with
N, D2-branes, that wrap the 72, and N, DO-branes. These
lower-dimensional branes will be represented by the Chern
classes ¢;(€) and c¢,(€) that capture the topology of the
gauge bundle £ of the D4-brane.

After taking into account the backreaction of the super-
gravity, this collection of D-branes will manifest itself as a
charged four-dimensional black hole. Since we do not have
any D6-brane charge, the electric and magnetic charges
are, respectively, given by

Q:(NQ,N()), P:(N)O)
The black hole partition function that counts the number of
BPS states can be identified with an index of the corre-
sponding gauge theory. In fact, as explained in [8] and as
we will review at greater length in Sec. IV, within the string
theory context it is more natural to compute this partition
function in a mixed ensemble, where we fix the magnetic
charges P and introduce chemical potentials for the electric
charges Q. In this case this means that we fix the rank N of
the gauge group and sum over the different topologies of
the gauge bundle. The chemical potentials for DO and D2
branes can be identified with % and %, respectively,

where the angle 6 is the coefficient of the TrF A k term
in the four-dimensional action.

So the gauge theory/black hole partition function takes
the form

ZN(gs’e): Z Q(N’NZ:NO)
N,,Ny=0

( 472N, 27TN2¢9>
-expl — - .
8s 8s

Here 0(N; N,, Ny) denotes the index of BPS bound states
with the given charges. In order to relate this black hole
partition function with the closed topological string parti-
tion function as in (1.1), one needs to make the following
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identification of the closed and open string moduli [14]
t =1gmN + i6.

As is explained in [14], this particular D4-brane system
can be further simplified and in fact be identified with a
two-dimensional bosonic Yang-Mills theory on the com-
pact base T2. The action of this model is best written in
Hamiltonian form with F the field strength of the gauge
field A, together with an additional adjoint scalar ® (that is
the dual momentum to A)

1
§=_—
&8s J1°

Here we have set the area of the two-torus to one. Then we
can identify the gauge coupling with

|
Tr(CI)F + oD+ quﬂ).

gym =m- g

We can also absorb the factor m by redefining g, — mg,, at
least if m is nonzero.*

Since the solution of two-dimensional Yang-Mills the-
ory on a general Riemann surface is well known [33-37],
these identifications give the following exact expression
for the black hole partition function expressed as a sum
over all irreducible representations R of U(N)

Zy = Ze*(1/2)g5C2(R)+i9C1(R)_
R

Here C(R) and C,(R) are the first and second Casimir
invariants of the representation R.

C. Free fermion system

Two-dimensional Yang-Mills theory on a torus has an
elegant reformulation in terms of a system of N nonrela-
tivistic free fermions moving on a circle [38,39]. With
natural antiperiodic boundary conditions, these fermions
have half-integer quantized momenta

1

In the fermion correspondence, a YM state labeled by a
definite irreducible representation R of U(N) is given by
filling some particular levels py, ..., py. The ground state,
given by the trivial representation, is obtained by filling the
states from p = —%N to p = ~I—%N; see Fig. 1(a). The
nontrivial representations correspond to the excitations of
the top and the bottom Fermi levels, as depicted in
Fig. 1(b).

The Casimirs of the Yang-Mills representations can be
expressed as the total energy and momentum of this
N-fermion state

1C(R) = E — E,, Ci(R) =P,

“Note that this chooses the sign of the string coupling g;.
Changing m — —m, which corresponds to picking the other line
bundle to wrap the D4-brane, can be compensated by g, — —g,.
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N2

- N2
(a) (b)

FIG. 1. The spectrum of two-dimensional Yang-Mills is de-
scribed by a system of N free fermions. Depicted are the ground
state (a) and small excitations above the ground state (b), given
by fluctuations of the two Fermi surfaces at p = =N/2.

with

Here E; is the ground state energy
Ey = %(N* = N).

It is convenient to add this overall energy shift to the Yang-
Mills theory and define

Zy = o &E+iOP

fermions

This shift 1 C, —  C, + E, is also natural from the string
perspective, since it produces exactly the classical contri-
butions to the topological partition function [14]

Ey = —Fq,(t) — F, (D),
where

1 £t
cl — cl 1 ——
F%op(t)_g%Fé(t)dl—F(l:(t)_ 6g%+24’

with t = J g N + if.

D. The large N limit and chiral fermions

As discovered by Gross and Taylor [20], two-
dimensional Yang-Mills theory simplifies considerably in
the large N limit, defined as

N— oo, g, — 0, with g,N fixed.

The simplification is most easily understood in the fermi-
onic reformulation. Here the dynamics of the large N limit
is in good approximation described by independent fluctu-
ations of the two Fermi surfaces that will be separated by a
distance N; see Fig. 2. In fact, in the U(N) gauge theory [as
contrasted with the SU(N) theory] the Fermi levels can be
in general position at p = N, and p = —N_ (up to a shift
by % that we will ignore) as long as
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P

FIG. 2. In the large N limit the two Fermi surfaces at p = N
and p = —N_ decouple and we obtain two independent relativ-
istic free fermion field theories.

N, +N_ = N.

The partition function now simply factorizes, at least to all
order in 1/N as®

ZN(e’ g\) = Z

N, N-=N

¢N+ (6’ gs) : JN, (0’ g\) (22)

Here the chiral contribution #, is captured by the zero
fermion number sector of a two-dimensional chiral fermi-
onic field theory. It is described by removing and adding
arbitrary numbers of fermions close to the top Fermi
surface. These states have momentum p = N, + k with
|k| << N. Therefore their contribution to the partition func-
tion is given by

g.E = 1g,p? = const + N, gk + 1g k%

Since the total number of particles and holes are equal, the
constant contributions cancel. And in the large N limit the
quadratic term in k is order 1/N and can be ignored in the
leading approximation. Therefore this sector can be de-
scribed by a set of relativistic fermions with a linear
dispersion relation. Including the 6 term it is given by ¢k,
with the complexified 't Hooft coupling

t=g,N, +i6.

The chiral partition function therefore becomes a holomor-
phic function of ¢

¢N+ (0’ g?) = ¢(L gv)

There is a similar term ¢y (6, g;) coming from the nega-

>There are nonperturbative contributions that preserve the
factorized form, and they have been studied recently in
[40,41]. In the next subsection, we will find other nonperturba-
tive effects which break the factorized structure.
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tive Fermi surface at p = —N_. Here the moduli combine
to give an antiholomorphic function (7, g,) of
t=gN_ —i6.

The quadratic corrections to the energy are controlled by
gs~1/N and capture the perturbative string loop
corrections.

III. NONPERTURBATIVE CORRECTIONS TO
CHIRAL FACTORIZATION

The counting of states of two-dimensional Yang-Mills
theory in terms of the chiral fermions is clearly only an
approximation, because the two Fermi surfaces are not
independent. Particles can move from the top to the bottom
levels. These order eV effects give a nonperturbative
entanglement of the two chiral systems as we will now
explain.

A. Overcounting fermion configurations

These corrections can be elegantly described as follows.
In the large N limit we are treating each of the two Fermi
levels as the surface of an infinite deep sea, while in fact the
sea is only of finite depth N. Therefore, we make mistakes
if we create holes which lie too deep under the surface.

To be as concrete as possible, let us first decompose the
partition function Z in superselection sectors

Zy = ZN+,N,’
N, +N_=N

where Zy_y receives contributions from configurations
where there are N, fermions with positive momenta p; >
0 and N_ fermions with negative momenta p; < 0. We can
think of such a configuration as being created out of a
Fermi sea, where the positive level is at p = N, and the
negative level at p = —N_, as we did in the previous
section. Now by convention we will assume that all the
holes that are created with positive momentum have gone
to excitations of the top Fermi surface, and that all the
negative-momentum holes have gone to the bottom Fermi
surface excitation.

If we denote the chiral amplitudes corresponding to this
configuration as ¢, and ¥ _, then naively we can make
the approximation

Zy.n. = Yy, JN,-

However, this expression is clearly incomplete, since it will
overcount states. Each chiral wave function does not limit

the momenta of the holes to be positive for ¢y, or negative
for iy , respectively. In Yy, there are configurations
where, for instance, n_ holes have been made with nega-
tive momenta in order to create n_ particles with positive
momentum, raising the top level of Fermi sea from N, to

N, + n_. Similarly, ¢y takes into account states where
n positive momentum holes are created that go to states

066002-5



DIJKGRAAF, GOPAKUMAR, OOGURI, AND VAFA

with negative momentum, lowering the bottom level to
—N_ — n,. Typical examples of these “wrong” configu-
rations are illustrated in Fig. 3(a).

In the Yang-Mills theory these configurations corre-
spond to states with a total of N', = N, + n_ — n, posi-
tive  momentum fermions and a total of
N" = N_ + n, — n_ negative-momentum fermions; see
Fig. 3(b). These are perfectly fine states, but they have
already been counted in Zy: y: , under the assumption that
all positive momentum holes went to the top level and vice
versa. Therefore, these states have to be subtracted from
the product ¢y, Py .

Of course, Fig. 3(b) only depicts the corresponding
ground state, that now has four Fermi surfaces. We note
that the topology of the Fermi sea has changed. A ““bub-
ble” of holes is made with the Fermi sea. In general, each
of these four Fermi surfaces will have fluctuations, as is
illustrated in Fig. 4(a). In the large N limit, and also when
n. > 1, we can describe these fluctuations as essentially
independent.

It is easy to derive in this way an exact recursion relation
for the partition function Zy in terms of the mistakes made
in the chiral approximation. As we have explained above,
in that approximation we overcount a total number of n =
n; + n_ holes that have been created on the ‘“wrong
side.” Since a hole denotes the absence of a particle, their
partition function is given by

Zl}}lOleS(e’ gY) = Zn(_a’ _gS)'

(We subsequently do not keep track of the § dependence,

(a) (b)

FIG. 3. The chiral product l/’mwm overcounts states. As illus-
trated in (a), it contains configurations where n_ negative-
momentum holes are brought to the top Fermi level and n,
positive momentum holes are brought to the bottom level. These
states, that look like (b) in the Yang-Mills theory, have already
been counted and therefore have to be subtracted from the chiral
product.
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(a) (b)

FIG. 4. The fundamental recursion relation: (a) The configu-
rations that we have overcounted create a bubble of holes in the
middle of the Fermi sea. (b) These states can be considered as a
tensor product of two copies of the system, where the first factor
consists of the usual particles, but the second factor is made out
of holes.

which is identical for holes and particles by parity sym-
metry § — —6, p — —p.) On top of these holes we have
the usual particle states. The total number of these particles
is now N + n and they are counted by the usual partition
function Zy,,(g,). Since the fermions are free, the total
partition function of particles and holes is simply the tensor
product. This is illustrated in Fig. 4(b). The partition
function of these states comes with an extra minus sign,
because the states are overcounted in the large N chiral
limit and therefore have to be subtracted. We thus derive
the fundamental relation

N
ZN(gs) = Z l/lk(gs)JN—k(gs) - ZZN+n(gs)Zn(_gs)-
k=0

n>0

3.1)

Now as it stands, this formula really cannot be inter-
preted rigorously. Even though the left-hand side makes
perfect sense for finite NV, the chiral wave functions ¢ that
appear on the right-hand side are only defined as an
asymptotic expansion in 1/N. Therefore, the correction
terms also must be considered as formal objects. This is
clear, since we flipped the sign of g, = g%,,. This makes
the theory ill-defined.® We therefore have to give another,
physically sensible interpretation of this result.

We will first sketch a rough argument and will then try to
make more precise sense of this in the next section using
formal generating functions. First of all, using CPT invari-
ance, we can interpret the contributions of the holes as the
partition function of a gauge theory of negative rank
U(—n) or equivalently as a supergroup of pure fermionic
rank O|n. That is, we can write

This instability reminds one of Dyson’s argument [42] about

the nonanalyticity of the QED perturbative expansion: sending

e? — —e? makes charged configurations unstable.
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Z,(—85) = Z_,(gy).

So the relation(3.1) can be written as

N
ZN(gx) = Z wk(gs)aN—k(gs) - ZZN-Fn(gx)Z—n(gx)'
k=0

n>0

3.2)

Now we want to argue that, using a suitable analytic
continuation, we can replace the sum over n > (0 with a
sum over n < 0. In the next section will give an argument
using formal generating functions. This last step n — —n
will bring the relation to its final form

N
ZN(gs) = Z 'ﬁk(gs)JN—k(gs) - ZZN—n(gs)Zn(gs)‘
k=0

n>0

(3.3)

B. Generating functions

We will now give a more mathematical derivation of
these results using generating functions.

1. Warm-up: a case with linear dispersion relation

Let us first consider a more elementary example to
explain the main idea. Consider N free fermions with a
linear dispersion relation £ = p. Here the momenta p are
half-integer and (to make the system stable) are taken to be
positive, so p € Z~q + % This system is related to the
special case m = 0 of the Calabi-Yau geometry (2.1). It is
also exactly the spectrum of gauged matrix quantum me-
chanics with a quadratic potential [43], i.e., the N X N
matrix harmonic oscillator with action

s—1 / At Tr(D, D) — B?),

The partition function is now defined as

ZN(t) = Z e_tE.
states
It is most simply written down in a grand canonical en-
semble with chemical potential u. With x = ¢™# and g =
e” !, it is given by the generating function

Z(x;t) = ZxNZN(t) = l_[(l + xqP).

N=0 p>0

In this case we have, of course, also a simple exact ex-
pression for Zy [43]

N
Zy(@) =gV AT —gn
n=1

When considered as a large N string theory, there are only
perturbative terms at genus zero and one. So, ignoring the
nonperturbative effects, the perturbative answer in the
large N limit is given by (we suppress the dependence on
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t in the following)
o= 2= P =g
n=1

The notion of such a perturbative part only makes sense for
large N. For example, to take an extreme case, Z; = 1,
whereas according to the above definition ¢, would be
given by the very nontrivial expression [],~o(1 — ¢")~ L.

It is easy to see that the nonperturbative corrections are
of order e N = ¢". One simply writes

Zy = ¢y - l_[(l — g,
n=1

These terms can indeed not be ignored for small N.

We will now derive a recursion relation for the exact
partition function Z,. Consider the Jacobi triple product
identity (or boson-fermion correspondence)

[T0 = a0 +xg") (1 +x71g7) = > gV,

n>0 p>0 NEZ

With the above notation it can be written as

Z(x) - Z(x™) = Zle,//N.

xEZ

(3.4)

Let us also introduce a notation for the right-hand side, the
generating function of the perturbative partition functions

P(x) = Zle/fN-

NEZ

Note that here N is allowed to run also over negative
integers, but _y = . We repeat the caveat that there
is a physical significance to ¢y only for large N.

With this notation we can now write the fundamental
relation(3.4) even simpler as

Z(x) - Z(x7") = ().

Here Z is the exact expression, ¢ the perturbative approxi-
mation; the relation is exact, though. When expanded back
into components of fixed rank, it gives the recursion rela-
tion

(3.5)

ZZN+ka = ¥y

k=0

Since Z, = 1, we can write this more suggestively as

Zy =ty = > ZyeiZi
=0

(3.6)

where the second term on the right-hand side denotes the
nonperturbative effects. Since ¢, ~ e~/ 2 the kth correc-
tion term in (3.6) is exponentially suppressed with respect
to iy by a factor e "Nk,

Now, if N is large, the leading approximation is Zy =
¥n. So, we can recursively expand the terms on the right-
hand side, at least if & is also large, that is, of the order of N.

066002-7



DIJKGRAAF, GOPAKUMAR, OOGURI, AND VAFA

Then we have

N =y~ Z¢N+k¢k + 0.
>0
Only the terms with k >> 1 have a well-defined large N
expansion and can therefore be sensibly interpreted. This
expansion of the recursion relation (3.6) continues. At the
next order we have

Zy=yy— Z¢N+k¢k + Z YN+, +k, Uk, Ui, + OW).

=0 k=0

2. Two-dimensional Yang-Mills theory

Now we consider the relevant case of two-dimensional
Yang-Mills theory. Here the dispersion relation is quadratic
E = p?* instead of linear, as in the previous case. The
quadratic corrections give rise to the nontrivial string
expansion.

Here too, it is most practical to consider the fermion
system in a grand canonical ensemble with a chemical
potential p for the number of fermions N. Then we can
write a compact generating function for the partition func-
tions for all U(N) theories at once. With the notation

i6

x=e M, y = e, g=e%,

we then have an infinite product representation

Z()C, 0; gs) = XXNZN(H, gs) = l—[ (1 + xypqu/z)_
N=0 p=—00

3.7

Because p runs over both positive and negative values, Z is
an even function of 6.

In a similar way, there is a simple expression for the
chiral partition function ¢y that describes the fluctuation
of the top Fermi surface at p = N, > 1,

¢N+(0’ gs) = f dx x7N+l_[(1 + _xypqu/z)

27ix 250

X (1 + xilyqufpz/z).

One can see easily from this product formula that the N
dependence of ¢, is given by

Uy, 0, g,) = y(1/2)N2+q(1/6)N1—(1/24)N+

: ‘p()(a - igsN+: gs)-

The prefactor gives the leading energy and charge of the
ground state. The second factor is the perturbative expan-
sion and is only a function of g, and of t = g,N + i6. So
we can verify using these explicit formulas that, as
claimed,

¢N+ (0, gs) = ‘7[’([’ gs)

with
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d
plt, g5) = f "]+ xergr )
27ix
p>0
X (1 +x le irg=r/2), (3.8)
For the bottom Fermi surface at p = —N_ we have simi-
larly (with 7 = g,N_ — i6)
w(i’ gs) = EN, (0, gY)
dx S
= 1 + xe~tPgr’/?
jg277ix l:!)( xe q" ")
P
X (14 xleirg=r'/2), (3.9)

Again, these expressions only make sense at large N, as an
expansion in 1/N.

We will now repeat some of the previous steps that we
performed in the linear case. Consider the formal product

+o0
260,80 Z( =0, —g) = [] (1 +xyPq”/?)
p=—00
X (14 x" 'y rg=r/?)

Here the second factor can be considered as a partition
function for holes. By CPT it is obtained by reversing the
signs of all potentials

(u, 0, 8) = (—p, =6, —gy).

This hole factor is clearly problematic when viewed as a
power series in ¢, since the holes can have arbitrary nega-
tive energy — % p?. It diverges badly. At this point we can
therefore only consider it as a formal expansion in powers
of g,.

Now consider the Laurent expansion in x of the above
product. This is best done by splitting the product over all p
in (3.10) in a product over p > 0 and a product over p < 0.
Then, comparing to the expression (3.8) for the chiral wave
function, we see that (suppressing the § dependence in our
notation)

Z(-X; gs)Z(-xil; _gv) = Z -XN++N7 l//NJr(gx)aN, (gs)

N,.N_=0

(3.11)

Now we can formally expand the contribution of the holes
as

Z(xl =g = D aTVZy(—gy).
N=0

This gives an identity of the form

N
D Znin(8)Za(—85) = D g )dbn-i(gy).
k=0

n=0
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Using Z, = 1 we thus recover relation (3.5)

N
ZN(gx) = Z 'ﬁk(gs)EN—k(gs) - ZZN+n(gs)Zn(_gx)-
k=0

n=1

(3.12)

Now there is a way to make more sense of the holes
factor Z(x; —6, —g,). Formally, using the identity

A+aH=a'(1+a),
we can write

[T +x"tyrgr?)

p=—0o

Z(x7Y -0, —g,) =

= x'q° ] (1 +ay7rg”7?)

p=—00
~Z(x;0, g,).

Here the q, b, ¢ are some constants, strictly speaking all
infinite. But we could assume that they are given by, for
example, zeta-function regularization. Since the sum runs
over both positive and negative p these regulated sums are
actually zero.

In fact, we will turn things around and define Z(—g;)
through this procedure. Note that Eq. (3.11) now becomes

Z xN++N7 ¢N+ (gs)wN, (gs)

N, N-=0

Z(x;0, 8, =
or, when written in components, reproduces (3.3):

N
ZN(gs) = Z lwbk(gs)JN*k(gs) - ZZN*n(gs)Zn(gs)'
k=0

n>0

(3.13)

As in the previous example, we can only trust this formula
in the large N limit and for the terms with £ >> 1 finite.

We can iteratively solve (3.13) for Zy in a power series
expansion in iy _; as

ZN = Z(_])n—lcn_] Z
n=1

NL+-+NT+NL+- -+ NL=N

Xy« I/INKJNL P, (3.14)
where C,, in the coefficient is the Catalan number,
(2n)!
=—" 3.15
" nln+ 1) G.15)

This combinatorial factor arises since the generating func-
tion C(x) =Y, C,_x" for the Catalan number obeys

the quadratic equation,
C(x) = x + C(x)?, (3.16)

which has the same structure as (3.13) with the identifica-
tion x — —yf and C — —Z. The Calatan number C,_, is
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known to be equal to the number of binary bracketings of n
letters. Or, put differently, it counts the number of ways to
create a planar binary tree with n branches. An interpreta-
tion of this combinatorial coefficient in the context of the
gravity dual will be discussed in Sec. V.

Note that the expansion (3.14) is reliable only in the
regime where the baby universe number k is much larger
than the corresponding parent K and much bigger than one,
K > k> 1. This gives a hierarchical structure to the
various terms in (3.14), which will be important for a
gravity interpretation of the coefficients C,_.

C. A convenient rewriting of the result

In this section we recast the above result in a convenient
form which will be more immediately applicable to our
holographic gravitational interpretation.

Let us recall that the number of BPS degeneracies of D4-
, D2-, and DO-branes Q(N,4, N,, Ny) can be computed by
Fourier transform of the Yang-Mills answer. In particular
(with Ny = N)

QW82 N = [ d(@d(g)

47T2N0 27TN20
X exp(——i—
8s 8s

)ZN(gs, 6). (.17

Now, let us define

27TzN0 + N2770>

le,Nz,NO(er gs) = exp(
8s 8s

1
X ¢<§Ng5 + lH, gs>,
which we sometimes also denote as

U NN, (0, 85) = (N, Na, Ny, 6, g|ih).

This is the wave function of the topological string in the
corresponding flux sector. For brevity of notation, some-
times we use the following notation,

|N, Ny, No) = (N Ny, Nolip).
In other words in this notation we would have
U, N, (0, 85) = (0, g5IN, N, Ny),

which we hope does not cause confusion.
Then keeping the leading all order in the 1/N expansion
we can write (3.17) as

Q(N, N, Ny) = ]d(;) d<g£>|¢N,NZ,NO(0r g%

N s

In other words, to all orders in the 1/N expansion
Q(N, Ny, Ny) = (N, N, NoIN, N5, N).

Note that the extra sum over k in shifting N up and down
between ¢ and ¢ is already incorporated by the integral
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over 6/g, (which is best seen by analytic continuation),
and does not need to be included on top of this.

Now we come to using the formula (3.13) to incorporate
effects which are of order exp(—tN) and smaller.
However the corrections involve more than one copy of
i and . This suggests that we try to interpret this as multi-
Hilbert space corrections.

For simplicity let us start with the first application of the
recursion formula to (3.13). The recursion relation leads at
this order to (where we suppress the extra shifting of N
between ¢ and i as that would be automatically taken care
of by the inverse Fourier transform discussed above)

- |¢N—k(0r gs)|2|¢k(9, gs)lz‘

In order to give this expression a Hilbert space interpreta-
tion we introduce additional variables which are gotten rid
of by additional delta function integrals:

e o: = =3 [ ) ) )

X 5(& —5) a(gl gs)le (6,8,

X |y (6, 801> exp(+N,0/g, + No/gy).

Next we write each of the delta functions (taking the
periodicities of the chemical potential into account) as
5(X) =Y ,,e™X, which leads to rewriting the above as

Q(N, Ny, No)y = — fd(ﬁ 8 9. gy

k>0,m,p
|¢N—k,N2—m,N0—p(0’ gs)|2
X |¢k,m,p(9l’ g§)|2

This result can be summarized in the notation we intro-
duced before as

QN Ny, No)y == > (N—kN,
k>0,m,p

— & N,

—m, Ny — p|N

—m, Ny — P>
-k, m, plk, m, p).

The generalization to arbitrary orders in the recursive
relation is also clear. We define a state in the sum of
arbitrary number of copies of the Hilbert space. We define

=Y @ INL N, Ny,

Ni,NLNi i=1

where each term in the sum is restricted by the condition

"Note that this also explains why the four-dimensional black
hole interpretation of topological strings is not a good starting
point for degeneracies of five-dimensional black holes where one
may take a small number of magnetic branes N ~ 1, because
these corrections are of order 1.
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that

SNi=N, SNj=N,,  DNj=N,
i 7 i
and where all N} > 0. Our result is then summarized as

= ED"C W) (318)

n

Q(N, N,, Ny)

We will give an interpretation of this result in Sec. V, after
we discuss some aspects of the holographically dual grav-
ity solutions.

IV. GRAVITY INTERPRETATION

In this section we will consider a type IIB compactifi-
cation on a Calabi-Yau manifold M. Mirror symmetry will
relate this to an equivalent description within type IIA,
which we can use to compare with the gauge theory result
in the last section.

Let us start by describing the standard single center
black hole solution at the string tree level. Consider a static
spherically symmetric metric,

s
ds? = — g + (r) S (dx) + dsiy,
S( ) a=123

where r = |x|. The metric dsZy of the Calabi-Yau three-
fold also can depend on r, so we have a “warped compac-
tification.” Let X/ (I =0,1,..., h>') be the projective
coordinates of the complex structure moduli space of the
Calabi-Yau manifold normalized as

4.1)

§=- g Imr, X' X = g Im[X'3,F,] (4.2)
where Fy(X) is the genus O topological string partition
function and 7;; = 9;9;F, is the period matrix of the
Calabi-Yau three-fold. Assuming that X are also functions
of r, the classical BPS black hole solution with electric
charge Q; and magnetic charge P/ is given by

P
— =+ cl,

ReX! =
|2x]

Re(‘)IFO + d]; (43)

| |
where ¢/, d; are integration constants that correspond to
values of the Calabi-Yau moduli at spatial infinity. This
shows how the Calabi-Yau metric dsZy depends on r =
|x|. (The Kihler moduli are kept constant.) The horizon is

at x — 0, where X' approaches the attractor point [44]:
P! 0
x|’ x|’

independently of their values at the infinity. The semiclas-
sical entropy for this solution is given by

Re X/ ~ Red, Fy ~ 4.4)

SO P, Q) = Im[xla Fol

= FO(X) + Fo(X) + wZQ, ImX!, (4.5)
1
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where X!’s are fixed by (4.4). This is also related to the
asymptotic behavior of S(x),

_Sgu(P,0)
x>’

S(x) x—0,
and for this reason we may regard S(x) as a “position
dependent entropy.” The near-horizon geometry is AdS, X
§2 X M, where the complex structure moduli of the Calabi-
Yau three-fold M are fixed by the attractor Egs. (4.4).
String loop effects modify the low energy effective
action, and the black hole geometry is also changed ac-
cordingly. In [7], it was shown how to systematically take
these perturbative effects into account. Remarkably the
entropy formula to all order in the perturbative expansion
can be concisely expressed in terms of the topological
string partition function F,(X),

Ftop(X) = Z Fg(X)) (46)
g=0

where F, is the genus g partition function. In [8] it was
shown that the string loop corrected entropy Sgy(P, Q) of
[7] can be expressed simply as

Seu(P, Q) = FopX) + Fiop(X) + S 0,0, (47)
T
where the Calabi-Yau moduli are fixed to be
X! =P+ L, (4.8)
T

and ®”’s are nonlinearly related to the charges (P, Q) by

Ftop(X) + Ftop(y)]' (49)

d

adp! [
This generalizes the classical entropy formula (4.5), and a
quantum version of the attractor equation is given by (4.8)
and (4.9). One can regard (4.7) as the Legendre transfor-
mation between the entropy, which depends on P and Q,
and the topological string partition function Fi,, + Ftop,
which naturally is a function of P and ®. Motivated by this
observation, and the earlier work [7], it was conjectured
in[8] that the number Q)(P, Q) of microscopic BPS states of
the black hole is given by the Laplace transformation of the
topological string partition function as

Zgu = QP Q)e™ 2" = |¢, (X2,
q

o=

(4.10)

where

lptop(X) = eXthop(X)’ (411)

and X’s are given by (4.8).

The main purpose of this paper is to understand non-
perturbative corrections to this formula. In this section, we
will discuss sources of such corrections from the gravity
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point of view, and compare them with the results we found
in the gauge theory point of view in the last section.

A. Multicenter solutions

The crucial observation is that the spherically symmetric
geometry given by (4.1), (4.2), and (4.3) is not the only
solution for a given set of charges (P, Q) that preserves half
of the supersymmetry. In fact there are multicenter solu-
tions satisfying the same asymptotic behavior at spatial
infinity [22]. Each of these solutions is characterized by a
decomposition of the charges (P, Q) as

Pl:zpz(r Q1=ZQU’
i=1 i=1

where 7 is the number of disjoint horizons of the solution
and (P;, Q;) are charges associated to each horizon (i =
1,...,n).

Before describing general multicenter solutions, it
would be instructive to discuss the simplest case when
there is only one gauge field and no scalar field. (This
corresponds to the type IIB compactification on a rigid
Calabi-Yau manifold, #>! = 0.) Furthermore, suppose that
the black hole carries no magnetic charge, i.e. P = 0.
Multicenter solutions in this case have been known for a
long time, and they are called conformastatic solutions
[45]. When there are several extremal black holes whose
charges are of equal sign, their gravitational attraction is
balanced by the Coulomb repulsion, and they can be placed
at arbitrary positions in three spatial dimensions and still
remain static. Such a solution can be constructed as fol-
lows. Consider a scalar function S(x) of the form

S = 77<C " ,:le |x gix,-|>2’

whose square-root solves the Laplace equation A,/S(x) =
0 in three dimensions. We choose Q; to be all positive and
the constant c is also positive, so that S(x) never vanishes.
The metric is then given by

ds? = — " _ap + 5%
S(x) T

(4.12)

(4.13)

Z (dx?)? + dsiy.
a=T23

(4.14)

The function /S(x) also serves as the scalar potential for
the gauge field. This describes a collection of extremal
black holes with charge Q; at x;. In fact, as x approaches x;,
S(x) behaves as

2
TQ;

S(x) -~ |x _ x-|2’

where the geometry approaches that of AdS, X S? with
charge Q;. Toward spatial infinity, we have
x| — oo,

S(x)~77<c+|xQ|+"'>2,
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where

0= Z 0,
i=1

and therefore the solution has the same asymptotic behav-
ior as the single center solution with the charge Q. These
multicenter solutions also preserve one half of the
supersymmetry.

It was pointed out in [46] that, in the limit of ¢ — O,
Wick rotation of the solution given by (4.13) and (4.14)
describes quantum tunneling of a single universe into
several disjoint universes. After the Wick rotation,

2 S(x) a2 2
dsy, = SGe )d + = %ﬁ(dx ) +dsey,  (4.15)
it is convenient to think of S(x) as the Euclidean time. For
S — 0, the geometry approaches to AdS, X $? with charge
Q. On the other hand, as S — oo, the geometry fragmented
into pieces located at x; (i = 1,..., n), each of which has
the form of AdS, X S? with charges Q;. The Euclidean
action I of this solution was evaluated in [46] as

I=mY 0,0, (4.16)
i<
It was noted in there that this can be written as
1= —XS§H(0) + -+ + SPh(Q,) — S§H(0),  (4.17)

where SEH is the semiclassical entropy given by (4.5). This
suggests [24,46] that e~/ is an instanton amplitude for a
tunneling of a single universe with charge Q into n uni-
verses with charges Qy, ..., O,, so that its square gives the
transition probability expected from the detailed balance
argument. We will find that the comparison with the gauge
theory computation in the previous section supports this
interpretation.

This construction can be generalized to the case with
h>! = 1 as follows. There are (h>' + 1) gauge fields and
h*>! scalar fields describing the complex structure of the
Calabi-Yau manifold. First consider the case when the
charge vectors (P;, Q;) are all parallel to each other. In
this case, we are in practice turning on only one linear
combination of the gauge fields. Since the attractor fixed
point depends only on ratios of charges, the complex
structure of the Calabi-Yau are kept constant. In this
case, the horizons can still be located at arbitrary points.

The situation is more subtle with nonparallel charges
[22,47]. In this case, Calabi-Yau moduli at each horizon
can be different, and it costs kinetic energy for the scalar
fields to interpolate between the different horizon values.
Moreover the electromagnetic interaction does not com-
pletely balance the gravitational attraction. The metric in
this case takes the form

PHYSICAL REVIEW D 73, 066002 (2006)

T (dr + i+ S S (dxi)? + dsy.

ds* =
() T 5133

(4.18)

As before, the function S(x) and the Calabi-Yau moduli are
combined into (A>! + 1) variables X’(x) normalized as in
(4.2). Defining Q,(x) and P/(x) by

n P] n
Pl(x) = L+ ¢, 0,(x) = Z Q” + d,
i=1 |)C - x[l
(4.19)
X' are determined by
ReX! = PI(x)  Red,Fy = 0;(x). (4.20)

Thus the Calabi-Yau metric dszy also depends on x. The
function S(x) is determined by

S(.X) = g Im[XIa_]F()]

The off-diagonal component in the metric is found by
solving

Q,dP!(x)), (4.21)

*dw = Z(P’(X)sz(X) -

where * is the Hodge star operator with respect to the flat
metric on R3. The integrability of (4.21) leads to a set of
constraints on the locations of the horizons:

Re(Q;c! — Pld)), i=1...,n
; |.X _ )C | Z Q 1 1
(4.22)
where
eij = > (QuP} — PIQy). (4.23)
7

It should be noted that, in addition to this constraint, we
need to require that the factor S(x) in the metric remains
nonzero. With (4.2), (4.19), and (4.20), requiring this for all
x € R3 implies an inequality on the charges (P, Q;;). We
will see that, in the example we studied in the last section,
this constraint agrees with what we found in the gauge
theory side.

As in the single charge case discussed at (4.15), the Wick
rotation —dt> — +d7? of(4.18) gives a metric which is
asymptotically flat at spatial infinity and fragments into
several AdS, throats for § — oo (see Fig. 5). Because of the
off-diagonal term w;dx'dt, the metric in general becomes
complex-valued after the Wick rotation. Since it becomes
real in the asymptotic regions, it is still appropriate to use it
as a saddle point and it can contribute to the functional
integral [48].
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R4
AdS,xS* U ...
U X
(£.0,) (R.0)
(a) (b)

®o) ... (7.0,

FIG. 5. The metric (4.18) is sketched in (a), it describes an
asymptotically flat space-time with multiple black holes with
charges (PL, Q) (i=1,..., 7). In the near-horizon limit (b) this
geometry gives a disjoint sum of n AdS, X S? geometries.

B. Baby universes interpretation

How should we interpret the existence of such multi-
center solutions? It is reasonable to expect that the
Euclidean functional integral contains a sum over these
solutions in the saddle point approximation. In the standard
AdS/CFT correspondence, the low energy limit on D-
branes is dual to the near-horizon limit in the gravity
side. For the multicenter metric, a natural near-horizon
limit gives n disjoint universes, each with the AdS, X §? X
M geometry, and the moduli of the Calabi-Yau three-fold
M at each universe are fixed by the attractor equations.
Thus, we are led to conjecture that the full partition func-
tion of the gravity theory contains a sum over disjoint
universes (baby universes); see Fig. 5.

Note that if we consider the projection of our geometry
to the S-line, and consider the Euclidean space which is the
pre-image of the Euclidean time S, we obtain the topology
of a branched tree, where S can be viewed as the “height”
of the tree, as shown in Fig. 6. The number of components
of the space for a given value of S denotes the number of
branches of the tree at a fixed height. As S — oo the
number of branches equals n, the number of black hole
centers, see Fig. 7.

(P.0)

S(x)

(R.Q) (7.0)

FIG. 6. As a function of Euclidean time, which can be identi-
fied with the local entropy S(x) of the metric (4.18), the geometry
describes the branching off of baby universes.

U AdS,xS>
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S(x)

FIG. 7. As S — oo, the number of branches increases to n, the
number of black hole centers.

In fact with a fixed asymptotic flux, we are forced to do
this summation since there are instantons which change the
number of baby universes [24,46] as we saw earlier. Since
each AdS, throat contributes to the partition function by a
factor of expSgyu(Q;, P;) (i = 1,..., n), the total partition
function should be of the form,

exp(Spu(Qy, Py) + -+ -

P=P|+—+Py
0=0)++ 0

+ Spu(Qn: Pp)).

The sum over charges may be restricted by the condition
that the gravity solution exists. The coefficient C,_; is the
Catalan number and reflects the distinct planar trees (where
on each node of the tree the parent universe splits off say to
the left) with n branches which lead to this baby universe
sum. This would be a valid description at least in the
regime where we have a hierarchical splitting of parent
universes to baby universes, i.e. when the charges of the
parent universe are much larger than those of the baby
universes as discussed at the end of Sec. III B.

We expect a holographic dual to the gravity theory to
capture this branching process, and we should be able to
interpret the different contributions in the gauge theory as
coming from the different geometries that can contribute to
the Euclidean functional integral. Moreover, since the
latter have finite action, this translates into gauge theory
configurations which are weighted by e~V with respect to
the vacuum configuration. In the next section, we will show
that the eV terms in the gauge theory discussed in the
previous section indeed correspond to baby universes and
have the right hierarchical branching structure of (4.24).
Interestingly, we will find that the gauge theory predicts an
additional sign factor of (—1)""! in (4.24).

Zpy = Z Co
n=1

(4.24)

V. COMPARISON BETWEEN GAUGE THEORY
AND GRAVITY THEORY

In the previous section we have argued that the D-brane
gauge theory is holographically dual not to a single black
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hole, but to an arbitrary ensemble of extremal black holes
with a given total flux. In other words, fixing the flux at
infinity allows more than a single black hole solution. This
was used to suggest that the gauge theory is holographi-
cally dual not to a single AdS, X S? but to an ensemble of
AdS, X §%’s. For each horizon the arguments of [8] apply
and

expS(P, Q) = (P, OIP, Q),

where

(@|P, 0) = e—“/2>Q'%p(P " %@) — Y o).

Using this we can rewrite the relation (4.24) as

Q(P, Q) = Z Coi Z ®<Pir QilPir Qi> (5.1)
n=1

P, Q; i=1

where > P, = P and Y Q; = Q and with the restriction
that the gravity solutions should exist. This prediction also
can be stated using the picture proposed in [12] for the
Hartle-Hawking wave function in the mini-superspace.
The case considered there involved type 1IB string theory
on nine-dimensional space being

X=S'XS82XM,

where M is a Calabi-Yau three fold, and the fluxes (P, Q)
go through S$? and some three cycles of Calabi-Yau. It was
argued that in this case #p o(®) is the Hartle-Hawking
wave function in the Hilbert space H , obtained by quan-
tization of H>(M) with respect to its symplectic structure.

We now extend this question as follows: Suppose we
consider n disconnected copies of X, labeled by X;, and let
the flux (P;, Q;) pierce through each. Then we ask which
state do we get in FH'$' by doing the path integral on
geometries whose boundary is n copies of X? From the
geometry (4.18), it is clear that now we get the resulting
state

n

|¢n> = ® |Pi’ Qt>

i=1

This is because the states are ground states of the theory
and are determined by the long-time evolution, which is
precisely the near-horizon geometry of each throat.
However we can ask a further refined question: Can this
ensemble of baby universes be dual to a single gauge
theory? If this were the case there should be ten-
dimensional solutions which connect up all the X; and
moreover bound by the constraint that > ;P; = P, > ,0; =
QO where the P, Q are fixed by the total flux of the brane
where the gauge theory lives. These are precisely the
solutions of [22] discussed above. So we would be in-
structed to write the Hartle-Hawking state as a sum over
all allowed fluxes consistent with the fixed total flux and
with the constraint that the gravity solutions exist. Let us
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now see if this expectation agrees with the results for the
case we have studied, namely, the case of the 7> embedded
in the Calabi-Yau. In this case we found (3.18)

ly) = > Q) INL, N5, Ny,

Ni,NLNj i=1

Q(N> NZ’ NO) = Z(_l)nilcnflgﬂnl'vbn);
n=1

where each term in the sum is restricted by the condition

that
Y Ni=N, DNy =N,
i i

and where all N > 0. This is exactly the same structure
anticipated in (5.1) from the holographically dual gravity
solutions, modulo the factor (—1)"~! in the inner product,
which would be interesting to explain from the gravity
side. The constraint that N} all have the same sign is clear
from the restriction that the gravity solution exists. Note
that, if the sign of N, changes, then there would be points in
R? where the “position-dependent magnetic charges”
P!(x), discussed in the last section, all vanish. This is
because if we go from a throat with a positive value of
N, to one with negative value, we will cross a point where
the D4-brane number is zero. Since there are no other
magnetic charges in this case, this leads to zero classical
entropy for S(x) for some x, and thus the gravity solution
would become singular.

ZN([) = N,
7

A. Loss of quantum coherence?

It is a natural question to ask if our multiuniverse Hartle-
Hawking state |i,,) leads to a loss of quantum coherence.
In a naive sense one may think that it does, in that we have
a sum over all n-state wave functions with the total flux
condition satisfied. However, as it stands the mixture with
the other universes is very simple and captured just by
some global flux conservation. In particular if we measure
the flux Py, Q. In our universe the wave function
Up,.0.,, 18 completely determined. This is consistent
with the proposal of Coleman [26] (see also [49-52])
that the creation of baby universes does not lead to a loss
of quantum coherence. More precisely it was argued that
once one measures the coupling constants in our universe
we will have a pure state. This is consistent with our
scenario where measuring the flux in our universe is suffi-
cient to lead to a pure state.

B. Lessons for holography

However, our finding raises a more interesting question
in the context of holography: It has been argued that the
existence of a unitary gauge theory which is holographi-
cally dual to a black hole must automatically lead to a
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resolution of information puzzle for black holes. Here, in
the context of our simple example, we are finding that the
gauge theory is not dual to a single black hole but to an
ensemble of them. In such a scenario the unitarity of the
gauge theory evolution operator may not have a direct
implication for the unitarity of the physics in a given black
hole sector.

There is a precursor for such a sum over geometries
being reflected in a gauge theory. This is the case of the
finite temperature Yang-Mills theory, where one expects
contributions from both the thermal AdS geometry as well
as the AdS Schwarzschild geometry. In that case there is,
moreover, a phase transition in the semiclassical limit as
one varies parameters. This Hawking-Page phase transition
of geometries exchanging dominance translates into a large
N phase transition in the gauge theory [53]. (See also [54—
57] for recent studies of this system.)

In the case of the two-dimensional Yang-Mills theory on
the torus, while we have seen multiple geometries contrib-
uting, we do not have a phase transition as a function of the
couplings (or chemical potentials on the gravity side). This
is consistent with the expectation on the gravity side as
well where the single black hole is always the entropically
favored geometry. It would be interesting to consider the
issue of scattering off of these extremal black holes and see
how the unitarity of the § matrix for the gauge theory is
reflected on the gravity side for configurations which can
fluctuate to the multicentered black holes.
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There are other gravity backgrounds whose holographic
dual descriptions involve free fermion Fock spaces; de-
scription of black holes in terms of fundamental strings
[58—61], Mathur’s picture of black hole quantum states
[62], BPS states for type IIB string on AdSs X §° [63,64],
two-dimensional string theory [65-67], etc. It may be
possible to extend the description of baby universes we
developed in this paper to these and other cases and learn
more about nonperturbative phenomena in quantum grav-
ity and string theory.
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