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Fuzzy spacetime with SU�3� isometry in the IIB matrix model
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A group of fuzzy spacetime with SU�3� isometry is studied at the two-loop level in a IIB matrix model.
It consists of spacetime from four to six dimensions, namely, from CP2 to SU�3�=U�1� � U�1�. The
effective action scales in a universal manner in the large N limit as N and N4=3 on four- and six-
dimensional manifolds, respectively. The four-dimensional spacetime CP2 possesses the smallest effec-
tive action in this class.
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I. INTRODUCTION

The investigations of the properties of the spacetime at
the microscopic level have become an important physical
subject since we now have a clear picture where the
Universe comes from and is going. At the current stage,
the space is found to be almost flat and accelerating its
expansion rate. It is therefore approaching a four-
dimensional de Sitter spacetime. Furthermore, the scale
independent fluctuation of the cosmic microwave back-
ground at a long distance scale suggests that the Universe
also started as a de Sitter spacetime. In order to explain
why the Universe evolves in such a peculiar way, we need
to obtain a deeper understanding of the spacetime. It is
expected that string theory plays a crucial role in under-
standing the spacetime at the microscopic level. In order to
address a time-dependent issue, it is likely that we need a
nonperturbative formulation of string theory such as the
IIB matrix model [1,2].

In this model, Euclidean spacetime is expected to
emerge out of the distributions of the eigenvalues of the
10 matrices. We can certainly imagine that the eigenvalues
are homogeneously distributed on S4 in 10 dimensions.
Since a de Sitter space becomes a S4 after the Euclidean
continuation, we may interpret Euclidean spacetime a la
Hartle and Hawking [3]. If we divide a S4 into the two
halves, we obtain a S3 at the boundary. With the identi-
fication of the S3 as a space, the effective action for S4 in a
IIB matrix model determines the relative probability of the
emergence of a S3 out of nothing. We find it remarkable
that the matrix models can accommodate a realistic space-
time in a nonperturbative way. In this sense our studies of
homogeneous spacetime in a IIB matrix model may shed
light on the origin of the Universe.

A fuzzy homogeneous spacetimeG=H can be embedded
in matrix models by choosing background matrices as the
generators of a group G [4]. G has to be a subgroup of
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SO�10� and H has to be a closed subgroup of G. We obtain
noncommutative (NC) gauge theory on the fuzzy space-
time in this construction [5] and can calculate an effective
action on this background and investigate the large N
scaling behavior of it.

In this paper, we choose G to be SU�3� and investigate
the class of the manifolds with SU�3� isometry in the IIB
matrix model. They include CP2 � SU�3�=U�2� and
SU�3�=U�1� �U�1�. Each manifold is labeled by an irre-
ducible representation of SU�3�. Note that CP2 is a four-
dimensional manifold, while SU�3�=U�1� �U�1� is six
dimensional. Therefore, we can investigate the large N
scaling behavior of the effective action for the both four-
and six-dimensional manifolds.

In a series of papers [6], we investigated the manifolds
with SU�2� � SU�2� isometry and found certain instabil-
ities associated with fuzzy S2 � S2. Each fuzzy S2 can be
parameterized by l, the spin of a representation, and f, a
scale factor. We recall that the radius of S2 is lf while the
NC length scale is

�����
lf
p

. Thus both the spin and scale factor
specify the overall size of each S2. In this construction
S2 � S2 can be characterized by the ratios of the spins and
scale factors between the two S2’s. The instability has been
found under the variation of both ratios. However, it does
not take place if we are constrained to have the identical
scale factor for both S2’s. We thus expect that a more
symmetric manifold will be stable.

In this respect CP2 backgrounds are interesting. CP2 can
be embedded in Hermitian matrices as

Ai � fTi; (1.1)

where Ti are the generators of SU�3� in a particular class of
representations. As CP2 can have only one scale factor, it
may not suffer from such an instability. The irreducible
representations of SU�3� from which CP2 can be con-
structed as SU�3�=U�2� and are relatively well studied
[7–9]. Therefore, it is interesting to investigate the large
N scaling behavior of the effective action of CP2 and other
manifolds with SU�3� isometry and to see which manifold
is most stable among them. We emphasize that investigat-
-1 © 2006 The American Physical Society
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ing the large N limit is physically required. Since the IIB
matrix model possesses SO�10� symmetry, the symmetry
breaking down to SU�3� can take place only in the large N
limit. Because superselection rules can arise in such a
limit, we need not average over degenerate vacua with
respect to their different orientations in R10.

The organization of this paper is as follows: In Sec. II,
we construct a IIB matrix model on fuzzy CP2. We find a
universal expression for the two-loop effective action on a
homogeneous space. In Sec. III, we derive the effective
actions on the manifolds with SU�3� isometry and inves-
tigate the large N scaling behavior of them. We find that
they scale in a universal fashion which depends only on the
dimensionality of the manifold. We argue that there is
indeed a universality in the large N scaling of the effective
action on G=H. We conclude in Sec. IV with discussions.
In Appendix A, we construct the generators and eigenma-
trices of SU�3�. In Appendix B, we derive the two-loop
effective action on the manifolds constructed from SU�3�
algebra. In Appendix C, we numerically evaluate the two-
loop effective action.
II. IIB MATRIX MODEL ON FUZZY CP2

A. Group theoretic construction

Let us recall a construction of fuzzy homogeneous
spacetime G=H and a gauge field on them [4]. We pick a
state j0i in a definite representation G which is invariant
under H. The set of all states which can be reached by
multiplying elements ofG to j0i is called the orbit of j0i. A
fuzzy homogeneous spacetime G=H is constructed as the
orbit of j0i. It is represented by the irreducible representa-
tion that is descended from j0i. The basic degrees of free-
dom in NC gauge theory are bilocal fields. We construct
the NC gauge field as the bilocal field by forming the tensor
product of the relevant irreducible representation and its
complex conjugate.

We take a Lie group G to be SU�3� in the present
investigation. An irreducible representation of SU�3� is
labeled by a set of two integers �p; q�. An invariant sub-
group H depends on the irreducible representation. We
have U�2� as the invariant subgroup for a �p; 0� represen-
tation. It gives rise to a four-dimensional fuzzy CP2 �
SU�3�=U�2�. On the other hand H is U�1� �U�1� for a
generic �p; q� representation. In this case we obtain a fuzzy
flag manifold SU�3�=U�1� �U�1�. It is a six-dimensional
NC spacetime which locally looks like CP2 � S2. The
representation �p; p� may give the most symmetric six-
dimensional manifold.

In the large N limit, the extension of the manifold
becomes infinite with respect to the NC scale. In such a
situation, we expect that the effective action scales in a
definite way. As we find such a scaling exhibits a universal-
ity which depends only on the dimensionality of the mani-
fold, a group of the representations represents a universal
066001
class. We are thus interested in identifying such a universal
manifold in the large N limit.

We introduce a fuzzy homogeneous spacetime as a
background of the IIB matrix model and calculate the
effective action in a background field method. For this
purpose, we expand the matrices around the background
with a scale factor f:

A� � f�p� � a��; (2.1)

where p� is the background and a� represents the NC
gauge field. The background is taken as

p� �
�

1n�n � T
�p;q�
� � � 1; . . . ; 8

0 � � 9; 10;
(2.2)

where T�p;q�� are the SU�3� generators of a �p; q� represen-
tation. Here we have taken a simple reducible representa-
tion. We obtain U�n� gauge theory on a fuzzy
homogeneous spacetime in this way. This background
can be realized by the matrices whose dimension is

N � n � dim�p; q� � n � 1
2�p� 1��q� 1��p� q� 2�:

(2.3)

One could consider a more general background such asX
i

� �1ni�ni � T
�pi;qi�
� �: (2.4)

However, we consider a simple case (2.2) only in the
present paper.

The gauge field is expanded by harmonic functions on
the �p; q� background

a� �
X
A

a�A�� Y�A�; (2.5)

where the harmonic function matrices Y�A� are the eigen-
functions of 	T3; 
, 	T8; 
, and 	T�; 	T�; 

. The quantum
numbers �A� are determined by decomposing the gauge
field into the irreducible representations. An explicit con-
struction procedure of them is explained in Appendix A.
We obtain the propagators and vertices by using the ex-
pansion (2.5). By a perturbative calculation, we obtain the
effective action � � ��p; q; �2; n�. Here �2 is a natural
expansion parameter which is proportional to 1=f4. It is
a ’t Hooft coupling constant which should be kept fixed in
the large N limit. We can determine the parameters
fp; q; �; ng by requiring that the effective action is sta-
tionary with respect to the change of them �� � 0. Such
a set constitutes a solution of the IIB matrix model.
Dynamical generation of fuzzy homogeneous spacetime
can be investigated in this way. We can compare the
extremal values of the effective action for these (stable)
solutions to find the most favored one.

In this paper we carry out the loop expansion up to the
two-loop level. The tree-level action does not admit a
nontrivial solution. Such a solution appears when the
-2
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two-loop quantum correction is included in the effective
action. The situation is the same with the backgrounds
based on SU�2� algebras [6] and, as we discuss later, a
common aspect for backgrounds based on Lie algebras
G � SO�10�.

In what follows, we explain the details of our evaluation
of the effective action.

1. Universal properties of the two-loop effective action

We can draw some common features of the effective
action in homogeneous spacetime from a series of our
studies. Here we assume the expansion (2.1) and p denotes
a set of generators of a Lie algebraG � SO�10� of the form
(2.2). We also assume that one can find a set of harmonic
functions which are eigenfunctions of the adjoint operators
P � 	p; 
. In the large N limit, the leading terms of the
effective action of the IIB matrix model up to the two-loop
level can be summarized as the following universal ex-
pression1:

� �
f4

4
CGC2�G;R�N � n2O

�
tr

1

P4

�
� 2n3 CG

f4

�
1

P2
1P

2
2P

2
3

�
;

(2.6)

where R denotes an irreducible representation of a Lie
algebra and

CG��� � f���f���; C2�G;R�N � trp�p
�: (2.7)

f��� is the structure constant of the Lie algebra. The first,
second, and third terms in (2.6) are the tree, one-loop, and
two-loop contributions, respectively.

The two-loop contributions consist of the planer and
nonplanar contributions. In NC theory, the nonplanar con-
tributions are suppressed due to the NC phase. We argue
that the upper cutoff becomes

��
l
p

instead of l in the non-
planar sector since the NC scale is

��
l
p

. As the two-loop
contributions are quadratically divergent in the large N
limit for a four-dimensional background, we argue that
the nonplanar contributions are suppressed by

����
N
p

in that
case. The analogous suppressions should take place in
higher dimensions. The two-loop nonplanar contributions
will be suppressed by N in comparison to the planar
contributions for six-dimensional backgrounds. We thus
argue that the two-loop contributions are always positive
since the nonplanar contributions can be neglected in the
large N limit.

The two-loop level effective action can be bounded as

� � �1
 loop� � 2CG

��������������������������������������������������
C2�G;R�Nn

3

2

�
1

P2
1P

2
2P

2
3

�s
: (2.8)
1G � SU�2� is the exception since the two-loop amplitude is
finite in the large N limit. We must use the exact propagators for
gauge bosons and fermions to evaluate the two-loop contribu-
tions in such a case.
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after we minimize it with respect to f. Without the two-
loop contributions, we can obtain only trivial solutions as
f � 0 is required to minimize the action. Therefore higher
loop, at least two-loop, corrections are necessary to obtain
a fuzzy homogeneous spacetime in a IIB matrix model.
III. THE EFFECTIVE ACTION ON FUZZY
SPACETIME WITH SU�3� ISOMETRY

In this section, we evaluate the effective action on the
fuzzy manifolds with SU�3� isometry. We set n � 1 for
simplicity since we can recover easily the n dependence as
(2.6).

The tree level effective action of a �p; q� representation
is

�tree � 

1

4
tr	p�; p�


2

�
3f4

4
N

1

3
	p�p� 3� � q�q� 3� � pq
: (3.1)

When the background is CP2 [�p; 0� representation], the
leading term of (3.1) in the large N limit becomes

�tree ’
f4

2
N2; N ’

p2

2
: (3.2)

On a 6d manifold [�p; p� representation], it becomes

�tree ’
3f4

4
N5=3; N ’ p3: (3.3)

The leading term of the one-loop effective action in the
large N limit can be estimated as

�1
loop / tr
�

1

P2

�
2
�

�
O�logN� CP2

O�N1=3� 6d:

We can neglect this term in the effective action because we
shortly find that the effective action scales as O�N� on CP2

or O�N4=3� on a six-dimensional manifold.
The leading term of the two-loop effective action in the

large N limit is evaluated as

�2
loop �
6

f4 F3 �
6

f4

�
1

P2
1P

2
2P

2
3

�
; (3.4)

where the detailed calculations are explained in
Appendix B. In this way, we obtain the effective action
in the large N limit as

� � �tree � �2
loop

�
f4N

4
	p�p� 3� � q�q� 3� � pq
 �

6

f4 F3: (3.5)

We now can explore the behavior of the effective action.
First, we investigate F3 of (3.4) to determine the scaling
behavior for various representations. We have numerically
estimated F3 in Appendix C. Figure 1 shows F3 against N.
We first observe that F3 of the �p; 0� representations ap-
-3
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proaches a constant in the large N limit. This value is
estimated as

F3 � 1:197�
1:03

p



5:4

p2 �
6:8

p3 

2:9

p4 : (3.6)

Second, we observe that F3 of the �p; p� representations
behaves as O�N�. Third, we find that F3 of the �p; q�
representations where 0< q< p behaves like that of
U�q� 1� gauge theory in the large N limit when q is fixed.
This is because it approaches a constant which is consistent
with the two-loop effective action of U�q� 1� gauge
theory on CP2:

�q� 1�3F3: (3.7)

By assuming that we have identified correctly the large
N scaling behavior of F3 for various representations, we
can obtain the large N limit of the effective actions after
identifying the suitable ’t Hooft couplings for CP2 and 6d
manifolds. In theCP2 case, the action in the largeN limit is

� � N
�

1

2�2 � 6�2F3

�
; �2 �

1

f4N
: (3.8)

In a 6d manifold of the �p; p� representations, it is

� � N4=3

�
3

4�2 � 6�2 F3

N

�
; �2 �

1

f4N1=3
: (3.9)

Because of the different large N scaling behaviors of the
effective actions, we find that the CP2 background is
preferable to the 6d manifold.

After identifying the ’t Hooft coupling, we can minimize
the effective action with respect to it. We can use (2.8) to
determine the minimum of the effective action:

� � �min � 2
������������������������
�tree�2
loop

q
: (3.10)

Figure 2 shows �min=N against N. We can observe that
the effective action on the fuzzy CP2 in the large N limit is
the smallest in this class with SU�3� symmetry as it ap-
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proaches a constant. This value can be estimated by using
(3.6) as

�

N
’ 3:79: (3.11)

The ’t Hooft coupling at this minimum is

�2 ’ 0:26: (3.12)

We remark here that (3.11) is comparable to the mini-
mum of the effective action of the fuzzy S2 � S2 back-
ground at the most symmetric point [6]:

�S2�S2

N
’ 3:61: (3.13)

Although we believe that the estimate (3.13) is accurate,
our estimate (3.11) suffers considerable uncertainty since it
is derived from our numerical investigation up to N � 100.
As we observe in Table I that F3 is gradually decreasing,
we cannot determine the lower bound of the effective
action of CP2 yet. Within these limitations, we can still
conclude that the fuzzy CP2 background is stable in its
class and its effective action is comparable to that of fuzzy
S2 � S2.

Here we summarize our findings for the backgrounds
with SU�3� symmetry. The effective action becomes O�N�
for the �p; 0� representations in the large N limit. On the
other hand the �p; p� representations give the effective
action O�N3=4�. We recall here that the �p; 0� representa-
tions give a four-dimensional NC spacetime while the
�p; p� representations give a six-dimensional one in the
large N limit. Since both effective actions are positive, the
�p; 0� representations are favored over the �p; p� represen-
tations in the largeN limit. We also have an observation for
the �p; q� representations with q� p. In this case the
�p; q� representations behave like a direct product of the
�p; 0� representations and the �q� 1� � �q� 1� identity
matrix. In such a case, we effectively obtain U�q� 1�
gauge theory on CP2 and the effective action is propor-
-4



TABLE I. The results of F3 using Monte Calro simulation.

SU�3� representation N F3

(1, 0) 3 0:691 52� =
 0:000 56
(2, 0) 6 1:027 63� =
 0:000 64
(3, 0) 10 1:156 20� =
 0:000 69
(4, 0) 15 1:211 68� =
 0:000 72
(5, 0) 21 1:236 53� =
 0:000 72
(6, 0) 28 1:248 58� =
 0:000 71
(7, 0) 36 1:253 57� =
 0:000 73
(8, 0) 45 1:254 74� =
 0:000 86
(9, 0) 55 1:252 22� =
 0:000 91
(10, 0) 66 1:252 01� =
 0:000 88
(11, 0) 78 1:251 88� =
 0:000 91
(12, 0) 91 1:249 59� =
 0:000 91
(1, 1) 8 3:4551� =
 0:0020
(2, 1) 15 5:1412� =
 0:0031
(3, 1) 24 6:2030� =
 0:0043
(4, 1) 35 6:9072� =
 0:0048
(5, 1) 48 7:3973� =
 0:0051
(6, 1) 63 7:7632� =
 0:0054
(2, 2) 27 9:0688� =
 0:0051
(3, 2) 42 12:366� =
 0:0086
(4, 2) 60 15:064� =
 0:011
(3, 3) 64 18:522� =
 0:013
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tional to �q� 1�3N. We thus argue that the effective action
is minimized for q � 0. Therefore, the �p; 0� representa-
tions are a solution of the IIB matrix model as long as
SU�3� symmetry is not broken. We conclude that a four-
dimensional fuzzy CP2 is singled out by a IIB matrix
model within the manifolds with SU�3� symmetry.

One of our goals of this paper is to investigate the scaling
behavior of the effective action of this class of spacetime in
the large N limit. Let us recall the situation for the mani-
folds constructed from SU�2� algebras [6]. The four-
dimensional fuzzy S2 � S2 makes the effective action to
be O�N�, and a six-dimensional spacetime S2 � S2 � S2

gives O�N4=3� action. These scaling behaviors can be
derived from the power counting of the higher-loop con-
tributions. We also assumed that the leading quantum
corrections cancel due to supersymmetry. Such an assump-
tion can be justified since the quantum corrections do
cancel for commuting backgrounds and the commutators
of the backgrounds reduce the degrees of divergences. In
our identification of the ’t Hooft couplings, we used the
fact that the three point vertices scale as 1=

����
N
p

in the large
N limit.

We argue that the same scaling rule holds in general. In
fact our reasoning to identify the scaling behavior of the
effective action does not depend on the details of a par-
ticular Lie algebra. In particular, the large N scaling rule of
the three point vertices are the consequence of our normal-
ization of the two point vertices to be O�1�. Therefore, it
must hold in generic Lie algebra. In fact, we have numeri-
066001
cally found, at the two-loop level, that a four-dimensional
fuzzy CP2, namely, the �p; 0� representation, gives O�N�
effective action, and a six-dimensional fuzzy flag manifold,
namely, the �p; p� representation, gives O�N4=3� behavior.
These findings support our argument that any four-
dimensional fuzzy homogeneous spacetime gives O�N�
effective action and six-dimensional one gives O�N4=3�
action.

We investigated whether the IIB matrix model had a
fuzzy S2 � S2 solution at the two-loop level previously.
The most symmetric S2 � S2 solution turns out to be
unstable along some directions of their moduli parameters.
They describe the relative sizes of the two spheres. The
instability drives the symmetric S2 � S2 to the asymmetric
one. Fortunately we find fuzzy CP2 has no such instability.
The extremal value of the effective action is comparable to
that of the symmetric S2 � S2. We thus obtain a new
evidence for the existence of a symmetric stable four-
dimensional spacetime in a IIB matrix model.

IV. CONCLUSIONS

In this paper we have investigated the effective action of
a IIB matrix model on fuzzy CP2 and the related manifold
with SU�3� isometry at the two-loop level. Since the back-
grounds constructed by using SU�3� algebra contain the
manifolds with different dimensionality such as CP2 (4d)
and a 6d manifold, we can compare the minimum of the
effective action of the 4- and six-dimensional backgrounds
like [6] in our investigation of the stability of CP2.

We have investigated the large N scaling behavior of the
effective action. The action scales asN onCP2 andN4=3 on
a 6d manifold, respectively. The effective action of the
�p; q� representations where p > q with fixed q also scales
as N, since it behaves like U�q� 1� gauge theory of CP2.
From these results, we have found that CP2 minimizes the
effective action among the backgrounds which are con-
structed by SU�3� algebra. We conclude that the fuzzy CP2

background is a solution in a IIB matrix model and stable
as long as SU�3� symmetry is not broken.

These scaling behaviors are in accord with other 4d
manifolds like S2 � S2 and T2 � T2 and also a 6d manifold
S2 � S2 � S2 [6,10]. These facts support our contention
that the effective action of a compact manifold embedded
in a IIB matrix model has the universal scaling behavior: it
scales as N and N4=3 on a 4d and 6d manifold, respectively.

We also have compared the minimum of the effective
actions of CP2 with that of S2 � S2. We have observed that
the effective action of CP2 is comparable to that of S2 �
S2. Although we have observed in Table I that the two-loop
effective action on CP2 is gradually decreasing, we cannot
determine the lower bound of it yet. Therefore, we cannot
say which is smaller even at the two-loop level. To answer
this question, it is desirable to obtain an asymptotic ex-
pression of the two-loop effective action on CP2 like such
an expression on S2 which is obtained from the Wigner’s 6j
-5
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symbols. Such an effort may be useful to determine
whether higher symmetry of the background may lower
the effective action or not.
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APPENDIX A

1. Construction of background

A fundamental representation of SU�3� is three dimen-
sional. The Lie group generators can be written by Gell-
Mann matrices �� as t� � ��=2. We take Gell-Mann
matrices as the following form:

�1 �

0 1 0
1 0 0
0 0 0

0@ 1A; �2 �

0 
i 0
i 0 0
0 0 0

0@ 1A;

�3 �

1 0 0
0 
1 0
0 0 0

0
@

1
A; �4 �

0 0 1
0 0 0
1 0 0

0
@

1
A;

�5 �

0 0 
i
0 0 0
i 0 0

0@ 1A; �6 �

0 0 0
0 0 1
0 1 0

0@ 1A;

�7 �

0 0 0
0 0 
i
0 i 0

0
@

1
A; �8 �

1���
3
p

1 0 0
0 1 0
0 0 
2

0
@

1
A:
(A1)

We denote state vectors on which these generators act as
jai; jbi; . . . ; here indices a; b; . . . run from 1 to 3. These
vectors have the following components:

j1i �
1
0
0

0
@

1
A; j2i �

0
1
0

0
@

1
A; j3i �

0
0
1

0
@

1
A: (A2)

The Cartan matrices are t3 and t8. They act on jai in the
following way:

t3j1i �
1

2
j1i; t3j2i �


1

2
j2i; t3j3i � 0 � j3i;

t8j1i �
1

2
���
3
p j1i; t8j2i �

1

2
���
3
p j2i; t8j3i �


1���
3
p j3i:

(A3)

The raising/lowering operators are

j�1 � t4 � it5; j�2 � t6 � it7; (A4)
066001
and they act on the state vectors as

j�1 :j3i $ j1i; j�2 :j2i $ j3i;

otherwise gives zero:
(A5)

A general SU�3� representation is labeled by a set of two
integers �p; q� and have the dimension dim�p; q� � �p�
1��q� 1��p� q� 2�=2. The fundamental representation
is denoted as (1, 0). The �p; q� representation can be
constructed from (1, 0) by forming tensor products.

As the first example, we construct the (2, 0) representa-
tion. The (2, 0) state vectors are constructed from the tensor
products of the two sets of the (1, 0) vectors:

jv�2;0�i � jaijbi � jbijai: (A6)

We should take an appropriate normalization factor in the
above expression. The symmetric property of this tensor
product is represented by a Young tableau ��. A single
box � denotes the (1, 0) vector. The (2, 0) generators
which act on the state vectors are the tensor products of
(1, 0) generators t� and the 3� 3 unit matrix 13:

T�2;0�� � t� � 13 � 13 � t�: (A7)

To obtain the explicit matrix representation of the gener-
ators, we need to calculate the matrix elements

hv�2;0�jT�2;0�jv�2;0�i: (A8)

In this way, we can write down the generators as 6� 6
matrices. An extension to the �p; 0� representation is ob-
tained easily by tensoring p sets of the fundamental rep-
resentations. The �p; 0� state vectors up to the
normalization factor are given by totally symmetrized
tensor products of the (1, 0) vectors

jv�p;0�i �
Yp
i�1

jaii � permutations for faig: (A9)

Its symmetric property is represented by the Young tab-
leau: .

The representations of the generators which act on these
�p; 0� state vectors are

T�p;0�� �
Xp
1

i�0

�13��
it���13�

p
1
i: (A10)

To obtain an explicit matrix representation of the gener-
ators, we need to calculate the matrix elements

hv�p;0�jT�p;0�jv�p;0�i: (A11)

In this way, we can write down the generators as �p� 1��
�p� 2�=2� �p� 1��p� 2�=2 matrices.
-6
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Next we consider an extension of our construction to the
�p; p� representations. It is obtained by (2p� p)-fold ten-
sor products. The state vectors of the �p; p� representation
up to the normalization factors can be written as

jv�p;p�i �
Yp
i�1

�jaiijbii 
 jbiijaii�
Yp
j�1

jaji

� permutations of fai; ajg: (A12)

Here the permutations between ai and aj also should be
included. Indices ai and bi are antisymmetrized. Its sym-
metry property is represented by a Young tableau:

. The representations of the

generators which act on these �p; p� state vectors, up to
normalization factor, are

T�p;p�� �
X3p
1

i�0

�13��
it���13�

3p
1
i: (A13)

To obtain explicit form of the generators, we need to
calculate the matrix elements

hv�p;p�jT�p;p�jv�p;p�i: (A14)

In this way, we can write down the generators as �p�
1�3 � �p� 1�3 matrices.

An extension to an arbitrary �p; q� representation is
easily obtained by forming the (p� 2q)-fold tensor prod-
ucts. The state vectors of �p; q� type can be written as

jv�p;q�i � C�p;q�
Yq
i�1

�jaiijbii 
 jbiijaii�
Yp
j�1

jaji

� permutations of fai; ajg: (A15)

Here the permutations between ai and aj should be in-
cluded also. Indices ai and bi are antisymmetrized. The
symmetric property is given by a Young tableau:

. Here C�p;q� is a normal-

ization constant. The representations of the generators
which act on these �p; q� state vectors are

T�p;q�� �
X2p�q
1

i�0

�13��
it���13�

2p�q
1
i: (A16)

To obtain an explicit matrix form of the generators, we
need to calculate the matrix elements

hv�p;q�jT�p;q�jv�p;q�i: (A17)
066001
In this way, we can write down the generators as N�p;q� �
N�p;q� matrices where

N�p;q� �
�p� 1��q� 1��p� q� 2�

2
: (A18)
2. Construction of matrix harmonics in SU�3�
background

Suppose that we take a matrix model background to be a
�p; q� representation. The gauge (and adjoint fermion)
fields are expanded by harmonic matrices as follows:

� �
X
�A�

X
ms

��A�msY
�A�
ms ; (A19)

where Y�A�ms are the matrix harmonics. The index �A� de-
notes the sets of two integers �pA; qA� which label the
irreducible representations. They are N�p;q� � N�p;q� matri-
ces which satisfy

P3Y
�A�
ms � 	p3; Y

�A�
ms 
 � mY�A�ms ;

P8Y
�A�
ms � 	p8; Y

�A�
ms 
 � sY�A�ms ;

P2Y�A�ms � 	p�	p�; Y
�A�
ms 



�

�
1

2
p2
A � pA �

1

2
q2
A � qA

�
Y�A�ms :

(A20)

The gauge fields are constructed as bilocal fields. When
the background is a �p; q� representation, the bilocal state
has a tensor structure �p; q� � �q; p�. They can be decom-
posed into the irreducible representations, and the decom-
position may have the following form:

�p; q� � �q; p� �
Xp�q
n�0

Dn�n; n� �
Xp�2q

l�m

Eml��l;m� � �m; l��;

(A21)

where Dn and Elm are multiplicity factors. If we take q �
0, the decomposition becomes a simple form as

�p; 0� � �0; p� �
Xp
n�0

�n; n�: (A22)

Here we give the p � q � 1 case for another simple
example

�1; 1� � �1; 1� � �2; 2� � 2�1; 1� � �0; 0� � �3; 0� � �0; 3�:

(A23)

Thus, in expansion (A19), the sets of the integers �pA; qA�
run over the irreducible representations which appear in the
-7
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decomposition, and m and s take the value of these irre-
ducible representations �pA; qA�.

Now we explain how to construct such matrices in a
given background. Let us describe a background [i.e.
SU�3� generator of a �p; q� representation] in terms of a
SU�N�p;q�� basis

T�p;q�� �
X
�

�A�E� �B
�E
�� �
X
a

CaHa; (A24)

where fE�; E
�;H�g are Cartan’s basis which satisfy the
following relations:

	Ha;Hb
 � 0;

	Ha; E��
 � ��aE��;

	E�; E
�
 � �aHa;

	E�; E	
 � N�;	E��	; �Ey� � E
��:

(A25)

One can take a representation of T�p;q�3 and T�p;q�8 as
diagonal matrices

T�p;q�3 �
X
a

CaHa; T�p;q�8 �
X
b

C0bHb: (A26)

Each E� can be assigned to an off-diagonal matrix which
has only one nonzero component:

�E��ij �
�

1 for �i; j� � �i�; j��;
0 otherwise:

(A27)

Then we have

	T�p;q�3 ; E�
 �
X
a

Ca�aE�; 	T�p;q�8 ; E�
 �
X
b

C0b�
bE�:

(A28)

It implies that Y�A�ms with �m; s� � �
P
aCa;

P
bC
0
b� can be

written as linear combinations of E�s which have the
same eigenvalues of �m; s�. On the other hand, Cartan
subalgebra 	H;H
 � 0 implies that Y�A�m�s�0 can be ob-
tained by linear combinations of H.

Following the above observation, we first take all com-
mutators 	T3; E
 and 	T8; E
 to find quantum numbers m
and s of each E. Next we determine suitable linear combi-
nations in the matrix basis which possess the samem and s.
Then we obtain matrix harmonics which correspond to the
irreducible representations in the decomposition (A21).

One way to determine such linear combinations is to use
the raising/lowering operators. The decomposition (A21)
066001
contains the irreducible representation �pA; qA� �
�p� 2q; p
 q�. The value p� 2q is the maximum value
of pA in this decomposition. The highest weight state is
unique in each irreducible representation, and p� 2q is
the largest number in the decomposition. Then there should
be only one matrix base corresponding to such a state
whose eigenvalues are m � 1

2 �p� 2q� p
 q� �
2p� q=2 and s � 1

2
��
3
p �p� 2q� p
 q
 2�p
 q�� �

3q=2
���
3
p

. Therefore, a matrix base with the eigenvalues
m0 � 2p� q=2 and s0 � 3q=2

���
3
p

is uniquely identified
with the highest weight state of �p� 2q; p
 q�. Next we
carry out the operations of the lowering operators and
generate sets of independent combinations of the matrix
basis with m0�<m0� and s0�� s0�. After suitable orthogon-
alizations, they form the state vectors with quantum num-
ber m0 and s0. Some of these belong to the �p� 2q; p
 q�
representation and form Y�p�2q;p
q�

m0s0 . Others belong to dif-

ferent irreducible representations and form Y�A
0�

m0s0 . In this
way, we can identify all �A0� � �p� 2q; p
 q� which
appear in the decomposition (A21).

There is another way to obtain suitable combinations of
the matrix basis more straightforwardly. First we collect
matrix basis with the same quantum numbers m and s and
denote this set of basis as fwig. Next we diagonalize the
Casimir operator P2 whose matrix elements are

P2
ij � tr�wyi P

2wj�: (A29)

A different eigenvalue of P2 corresponds to a different �A�
of Y�A�ms , and Y�A�ms themselves are obtained as the eigenvec-
tors. This method is useful if one has automatic computa-
tion tools for linear algebra, like MATHEMATICA or MAPLE.

3. An explicit example

We give an explicit construction of a background (gen-
erators) and the matrix harmonics in a simple case. We
consider the (2, 0) representation.

An expression of the state vectors of the (2, 0) repre-
sentation is the following

j1i�2;0� � jaijai; j2i�2;0� �
jaijbi � jbijai���

2
p ;

j3i�2;0� � jbijbi; j4i�2;0� �
jaijci � jcijai���

2
p ;

j5i�2;0� �
jbijci � jcijbi���

2
p ; j6i�2;0� � jcijci;

(A30)

where jai, jbi, and jci are the state vectors of the funda-
mental representation.
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The SU�3� generators of the (2, 0) representation are
T�2;0�3 �

1
0

1

1
2

1

2
0

0BBBBBBBB@

1CCCCCCCCA
; T�2;0�8 �

1��
3
p

1��
3
p

1��
3
p


 1
2
��
3
p


 1
2
��
3
p


 2��
3
p

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

T�2;0�1 �

0 1��
2
p 0 0 0 0

1��
2
p 0 1��

2
p 0 0 0

0 1��
2
p 0 0 0 0

0 0 0 0 1
2 0

0 0 0 1
2 0 0

0 0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; T�2;0�2 �

0 
i��
2
p 0 0 0 0

i��
2
p 0 
i��

2
p 0 0 0

0 i��
2
p 0 0 0 0

0 0 0 0 
i
2 0

0 0 0 i
2 0 0

0 0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; T�2;0�4 �

0 0 0 1��
2
p 0 0

0 0 0 0 1
2 0

0 0 0 0 0 0
1��
2
p 0 0 0 0 1��

2
p

0 1
2 0 0 0 0

0 0 0 1��
2
p 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

T�2;0�5 �

0 0 0 
i��
2
p 0 0

0 0 0 0 
i
2 0

0 0 0 0 0 0
i��
2
p 0 0 0 0 
i��

2
p

0 i
2 0 0 0 0

0 0 0 i��
2
p 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; T�2;0�6 �

0 0 0 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1��

2
p 0

0 1
2 0 0 0 0

0 0 1��
2
p 0 0 1��

2
p

0 0 0 0 1��
2
p 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; T�2;0�7 �

0 0 0 0 0 0
0 0 0 
i

2 0 0
0 0 0 0 
i��

2
p 0

0 i
2 0 0 0 0

0 0 i��
2
p 0 0 
i��

2
p

0 0 0 0 i��
2
p 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(A31)

To construct matrix harmonics, we define off-diagonal matrix basis as

0 E�1
E�2

E�3
E�4

E�5

E
�1
0 E�6

E�7
E�8

E�9

E
�2
E
�6

0 E�10
E�11

E�12

E
�3
E
�7

E
�10
0 E�13

E�14

E
�4
E
�8

E
�11
E
�13

0 E�15

E
�5
E
�9

E
�12
E
�14

E
�15
0

0BBBBBBBB@

1CCCCCCCCA
: (A32)

This notation means that E�1
is given by the form

E�1
�

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; (A33)

and so on.
Following the decomposition

�2; 0� � �0; 2� � �2; 2� � �1; 1� � �0; 0�; (A34)

we construct Y�2;2�, Y�1;1�, and Y�0;0� using the above matrix basis and diagonal matrices.
Here is a result. (2, 2) is 27 dimensional:
066001-9
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Y�2;2�
1;
��
3
p � E�5

; Y�2;2�
0;
��
3
p � E�9

; Y�2;2�

1;

��
3
p � E�12

; Y�2;2�
3=2;

��
3
p
=2
� 
E�4

; Y�2;2�
1=2;

��
3
p
=2
�

8><>:

E�3

�E�14��
2
p

E�3
�E�14


2
��
2
p
E�8����

10
p ;

Y�2;2�

1=2;

��
3
p
=2
�

8><
>:

E�11

�E�15��
2
p


E�11

E�15

�2
��
2
p
E�7����

10
p ;

Y�2;2�

3=2;

��
3
p
=2
� 
E�10

; Y�2;2�2;0 � E�2
; Y�2;2�1;0 �

8><
>:
E�1


��
2
p
E�13��

3
p


2E�1


��
2
p
E�13

�3E�6����
15
p ;

Y�2;2�0;0 �

8><
>:

diag�0; 0; 1; 0;
2; 1�=
���
6
p

diag�0; 2;
1;
2; 0; 1�=
������
10
p

diag�3;
3; 1;
3; 1; 1�=
������
30
p

;
Y�2;2�
1;0 �

8><
>:
E
�1



��
2
p
E
�13��

3
p


2E
�1


��
2
p
E
�13

�3E
�6����
15
p ;

Y�2;2�
2;0 � E
�2
;

Y�2;2�
3=2;


��
3
p
=2
� E
�10

; Y�2;2�
1=2;


��
3
p
=2
�

8><
>:
E
�11


E
�15��
2
p


E
�11

E
�15

�2
��
2
p
E
�7����

10
p ;

Y�2;2�

1=2;


��
3
p
=2
�

8><
>:
E
�3


E
�14��
2
p


E
�3

E
�14

�2
��
2
p
E
�8����

10
p ;

Y�2;2�

3=2;


��
3
p
=2
� E
�4

; Y�2;2�
1;


��
3
p � E
�12

; Y�2;2�
0;


��
3
p � E
�9

; Y�2;2�

1;


��
3
p � E
�5

:

(A35)

(1, 1) is eight dimensional:

Y�1;1�
1=2;

��
3
p
=2
� 


���
2
p
E�3
�

���
2
p
E�14

� E�8���
5
p ; Y�1;1�


1=2;
��
3
p
=2
� 


E�7
�

���
2
p
E�11

�
���
2
p
E�15���

5
p ;

Y�1;1�1;0 �
2E�1

�
���
2
p
E�13

� 2E�6������
10
p ; Y�1;1�

�0;0� �

8><>:
diag�0;1;2;
1;0;
2�����

10
p

diag�4;1;
2;1;
2;
2�����
30
p

; Y�1;1�
1;0 �
2E
�1

�
���
2
p
E
�13

� 2E
�6������
10
p ;

Y�1;1�
1=2;


��
3
p
=2
�
E
�7

�
���
2
p
E
�11

�
���
2
p
E
�15���

5
p ; Y�1;1�


1=2;

��
3
p
=2
�

���
2
p
E
�3

�
���
2
p
E
�14

� E
�8���
5
p :

(A36)

Finally there is the singlet which corresponds to (0, 0):

Y�0;0�
�0;0� �

1���
6
p 16: (A37)

The two-loop contribution to the effective action is calculated with these harmonics. The planar contribution is

6n3
X2

�n1;n2;n3��1

X
m1;s1

X
m2;s2

X
m3;s3

tr�Y�n1;n1�
m1;s1

Y�n2;n2�
m2;s2

Y�n3;n3�
m3;s3

� tr�Y�n3;n3�y
m3;s3

Y�n2;n2�y
m2;s2

Y�n1;n1�y
m1;s1

�

n1�n1 � 1�n2�n2 � 1�n3�n3 � 1�
(A38)

in U�n� gauge theory. On the other hand, the nonplanar contribution is


6n
X2

�n1;n2;n3��1

X
m1;s1

X
m2;s2

X
m3;s3

tr�Y�n1;n1�
m1;s1

Y�n2;n2�
m2;s2

Y�n3;n3�
m3;s3

� tr�Y�n1;n1�y
m1;s1

Y�n2;n2�y
m2;s2

Y�n3;n3�y
m3;s3

�

n1�n1 � 1�n2�n2 � 1�n3�n3 � 1�
: (A39)
By substituting the explicit form of Y�n;n�ms , we obtain the
planar contribution

6n3 42 605

41 472
; (A40)

and the nonplanar contribution


6n
1115

41 472
: (A41)
066001
APPENDIX B

Here we evaluate the two-loop effective action of the IIB
matrix model in a fuzzy background which is made from a
�p; q� representation of the SU�3� generators (3.4).

In this calculation, we make use of the following rela-
tion:X

m

P�Y
�r;s�y
m P�Y

�r;s�
m � 


X
m

Y�r;s�ym P�P�Y
�r;s�
m ; (B1)
-10
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where the superscript �r; s� denotes an irreducible repre-
sentation of SU�3� and m denotes the eigenvalues of the
Cartan subalgebra in the �r; s� representation. We first note
that the harmonic matrices of SU�3� obey the orthogonal
relations

tr �Y�r;s�ym Y�r
0;s0�

m0 � � ��r;s�;�r0;s0��m;m0 : (B2)

Let us perform a unitary transformation on Y�r;s�m :

Y�r;s�m ! UY�r;s�m Uy �
X
n

umnY
�r;s�
n ;

Y�r;s�ym ! �UY�r;s�m Uy�y �
X
n

u�mnY
�r;s�y
n ;

(B3)

where U is a N � N unitary matrix and umn is the unitary
transformation represented in the m basis. Under (B3),
(B2) is transformed as

tr �Y�r;s�ym Y�r
0;s0�

m0 � !
X
n;n0
u�mnum0n0 tr�Y

�r;s�y
n Y�r

0;s0�
n0 �

�
X
n;n0
u�mnum0n0�nn0 � �uuy�m0m��r;s�;�r0;s0�:

(B4)

Since (B2) is apparently invariant under (B3), we can
obtain

�uuy�m0m � �m0m: (B5)

Using this relation, we can show that
P
mY
�r;s�y
m Y�r;s�m is

invariant under (B3):X
m

Y�r;s�ym Y�r;s�m !
X
m;n;n0

u�mnumn0Y
�r;s�y
n Y�r;s�n0

�
X
n

Y�r;s�yn Y�r;s�n : (B6)

Since P� are the generators of SU�3� transformation, (B6)
is equivalent to

P�

�X
m

Y�r;s�ym Y�r;s�m

�
� 0: (B7)

From this formula, we can obtain (B1).
We introduce the wave functions and averages as

�123 � tr�Y�r1;s1�
m1

Y�r2;s2�
m2

Y�r3;s3�
m3

�;

hXiP �
X

�ri;si�;mi

��123X�123; P�i Y
�r1;s1�
m1

� 	p�; Y
�r1;s1�
m1


;

(B8)

where the sum of �ri; si� runs over the representations
which are made from the product of �p; q� and �q; p�. We
introduce the following quantity:

f���f��� � CG���; (B9)

where CG is a constant which assumes CG � 2 for SU�2�
and CG � 3 for SU�3�. With these preparations, we can
066001
calculate the two-loop effective action almost the same
way as the fuzzy sphere case.

We expand quantum fluctuations in terms of the har-
monic matrices:

gauge boson a� �
X
�r;s�;m

a�r;s��m Y�r;s�m ;

fermion ’ �
X
�r;s�;m

’�r;s�m Y�r;s�m ;

antighost b �
X
�r;s�;m

b�r;s�m Y�r;s�m ;

ghost c �
X
�r;s�;m

c�r;s�m Y�r;s�m :

(B10)

Then the propagators are derived from the kinematic terms:

ha�a�i �
X
�r;s�;m

�P2��� � 2if���P��
1Y�r;s�m Y�r;s�ym ;

h’ �’i �
X
�r;s�;m

�
��P��

1Y�r;s�m Y�r;s�ym ;

hcbi �
X
�r;s�;m

1

P2 Y
�r;s�
m Y�r;s�ym :

(B11)

We exclude the singlet state (0, 0) in the propagator. To
calculate the leading contributions in the large N limit, we
expand the boson and the fermion propagators as

�P2��� � 2if���P��
1 ’
���
P2 
 2i

f���P
�

P4 � 4
I���P�

P6
;

�
��P��

1 ’

��P�
P2 �

i
2

f�������P�P�
P4 :

(B12)

We have introduced the following tensor:

I�� � f
��f
��P�P�: (B13)

Using these propagators, we can calculate the contributions
to the two-loop effective action from various interaction
vertices as follows:

Four-gauge boson vertex is

V4 � 

1

4
tr	a�; a�


2: (B14)

The leading contribution to the two-loop effective action is

h
V4i � 
45F1 
 42CGG1 � 3CGG2: (B15)

Here

F1 �

�
1

P4
1P

4
2

�
P
; G1 �

�
1

P4
1P

2
2

�
P
;

G2 �

�
P2

3

P4
1P

4
2

�
P
:

(B16)
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TABLE II. The results of F3 using the harmonic matrices.

SU�3� representation N F3

(1, 0) 3 0.691 358
(2, 0) 6 1.027 320
(3, 0) 10 1.156 321
(4, 0) 15 1.211 689
(5, 0) 21 1.236 921
(6, 0) 28 1.248 420
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Ghost vertex is

Vg � trb	p�; 	a�; c

: (B17)

Their contribution is

1
2 hVgVgi � F2 � 4H2: (B18)

Here

F2 �

�
P2 � P3

P2
1P

2
2P

2
3

�
P
; H2 �

�
P2 � I�1� � P3

P6
1P

2
2P

2
3

�
P
; (B19)

and

Pi � I�j� � Pk � P�i I���Pj�P
�
k : (B20)

Three-gauge boson vertex is

V3 � 
trP�a�	a�; a�
: (B21)

Their contribution is

1
2hV3V3i � 9F1 
 9F2 � CG�6F3 � 2G1 �G2�

� 32H1 
 36H2 
 16H3 � 12H4 
 4H5:

(B22)

Newly introduced functions are defined as

F3 �

�
1

P2
1P

2
2P

2
3

�
P
; G01 � G1 


1

N
tr
��

1

P2

�
3
�
;

H1 �

�
P1 � I�2� � P1

P2
1P

6
2P

2
3

�
P
; H3 �

�
P2 � I�1� � P3

P4
1P

4
2P

2
3

�
P
;

H4 �

�
P1 � I�2� � P1

P4
1P

4
2P

2
3

�
P
; H5 �

�
P2 � I�1� � P3

P2
1P

4
2P

4
3

�
P
:

(B23)

In SU�3�, we can evaluate the following quantity as

1

N
tr
��

1

P2

�
3
�
�

1

N

X
�r;s�;m

1
2 �r� 1��s� 1��r� s� 2�

	12 �r�r� 2� � s�s� 2��
3
:

(B24)

Fermion vertex is

Vf � 

1
2 tr �’��	a�; ’
: (B25)

Their contribution is

1
2hVfVfi�
64F2��
8CGG

0
1�4CGG2�8CGF3�32H4�


16CGF3�48CGG
0
1�
8CGG2

�64H2�64H3: (B26)
066001
After summing up (B15), (B18), (B22), and (B26), we
find the two-loop effective action:

�2
loop � 2CGF3 � 32H1 � 32H2 � 48H3

� �12� 32�H4 
 4H5 � 2CGF3: (B27)

It is because

H1 �H2 � 0; H3 �H4 � 0; H3 
H5 � 0:

(B28)

Since we have used the common properties of SU�2� and
SU�3�, the result (B27) is valid for SU�2� and SU�3� and
consistent with the fuzzy sphere’s results.
APPENDIX C

In this appendix, we calculate F3 in (B27) numerically.
A practical way to calculate F3 is to use the Monte Carlo
simulation [11]. Our strategy is to construct a Gaussian
matrix model to calculate it:

F3 �

�
1

P2
1P

2
2P

2
3

�
P

�
Z
dadbdc tr�abc� tr�cba�

� exp
�



1

2
	a; p�
2 


1

2
	b; p�
2 


1

2
	c; p�
2

�
:

(C1)

We can use the heat-bath algorithm to calculate this corre-
lator. The result is shown in Table I. We estimate the
statical errors using a jackknife method [11,12].

The other way to calculate F3 is to use the harmonic
matrices. We can obtain these matrices on the computer
using the method explained in Appendix A. The result is
shown in Table II.

Since Table II shows the exact results, this calculation is
preferable to the Monte Carlo. But we have used the
Monte Carlo method, because the exact evaluation requires
more computer power than the Monte Carlo. Nevertheless,
we can use Table II to check Table I. We can thus claim that
the Monte Carlo method gives the correct results.
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