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Gauge theory of gravity and supergravity
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We present a formulation of gravity in terms of a theory based on complex SU(2) gauge fields with a
general coordinate invariant action functional quadratic in the field strength. Self-duality or anti-self-
duality of the field strength emerges as a constraint from the equations of motion of this theory. This in
turn leads to Einstein gravity equations for a dilaton and an axion conformally coupled to gravity for the
self-dual constraint. The analysis has also been extended to N = 1 and 2 super Yang-Mills theory of
complex SU(2) gauge fields. This leads to, besides other equations of motion, self-duality/anti-self-duality
of generalized supercovariant field strengths. The self-dual case is then shown to yield as its solutions

N =1, 2 supergravity equations, respectively.
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L. INTRODUCTION

Quest for a gauge theory description of Einstein’s
General Theory of Relativity (GTR) has a long history.
Pioneering attempts made by Utiyama, Kibble, and
Mandelstam are now about five decades old [1]. There is
also another more recent and famous formulation of
Ashtekar where gravity is described in terms of a new
variable, the complex SU(2) Sen-Ashtekar gauge connec-
tion [2]. This gauge field is the self-dual part of the spin
connection wﬁb where self-duality is with respect to the
Lorentz indices [ab]. The action used is complex. It is
linear in the field strength much in the same manner as the
standard Einstein-Hilbert or Hilbert-Palatini action. The
formulation is entirely chiral in that it deals with the local
Lorentz representations involving only the chiral part of
SL(2, C) and not its conjugate. A Hamiltonian formulation
is set up in terms of phase space consisting of the spatial
part of the Lorentz self-dual spin connection and its can-
onically conjugate density-weighted spatial triad. A related
formulation is that of Plebanski [3] where again we have a
first-order Palatini-type action for complex general relativ-
ity described in terms of a spinor-valued two-form 242, an
SL(2, C) one-form wyp which is identified with the
Lorentz-self-dual part of the spin connection, and a totally
symmetric Lagrange multiplier field W, p-p where the
Latin letters A, B, C, D denote two-component spinor
indices. Ashtekar canonical formulation may be viewed
as the (3 + 1) decomposition of the first-order formalism
of Plebanski [4].

There have also been other attempts to set up a gauge
theory description of gravity. For example, there is an
SL(3) and diffeomorphism invariant Euclidean space ac-
tion, still linear in field strength, presented by ’t Hooft [5].

As is well known, it has been a long standing challenge
to set up a quantum theory of gravity. It is generally
believed that perturbative quantum general relativity set
up in terms of quantized corrections to a background
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metric and as a perturbative expansion in dimensionful
Newton’s constant is not renormalizable. Choice of a
background metric fixes the coordinate system and thus
breaks general covariance. It is possible that difficulties
faced are due to the tools and methods used so far. A
consistent perturbative quantum description may be pos-
sible if it is set up in terms of a quantization based on some
other, more suitable set of fields with an appropriate action
functional and as a pertubation in terms of a dimensionless
coupling instead of dimensionful Newton’s constant. For
this we have to first develop a classical description of
Einstein’s general relativity in terms of these fields.
Newton’s constant should emerge as a parameter in the
space of solutions of such a theory. It is, therefore, worth-
while to explore various possible action principles involv-
ing only dimensionless couplings which yield Einstein’s
equations of the classical gravity as solutions of their
equations of motion.

Gravity actions with quadratic curvature terms have
been discussed for many decades now. For example,
DeWitt in 1960 had hoped that such terms would provide
a cure for the divergence problem [6]. One of the earliest
studies of gravity theory with action made of only qua-
dratic curvature terms, R M,,“["Ra ﬁ’“’, was the parallel dis-
placement gauge theory of Yang [7]. There are two types of
variational principles that can be adopted. In the Einstein-
Hilbert variational picture (also known as second-order
formalism) where spacetime is Riemannian, the quadratic
action is to be varied with respect to the metric g,,,. This
yields a fourth-order differential equation of motion for the
graviton field A#” defined as ./=—gg*” = n*” + kh*”. In
fact, a general higher derivative theory of gravity with R?,
R, and cosmological constant terms can be shown to be
renormalizable [8]. But such theories generically imply
nonunitarity due to a negative residue spin-two pole (i.e.
a ghost) in the bare propagator of the graviton field. On the
other hand, in the Einstein-Palatini variational picture (also
called first-order formalism), the connection (not the
Riemann-Christoffel connection) and the metric are inde-
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pendently varied. This leads, in general, to space-times
with torsion [9]. The equation of motion obtained by
varying the action, quadratic in curvature tensor, with
respect to the metric leads to a constraint expressing the
gravitational stress-energy tensor to be zero. This equation
is solved by a double self-dual or anti-self-dual curvature
tensor [10]. These are only second-order differential equa-
tions for the metric. In the next section we shall recast this
theory in terms of a complex SU(2) gauge field theory.
Unlike Ashtekar theory which is described in terms of an
action linear in complex SU(2) field strength Fi,,, here we
shall deal with an action functional quadratic in this field
strength. This is much in line with gauge theories used to
describe other fundamental interactions of particle physics.
Both the complex gauge field and the metric are taken to be
independent variables in the action as in the Einstein-
Palatini variational principle. Solutions of the equations
of motion fall into two classes: those with self-dual and
those with anti-self-dual field strengths. These constraints
can be solved to write the metric in terms of the field
strength of gauge fields. Thus, geometric quantities are
related to the gauge fields. Finally we shall be led to
standard Einstein equations of motion for gravity confor-
mally coupled to a dilaton and an axion as a solution to the
self-dual constraint. There is no dimensionful parameter in
the definition of the gauge theory. However, a dimensionful
parameter, to be identified with Newton’s constant, will
emerge as a modulus of the space of solutions of the
equations of motion of this theory.

In Sec. III, we shall extend the discussion to N =1
complex SU(2) super Yang-Mills theory. The equations
of motion imply self-duality or anti-self-duality of the
supercovariantized field strength. Supergravity theory
emerges as a solution to the self-dual case. The same
structure gets carried over to the case of N =2 super
Yang-Mills theory, where self-duality of a generalized
covariant field strength, obtained as a solution to the equa-
tion of motion, leads to N = 2 supergravity equations. This
we discuss in Sec. IV. Some concluding remarks will
follow in Sec. V.

II. COMPLEX SU(2) GAUGE THEORY AS A
THEORY OF GRAVITY

Consider a complex SU(2) gauge field A}, (i =1,2,3)
and metric g, as independent variable fields in the action

T . .
S=4 fd“xegﬂagvﬁF;VF;B, (1)

where ¢?

strength is

= g = detg,, <0 and the complex field

o A A Al ijkgd Ak
Fi,, = a,AL — 9,Al — kAl Ak,

Here 7 is a dimensionless complex coupling constant. The
action is complex; we may wish to make it real by adding
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to it a conjugate action given as a functional of AL which is
a complex conjugate of the gauge field AL:

§=] [diese g ELF,
where Fi, = 9,Al —d,Al, — €A, A} and &= —e.
However, in the following we shall work with the complex
action S.

The action S is invariant under complex SU(2) gauge
transformations and also under general coordinate trans-
formations. It contains no kinetic energy term for the
metric g,,. In contrast to Ashtekar theory [2] where the
action functional is linear in field strength, it is quadratic
here.

A. Equations of motion
The equations of motion are obtained by varying the
action S above with respect to the independent fields.
Variation with respect to the gauge field Al, yields the
Yang-Mills equation of motion

DH(eFi,,) =0, @)

where the gauge covariant derivative is D, ®" = 9, ®' —
€'k A], ®*. Next, variation of the action with respect to the
metric g, gives the second equation of motion, which is in
fact a constraint equation:

Tyy = F L Flo — 38, FigF'*F = 0. 3)

Notice that the gauge field stress-energy tensor 7, is
traceless, g Ty, = 0, and also conserved, V“T,U, =0,
by the first of the two equations of motion, the Yang-Mills
equation (2). Here the derivative VM is covariant with
respect to the general coordinate transformations:
vV, T1%F =09,T*F +T,,°T** + T ,,PT*", where the
Riemann-Christoffel connection is given in terms of the
metric  through the condition V,g,5=0,8.,5 —
F,U.a/\g)t,B - FMIBAgaA = 0.

We need to solve these equations of motion. To solve the
constraint equation (3), we introduce the dual field strength

*Fi;,u/ = % EMVaﬁfoB’ (4)
where €#”*B is the usual completely antisymmetric Levi-
Civita density of weight 1 with values =1 or 0. Notice
this duality operation is involutive: *(“F%,,) = F',,. With
this definition and the identity (in four dimensions)
6Ei’eaﬁp"] = 0 (where square brackets indicate antisym-
metrization of the contained indices), it is straightforward
to check that the gauge field stress-energy tensor can be

rewritten as
T,u,V = %(F,lu,a + *Fix,a)(F[Va - *Fiva)' (5)

Thus the constraint equation 7', = 01is solved by self-dual
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or anti-self-dual field strength:
Fiy = *"Fy,. (6)

It is important to notice that such field strengths satisfy the
Yang-Mills equation of motion (2) identically. Also, for
these field strengths, the Lagrangian density becomes a
total divergence:
jeF M Fl, = Tie"FIWF,, = *iet *PFl F o
= =9,J~,

where J# = 1erraB(ALd, Al — L ek ALALAL).

The self-duality or anti-self-duality constraint implies
that the metric is not an independent field, but can be
solved for as a function of the gauge field AiL (or more
exactly as a function of the gauge field strength F j“,). In
fact, it can be shown that the metric for (nonzero) self-dual

or anti-self-dual field strength is given by Urbantke type
formulas [11]:

g7(1/4)g,u,v = (det¢ij)7(1/2)XMV’

1/4 juv —(1/2) v (7)
g'/"gh" = (detdy;) Yey

where quantities ¢,;, X,,,, and Y#” are given in terms of
the self-dual or anti-self-dual field strength as

bij = 3" P F L Fop
and

— 42 aB0ob cijk i J ok
Xy = *35€ €VF o Fp,Fs,,

wy — 1 _paBy Avpo cijk i J k
Y 3€ € €V F g ForFpo

Thus (7) gives the metric in terms of the self-dual or
anti-self-dual field strength, but only up to a conformal
factor. This is so because self-duality and anti-self-duality
constraints are not sensitive to the conformal factor of the
metric. Under a conformal transformation g, — O 2%g v
(e — Q7 ghv — O2ghv),

(5 avvonrs, ) (e = L evvor, )

To analyze the self-duality or anti-self-duality constraint
further, we trade the three complex two-tensors F ;'“, by six
real two-tensors R M,,"‘ﬁ for six values of the antisymmetric
pair of indices (a8) through the definition

F,l;LV = R;LVQBEZ,B’ (8)

where 3, is a self-dual two-form, *3i,, = 3¢ ,, which
can be viewed as a curved space generalization of the flat
Minkowski space 7;,, symbol of ’t Hooft [5,12]. This is
constructed from the tetrads e? defined as the square root
of the metric through g, = €%e5n., Nuy = 84 = N,
and a and b take values 1, 2, 3, 4. (In our notation, e% is

pure imaginary.) And 3/, = 3 ;" + J€/*3 /¥ (each of
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i, j, k takes values 1, 2, 3) where 2, B“b is the antisymme-
trized product of tetrads e%: 2, B“b = %efael[’ﬂ.
Self-duality or anti-self-duality of the field strength (6)
then implies the constraint
"R, ==R,," )

7 727

where * is the duality with respect to the first pair of indices
[ 7] and the tilde~is the duality in the second pair of flat
internal space indices [ab] defined as

X‘ab — %Eabcdxcd'
Here €%¢? is completely antisymmetric with €'?3* = +1.
The condition (9) is the double self-duality/anti-self-
duality condition studied in Refs. [10].

Next we use the Lanczos identity

*zj{’uvab = Rab;w + Ep,vabR + zzlwc[aRb]m (10)

where R ,* =R ,,“?e; and R = R, “el. This identity
and self-duality or anti-self-duality of the field strength
imply

ab _ a — a _ Lla
+R,," = R, =3, R =y R . (D)

We need to solve these constraints. To develop such
solutions we write

i =al, + b, (12)
Wherg al, is such that D[M(a)z’;}a] = G[ME’;}&] -
eijkanE’;a] = 0. This constraint can be solved for a!, in
terms of the tetrads through Ei“, to obtain

dy = 0 yap(@)2'F, (13)
where w(e) is the usual spin connection given in terms of
the tetrads ef,:

(€) = Meaadipety + €apdu€’y = Caudfaly)
Dypaple 2\€aa0[B€,1 T €ap[u€,s] ~ €anlalpy)

Notice a!, is the Sen-Ashtekar gauge field.
Next, we write

Fiv = fur + €y (14)
where f iw is the field strength for the gauge field ai,;
fiy = 0ualy — €*alal = R, "P(w(e)2,
and
€, = D (a)biy — €*bbl, = r,,*P3!
Here the derivative D, (a) is a gauge covariant derivative

involving the gauge field a, D,(a)b, =9,b) —
€*aj,b%; R,,*P(w(e)) is the usual Riemann tensor and

R 1w =R, P(w(e) + 1, (15)

o

where the tensor r,,%? is to be determined. Writing

"
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bi, = hM“BEZB, this r tensor is

Twvap = v[,u,hv]otﬁ + h,ua)\hv)\ﬁ - hva/\h,u/\ﬁ' (]6)

Notice we have traded three complex vectors bi, with six
real vectors & M“B with six values of the antisymmetric pair
(aB). These can be viewed as contortion. The 24 dimen-
sional space of real contortion 4,z can be decomposed
into three irreducible subspaces: a trace part h, =
g*Ph wap> @ completely antisymmetric part K, 5, and a
tensor part J,,, g with g“BJWB = Oand Jp,qp = 0. These
subspaces are, respectively, 4, 4, and 16 dimensional. In the
following we shall take the tensor part to be zero. Thus we
parametrize h, g as

h = Kp,aﬂ - %(g,u.ahﬁ - g,u.Bha) (17)

pap

The four-tensor 7,44 is given by

af — a 1sle al
run™® = Vi K F + 180V hP + K K, P

[a o [a
— 18l K Pt + 2K, [ ) + 48K B, )
a sB 2
5 Mﬁy]h ). (18)

From this we construct the two-tensor r,, = rﬂm,ﬁg”‘ﬁ .
The symmetric and antisymmetric parts of this tensor and
its trace (r = g#"r,,) are

Puw t 1oy = %[V#h,, +V,h, +g,V-h

vp
— %(g/“,h2 - h h,)] — ZKMYBK,,“B,
Fuv = Tou = %V[Mhl’] 2V,K,,7,
P =2V h— 3 — K, s KPP, (19)

Let us now consider the two cases of self-duality and
anti-self-duality separately.

B. Self-dual solution

Contracting the constraint equation (11) by e} for the
self-dual case yields

R, +R,, =3.7R. (20)

This is our master equation which we wish to solve. It fixes
nine of the 21 independent components of R M,,“” +
Rab v l€aving 12 independent components undetermined.
This equation when substituted back into (11) yields the
constraint
ab _ Rab 1] bl _ Rb

R .. R, = e[z(’Rv]] R JV]). (21)
This equation fixes nine of the 15 independent components
of R,,* — R, leaving six undetermined. The two
equations (20) and (21), which are equivalent to the self-

dual constraint (11), then fix 18 of the independent com-
ponents of R W“b, and the other 18 are undetermined.
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Solving these would be equivalent to solving the self-
duality equation for our SU(2) gauge field strength (6).
The constraint (21) further implies

(v[a + %h[a)KB]W o (V[M + %h[M)Kv]aB

= (V, +2h,)8{0K P17, (22)

where we have used R ,,*# = R,,,*P(w(e)) + r,,*# and
the fact that the Riemann tensor is symmetric under the
interchange of first and second pairs of indices, and there-
fore the Ricci tensor R, (w(e)) is also symmetric. Next

from (20) we may write

Ry (w(e) = =olru, + 1] + 38 u[R(w(e) + 1],

or equivalently
R, (@(e) = 38, R(w(e) = —1,,
= _%[r,u,v + rV,u - %g,u,vr]
— 8w R(w(e)). (23)

Now since V#[R,,,(w(e)) —
to solve V#¢
next.

%g,u,vR(w(e))] = 0, we need
wr = 0. This is what we shall attempt to do

Dilaton-axion gravity from the self-dual solution

We shall use the convenient ansatz for i, and K, in
(17):

K
— e—2¢>H

wB = B> 24
pap 2\/5 wapB 24)

h,=-30,6, K

where « is a constant and completely antisymmetric H ,, 5
is the field strength of an antisymmetric tensor gauge field
B, Hyap = 01uBap)- We shall take ¢ to be dimension-
less (soon we shall see that it will represent a dilaton) and
the antisymmetric gauge field B, to have mass dimen-
sions +1, and its field strength H ,,g then has dimensions
+2. In order for the mass dimension of /., of (17) to be
+1 (mass dimension of the gauge field A’ ) the constant k
has to be of dimension —1. However, in the following
discussion, we shall take k = 1 for convenience; it can
easily be restored whenever needed.

We use (24) to construct the tensors r,,,5 and r,, of
(16) and (19). This leads us to

ruy =2[V, ¢V ¢ =V, V, 8] - g,.[2(Ve) + V2]

1
V, (e 2H ge_4¢H#aBHV“B,

,u,va) -

2f

r=—6[(Vg)> + V2] — %6_4¢HaﬁyH“ﬁ7. (25)

From (23) these, in turn, imply
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twy = —2[V, ¢V, =V, V,¢]
—38ul(Ve)? = V2§ — JR(w(e))]
—4¢ *[H,0pH,*F — 1g,,Hop,H*7]  (26)
Then V#t,, = 0 is satisfied by the following solution:
R, (w(€)=2[V,V,¢ -V, ¢V, ]
+8u V¢ +2(V$)? —3Ae*]
+3e *[H0pH,*P =18, Hop, H*P7],
Vie2?H,,,5]1=0. (27)
To verify that these indeed provide a solution, substitute
R(w(e) = 6[(Vo)* + V2@] — 5y *O H, g HPY
—2Ae*

obtained from the first equation into (26) to write

tyy =2AV, 6V, ¢ =V, V,¢]+ g,,[(V)? +2V2¢
AT e, g, 1)
It is useful to notice that
HUPY  H o = gV (H PV H ) = —5H PYV, H o
=0,

where the last step is implied by the identity V[, H,z,] =
0. Then

v'ut,uv = 2[v2¢vv¢ + vv(v¢)2 - vzvv¢ + vl/v2¢]
—0,0*? A + e **VEP[H , ,zH,"P
— 48 uvH gy HPY] — te 4*VHH s H P,
(28)

Next use the identity V>V, — V,V?¢ = R, (w(e))V* ¢
and the first equation of (27) to prove

2AV$V, ¢ +V, (V) = V2V, +V, V2] —d,pe*? A

= _%e_‘hﬁv'ud)[H,uaﬁHvaB - %g,uVHa,ByHa'By]‘
This, when substituted in (28), yields
Viét,, = —se V(e 2?H,,5)H,*F =0

by the second equation in (27).

Thus the solution to the self-duality constraint is given in
terms of Egs. (27) along with the constraint (22) which
may be rewritten as

VieHhl, =20l pHFl,, — 20, ¢H P

+ 97 pS[%HP | (29)

o

This constraint is consistent with the second equation in
@27.
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Now notice that (27) are the equations of motion of a
dilaton ¢, an axion B,,, and a cosmological constant A
coupled to gravity in a conformally invariant manner. An
effective action with linear R that yields these as its equa-
tions of motion is

Sepr = % fd4xe[ez¢(ez¢A + R(w(e)) + 6(d)?)

[
- ge 2¢Ha'3,yHa'By:|. (30)
This action is conformally invariant. That is, this action is
unchanged under transformations,

8ur(X) = gh,(x) = Q2 (x)g,,, (x),
¢(x) = ¢'(x) = ¢(x) — InQ(x),
B,,— B, = B,,.

That is not surprising, because our starting SU(2) gauge

theory action (1) is classically conformally invariant.

Notice that, while (27) are the equations of motion for
the effective action (30), the constraint (29) has to be
invoked additionally to describe the solution to the self-
duality constraint *F',, = Fi .

If we restore the constant x of mass dimensions —1
introduced in (24), it shall appear in the gravity equations
(27) and the effective action (30) in a way that x> can be
interpreted as Newton’s constant of gravity. Though we
started with a gauge theory (1) with no dimensionful
parameter, Newton’s constant emerges as a dimensionful
modulus of the space of solutions in this theory.

The kinetic energy term for the scalar field ¢ in the
effective action (30) has the wrong sign. It really is not a
physical field, because it can be rotated away by a Weyl
scaling of the metric by absorbing it into the conformal
factor of a new scaled conformally invariant metric
gur(X) = e g uv(x) leading to Poincaré gravity from
conformal action of a scalar field.

Thus we have demonstrated that the solution of the
equations of motion, in particular the self-duality equation,
of a complex SU(2) gauge theory leads to the equations of
motion of gravity conformally coupled to a dilaton and an
axion and also a cosmological constant. It is worth pointing
out that the axion field so obtained can also be viewed as
propagating torsion.

C. Anti-self-dual solution

Next let us analyze the anti-self-dual solution of the
equations of motion:

R ™+ Ry, = =3,,"R+ e, RV, (3D
which when contracted with e} yields
R =0, R, =R,,. (32)
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This further, from (31), implies

a a — la
R ™+ R?,, = ey RP (33)

This equation fixes 12 out of 21 independent components
of R,,* + R, and the remaining nine are undeter-
mined. On the other hand, six components of R M,,“” -
Rab uv are fixed leaving nine undetermined. Thus, the
constraints (33), which are equivalent to the anti-self-
dual constraint (31), fix 18 of the 36 independent compo-
nents of R /L,,“b . Notice that the self-dual constraints (20)
and (21) and the anti-self-dual constraints (33) fix compli-
mentary components of R M,,“” .

Next we define a (traceless) Weyl tensor associated with
R, as

my

C

ya%z

ab — a a [a
=R, +13,, PR LR
Then (32) and (33) imply
C/“,ah + Cah/“’ — R’uyah + Rah,uv _ eEZLRV]b] = (.
(34

Writing R ,,** = R, " (w(e)) + r,,"" as in (15), this
constraint can be rewritten as

2 aB _ gla Bl — — apB ap e B
R, 5[R]]— (rl +r l)+5[r]].
35)

Now for the trace and completely antisymmetric parts of
h,qp as defined in (24), the pairwise symmetric part of the
four-tensor 7,4 18

rMVaB + raBMV = %ei4¢H[,um\HV]AB o 28%ZVV]VB]¢
+26[°V, 10 VPl p — 257 5% (Vo).

The anti-self-dual constraint from (32) implies

(e7**H,,”) =0 (36)

— Iy, =

1
Vo
2

j7a%

and hence

Fuv =2[V, ¢V, =V, V,¢] - g,,[2(Ve)* + V2¢]
— 4 **H, ,zH,*P (37)

and

R(w(e)) = —r =6[(Vp)* + V2] + %e““/’HaByH“M.
(33)

Further (33) or (35) implies the constraint
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Bl _ _ gl
ViR (w(e)) = =VH(r,,*# + 1B, — 8 rfl |

+ 188, 85,7), (39)
where we have used the identity satisfied by the Riemann
tensor: VAR ., 53 = V[,Rp),. It can easily be checked that
a solution of this constraint is given by

H =0,

map
Ry (@(e)) = =7y, + Puy
=2[V,V,$¢ -V, ¢V, ¢]

+ 8V + 2(Vh)] + pp,.  (40)

where p,,, is symmetric (p,, = p,,) and traceless (p =
p*, = 0) and satisfies the equation

v[apﬁ]# —_ a[agbpﬁ]# + 5[;“pﬁ]yal’¢ = O‘
The Reimann tensor for this solution (40) is

Ry = —r,,*F + %SEZPB]D]

— S%Z(VV]VBW) — V,16VFg) + slesBl(ag)?

+ %B%Z PPl )
Thus this provides a solution to the anti-self-dual constraint
of gauge theory. It is possible that there are other more
general solutions for the anti-self-dual case.

So far we have discussed only pure complex SU(2)
gauge theory. Other matter can also be included in this
formulation. This can be achieved by adding terms made of
other representations of the complex SU(2). For example,
we can add Lorentz scalar fields in triplet representation ®*
or fermions A’. In particular, we may add these extra fields
in a supersymmetric manner. This would then lead to the
equations of motion of supergravity. We do this in the next
section.

III. N = 1 SUPERSYMMETRIC COMPLEX SU(2)
GAUGE THEORY

Supersymmetric generalization of Einstein gravity in its
simplest form leads to N = 1 supergravity. This theory,
first discovered about 30 years ago, is described in terms
of, besides a set of auxiliary fields, the physical metric field
8 v and its superpartner, spin 3 /2 gravitino i, [13]. In the
spirit of Sec. II, we wish to set up a locally supersymmetric
Yang-Mills theory whose equations of motion admit
N = 1 supergravity equations as a solution. General super
Yang-Mills action coupled to a tetrad and gravitino, with-
out kinetic terms for them, and the relevant supersymmet-
ric and other transformation rules have also been known for
a long time [14-16].
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We need a supersymmetric generalization of the con-
formally invariant action of complex SU(2) gauge theory
of the previous section. For this purpose, we introduce a
complex SU(2) triplet vector N = 1 superconformal mul-
tiplet (A, A, D') where complex D' is the usual auxiliary
field. Notice that, like complex Ai,, the fermion is also
made of two Majorana triplets: A/ = A1)/ + jA@i We
have nine complex off-shell degrees of freedom in Al
three in D!, with a total of 12 complex off-shell bosonic
degrees of freedom, which is same as the number of off-
shell degrees in the fermions A’. We couple this supermul-
tiplet to off-shell fields of the background conformal su-
pergravity Weyl multiplet (ef, #,,, B,,) where the last is an
axial vector field. Here we have eight off-shell real degrees
of freedom in the bosonic fields, e, and B,,, and an equal
number in the gravitino field ¢, . In terms of these fields,
the Lagrangian density L for the N = 1 super(conformal)
Yang-Mills theory is given by

]Fl,U.VF
- }Uﬁuo'

e 'L = iwr — SAYHD(@)A + ID'D

“Byr N[Fi g+ Figl 41)

Here the Majorana conjugate of the fermions is given by
(A4 = (A)BCpy and (J,)4 = (¥,)BCpa where C is the
charge conjugation matrix and (A, B) are four component
Dirac spinor indices. Supercovariant spin connection @ #“”
contains ¢, torsion, but not A’ torsion:

(I)Mab — 6l)Mab(e) + K,uabJ (42)

Kuab = 4_11(1/_/(1’)/“'7[’}1 + 'Z[,U/’YCI(/Ib - l/;Mth//(z)-
The covariant derivative acting on the fermion is

3i
A ubo_ab l'}/sB >)\l _ Et]kAJ )\k

4

| =
S

D (@)Ai = <aM +
and the supercovariant field strength is

EFi, =Fi, =3,y A (43)
The action (41), besides having complex SU(2) gauge

and general coordinate invariances, is invariant under local
supersymmetric transformations:

. 1 - . 1 /\l' . l
OAL = S €V, S\ = ——(a'“ﬁFaﬁ +iysDie,
5Di EEYS'YM(D (Cl))/\l + — 75@1111/1,)
a 1 = a r =
oe§, = 567 Yy 0B, = —i€ysd,,
81/’/1, = D#((;))f,
where
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3i
D, (®)e = ( + = o'ahw”b 4l 75Bﬂ>e,

~ 1 i

D,(@)A = D, (&)A +2U"‘BF s
1 . .
bu =37 (Dy(wm - D@,
2 ')/SE,MVQBD (w)%”B)

. 1 wap 3 A

D/J,(w)l//V = (a,u, + za-abw,u, - Z’}’SBM>¢/V + FMV ¢//\'

The action is also invariant under conformal transforma-
tions:

/ — a
eM—Qew
i — Al

Al = AL

g, =Q'%y,,  B,=B,
M = 97(3/2))‘1', Di = Q2.

There is an additional invariance under so-called R sym-
metry, a local axial U(1) (the associated gauge field is B,,):

. 3i .
AL, = 8D = 8¢%, =0,  SA =Zlay5)t’,

3i
ZCY’}/SI/IIL, 5B'u = 8#a.
Finally, the action is also invariant under local supercon-
formal transformations:
dey, =0, 5% = —YuM
8Al, = SN =0,

o, =

SBM, = ”77’)/5 lﬁ,w
6D = 0.
As in Sec. II, we have a complex action. There are no

kinetic terms for the tetrad field e}, its superpartner
Majorana i, and the auxiliary axial gauge field B,,.

A. Equations of motion

Variation of the action with respect to various fields (A%,
M, B us €y» and ) leads to the following equations of
motion:

SAL: D, (Fi” + Xiy*ah?ys,)
SN P(@)AT =0,
8B, Aysy, A =0= ysAl = £\,

— 1 ijk ¥ jav pk
= Lelk N y¥ AK,

M
8tp,: 0P gyt A =0,
8¢%: T, =[Fi o+ AyPo,hglF,»
— 38wl F*F + XyP By, JFL 5 =0, (44)

where we have used the earlier equations in simplifying the
last two equations, and the derivative D, in the first
equation is covariant with respect to both the complex
SU(2) gauge transformations and general coordinate trans-
formations. While variations with respect to the gauge field
AL and the fermions A’ yield genuine equations of motion,
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those with respect to the fields B, ,, and the tetrad e},
give only constraints.

We now try to solve these equations. It is straightforward
to check that the last three equations in (44) are solved by

YsAl = F AL Fi, + Ay%o, b, = =*F,.
These, in turn, imply a generalized self-duality or anti-self-
duality constraint equation for the supercovariant field
strength of (43):
ysAl=FA,  FL,=*F, (45)

These constraints make the 8A%, equation of motion (the
first equation in (44) above) hold identically. As in the
nonsupersymmetric case of Sec. II, for configurations sat-
isfying these constraints, the N =1 super Yang-Mills
Lagrangian density (41) is a total divergence: L =
F(e/HF,, F'rr =%9,J"

There is a supersymmetric generalization of Urbantke
type formulas (7) as

g g, = (detd;)" /2%,

R . (46)
g'/4gny = (det¢i,j)7(l/2)Y”V,

where quantities (ﬁij, X uv» and #7 are given in terms of
the self-dual or anti-self-dual supercovariant field strength
as

~

.= +leuvaBfi i
¢ij = *3€ FuvFop

and
% — 42 ,aB0b Lijkfi f fk
X = £2ePIOME PP
Ourv — 1 _paBy Avpo cijkfi f  fk
Pr = Lenaby ehvoo ik i fi f

To develop solutions of the constraint equations, we next
write

Pi, =R, P, A7)

We trade three complex fermions )\i with six Majorana
fermions A“# through the relation A' = A*#X! ;. Then the

supercovariant R tensor introduced above can be written
as

A

R ,u,VaB = R#Va,B - %&[ﬂﬂyu]/\aﬂ’ (48)

where R M,,aﬂ is the same tensor as introduced in Sec. II:
Fi, =R, P2,
Self-duality or anti-self-duality of the supercovariant
field strength (45) implies
# D @ X ap
R, ==R,", (49)
where as earlier * represents duality with respect to the first
pair of indices [ ] and tilde~is duality with respect to the
second pair [@B]. As in Sec. II, this equation in turn leads
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to the supersymmetric generalization of Eq. (11):
+R,, " =R, =3, PR - IR, (50)

We shall consider here only the self-dual case. In this
case the constraint equation above is equivalent to the
following two independent equations:

2R, (51a)

R, +R,, =
et (R, =R, (51b)

ab 5 ab _
RV -R 2

o

= =

These fix 18 of the 36 independent components of R M,,”b.

B. A self-dual solution of equations of motion: N =1
supergravity

To solve the self-duality constraint and also the fermion
equation of motion above, we parametrize

Al =0, Pl =[w,*P(e) + k,“FISl,  (52)
with contortion tensor .,z as given in Eq. (42). Then

R 1™ = R, P(&) = R, “Plwle) + 5,,°P,

v
where
S, P = V[MKV]“B + K[#a’\KV]A'B.
For s, = 8*Ps,,4,5 and s = g*"s,,,, we have
Suy = Vuk, = (Vo = KoK, % — KMa'BKaB,,,
s =2V k= kFK, — KuapK™PH,

where k, = k,,“. Straightforward calculation yields

A

R = Ry = 7y s + M)

— 30,y (f + AP)

+ &7 Py o)

— §8otu bV, (53)

_ A — 1 A aby
Where lﬂ/.LV - D[p,(w)l//V] = a[,u,‘r/lv] + jo-ahw[lu,a l/’v]
3 ysB, ). From this we have

j\{ 2 Rv,u = _%&[MVUWW] + /\VO']) + iIZUY[M/\VO'}

Next, like in the last section, we use the generalized
master equation (5la) to construct an expression for
[R,,(w(e)) —1g,,R(w(e))] = —t,,. This can easily be
seen to be
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tur = 3w + Suu — 38081 + 38 R(w(€))
=AY Vo™ T VLY AL — 38 uoWa Y 5 AP ).
(54)
We seek solutions of V#t,, = 0. Along with this the
fermion equation JJ(®)A' = 0 with constraint ysA! =

— Al is also to be solved. Finally, the solution is given by
Auy = —,, and the following set of equations:

wy
B, =0, YsY" ¥ar =0,
S o (55)
R,u,v(w) = f'ﬁa’}/S’yl.L ¢V{I'

Notice the second equation implies A,, = —¢,, =

¥s't,, and also y;,#,,) = 0. These in turn make the
right-hand side of (53) identically zero:

N a S a * A ap
R v F = R, + %‘70[#71/]1//&'8 =R BMV = Ry -
(56)

The last equation in (55) can be rewritten as
R pr = Ry (@) — %’Z’[Mya])‘va =0.

Both the constraints (51) are satisfied. Thus (55) then
provide a solution to the generalized self-duality con-
straint. Also the fermion equation of motion of super
Yang-Mills theory is satisfied. To verify that this is so,
using the equations (55) and (56) above and the implied
equation y“o-Ap’Ra#’\p = 0, it can be checked that the
gravitino field strength ¢, = el ey, satisfies the fol-
lowing equation:

¢(d))¢ab - %’yﬂa-Cdj\{cdablﬂ,u
= ’YL'(K[QCCI + KCd[a)l/fb]d - zlt’yea-cdlvb[al/_jb'}/e]'vlﬁd =0,
(57)

where the second step follows by Fierz rearrangement.
This equation is equivalent to the A’ equation of motion
in (44).

Equations (55) can readily be recognized as the equa-
tions of motion of N = 1 Poincaré supergravity [13,15].
These describe the dynamics of the Poincaré supermulti-
plet of physical fields e}, and ¢, and the auxiliary axial
vector field B, and are governed by an effective linear R

Lagrangian density:

1 . 1 - .
e ' Lo = ER(& @) — Zf“mﬁlﬁ#?s%Da(wWﬁ

- %B“Bﬂ. (58)

Thus, starting from the N = 1 supersymmetric complex
SU(2) gauge theory we have obtained a solution for its
equations of motion which is described by N = 1 Poincaré
supergravity equations of motion. Clearly this is not the
most general solution of the self-dual case. A more general
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solution would include supermultiplets of a dilaton and an
axion coupled to the gravity supermultiplet along with a
cosmological constant in a (super)conformally invariant
manner as a complete supersymmetric generalization of
the gravity solution of the self-duality constraint obtained
in Sec. II. Such a solution, though more involved, can be
developed by the same method as described above. It
would exhibit all the symmetries, including conformal
and superconformal symmetries, of the starting action (41).

IV. N = 2 SUPERSYMMETRIC COMPLEX SU(2)
GAUGE THEORY

The next level of supersymmetric generalization of
Einstein gravity is N = 2 supergravity [15-18]. As earlier,
this is to be obtained from the self-dual sector of the
conformally invariant N = 2 supersymmetric complex
SU(2) Yang-Mills theory. The N = 2 Yang-Mills multiplet
consists of two complex SU(2) triplet fermion fields, each
made up of two Majorana fermions, W/ = Wil 4 j\p@il
(I = 1, 2), containing eight off-shell complex triplet fer-
mionic degrees of freedom. We shall split their left and
right handed chiral components: A} = (1/2)(1 + y5) Wil
and AT = (1/2)(1 — y5)¥! so that ysAi = A} and
ysAl = — i, There is additional compact SU(2) symme-
try [which, along with a U(1) axial symmetry, forms the R
symmetry group] which acts on the upper and lower chiral
indices I so that chirality and transformation properties
under this real SU(2) are in direct correspondence. An
equal number of off-shell bosonic degrees of freedom
consist of (1) a complex gauge field A%, (2) two scalar
fields, X! = X7 + iX®! and its charge conjugate X' =
XWi — ix@i (both XV and X are complex), and (3) a
symmetric auxiliary field Yi, = Y + iy!)' = yi and
its conjugate Yl = yWit/ — jy®ils = KLy —
inZi). We need a conformally invariant supersymmetric
action coupling these fields to the background N = 2 off-
shell superconformal gravity multiplet. This background
supermultiplet contains 24 off-shell fermionic degrees of
freedom consisting of two Majorana gravitinos with chiral
components i}, and . (Y5l = P Vsihiu = —,)
and additional Majorana fermion fields with chiral compo-
nents ¢ and ¢; (ysd; = ¢, vs¢' = —¢'). An equal
number of bosonic degrees of freedom are contained in the
tetrad ¢4, antisymmetric 7}’ (anti-self-dual in u, » and
antisymmetric in /, J) and its charge conjugate self-dual
TIJ;” ¥, a scalar field f, and an anti-Hermitian gauge field
V), =W, =-v, (V,; =0) and an axial gauge
field B, of the associated real SU(2) and U(1) of the R
symmetry group.

Action for general N = 2 super Yang-Mills theory in
N = 2 superconformal gravity background has been
worked out in Refs. [16,19]. Complex SU(2) super Yang-
Mills Lagrangian density L is given by
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e\ L = =D, X'DIX + 2f XX + 2 Y[ TV + (XX —

S I
24, XX = AN — €

+ P TIIXIX + 5()\'17“%{61/ + 1, €Y X FHE

PHYSICAL REVIEW D 73, 065027 (2006)

1
(F D XFTS, e = S XIXT, €

€RNIXINL — 2X 0y T X7 + gl PXIyk Ay — €5 AT yr ! €, XI XK

1 - o1 S
— o @ U YD XK L Ky,

1 - o - - . 1 - -
- ZGIKEJL(QZII,MO-MV'»&JVA[KA[L - ¢I/L¢JV/\ZKO-MV/\IL) - EGMVPUI/IIMYV'#;('»&{T)\J 81 lr//K/\ )XI
1 _ _ S o
+ §Eﬂupolplu‘ﬁJVeIJEKL(zlpr’}/O'AIL + l//prL(er)Xl +c.c (59)
[ . -
where the supercovariant complex SU(2) gauge field  fields acts as X"<—>X’ Yi, o YU, Fif <—>F;L,,, T <
strength is T, Alea, v, W,/ ) = V#I , lﬁ[ﬂ =y,
¢! — ¢,, and also e — e¢* = —e. Further, it is useful to

F;,LV = Ffuv - (%‘/_/I[MYVJ)‘FH + (r/_ll,u'wblv6”Xi + C-C-)
(60)
and Fi, = 1/2(Fi, = *F' ) are self- and anti-self-dual
combinations of the field strength. The covariant deriva-
tives of scalar fields are

i — _ i i _ _ijk AJ vk
D, X' = (a# EBM>X €% AL XK,
(61)
D Xi = (a + 23M>Xi — kAl R
and those for fermions are
. 1 . i ) L
D, A} = (a# + anbwwb - ZB">/VI - e‘/"AL/\’,‘
+ VAL
. 1 . i ) s
DM)\” = <8M + Egabwnab + ZB“>/VI - e’f"AL/\“
’J/\”. (62)

The supercovariant spin connection contains the !, tor-
sion and is

d),uab = w,uab(e) + Kuab
Kuab = WL Yalip — WL yoth1a + Iy b, + c.co).

Here c.c. stands for charge conjugation which for various
J

(63)

XX =0, iXi =0, MIXE =0, XFi,

Xl[FA‘fu - XZTMV €17

These equations have two sets of solutions:

(1) )l; = O, Xi = 0, Fl_ = X T ”61], (67)

X =0, F, =XT, €

(68)

Gy A'=0,

introduce a generalized supercovariant complex SU(2)
gauge field strength:

L =Fl, = X'T, e —XT, Ve, (64)

Like in earlier sections, we introduce the tensors
R,..*%.R,, # and in addition the fermionic tensor fields

)\L,,, A7, and bosonic tensor fields ¢ ,,,, ¢ uv through

— a — R ‘1/3

- R BE&B’ - R Eaﬁy

)U — /\MVEQW’ /\11 — /\I,u,vzfuw (65)
- ¢Myz,uw Xl = ¢MVE,MV

Then from the generalized supercovariant field strength
(64), we have the generalized covariant curvature tensor as

’Rwaﬁ =R, * - [%&I YA Pe + gl yle, P
+ T IJE]Jd)a'B + C. C] (66)

where (¢,,,)%¢ = d_’;w and (Ag,,)*¢ = AL,.

A. Equations of motion

Variations of the action with respect to fields f, ¢;, ¢/,

Ty, and T}/ yield the following equations, respec-

tively:

o XiT;wJe” + %(%Zm%yfurxi - %()_\”’)’[Mlﬁ,{]fu)q =0,
+ 3 e X

- %(X§7[ﬂ¢V]J61J)_] = 0.

{
The generalized supercovariant complex SU(2) gauge field
strength f]-"i“, introduced in (64) is self-dual and anti-self-
dual, respectively, for these two solutions.

Variations of the action with respect to fields B, V.,
gauge field A, tetrad e? 4> and gravitinos l//w a,b, u are
identically zero when solutlon (67) or (68) is used. In
particular, the stress-energy tensor 7', obtained by varia-
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tion with respect to ej, is zero for the two solutions (67) and ~ where the supercovariant derivative of the fermion is
(68). R

For the case of self-dual solution (67), variations of the D AT =D A = 1o Fity, € — PX'yl,  (70)
action with respect to A/ and X' are also identically zero.
But variations with respect to A} and X' yield additional and the supercovariant derivative of the scalar field is
equations of motion for the fermion field A/ and the scalar o _ _
field X'. The fermion equation of motion is D, X =D,X =AUy, . (71)

PAT=2X'¢p! =0, (69)  The scalar field equation of motion is
J

D DX — L DN + Lk AT € X5 — Wiy gl THab 4 Leiik NN )+ LPE THab el 4 LRl + gy,
+2f + i yvad' — WLy i’ — Wy WPIX =0, (72)
where the derivative with the Lorentz index D, = e§'D,, and the supercovariant gravitino field strengths are

Yipw = Dty = Druthy — YT Wl Wi = Dbty = Dbty — v T, (73)

On the other hand, for the anti-self-dual case (68), variations of the action with respect to Al and X' are identically zero
and those with respect to A" and X' yield equations of motion for the fermion A} and the scalar field X’ which are the
conjugate versions of Eqgs. (69) and (72) above:

DA —2X i, =0,
Xy yb Tl + Lk QA el + LFiabT- Ve, + 1Xi(¢! + a®yl,)
+[2f + Pyt dr — Wby W — Wy Y IXT =0, (74)

D, DX" — L DA} + ek, yi Aj el Xk — 1

where the supercovariant derivatives are

D Ay =D A — Lo F gl e, — DXy, D,X' =D, X" —1Xiyl.

As in earlier sections, for configurations obeying self-dual (67) or anti-self-dual (68) solutions, the Lagrangian density
(59) is a total divergence: L = *(e/4) *F"/’“”Fﬁw = *9,J".

B. N = 2 supergravity as a self-dual solution of the equations of motion

We wish to solve the self-duality constraints (67) and the associated fermion equation (69) and scalar field equation (72).

We parametrize the complex gauge field AL as in (52): AL = M“B E;ﬁ, where now @ M“B is the N = 2 supercovar-
iantized spin connection given by (63). Self-duality implies the same two independent constraints (51) as in the N = 1 case
but with the tensor R M,,aﬁ now given by the generalized N = 2 expression (66). Notice for this solution that /\LV and ¢ v
are self-dual and A;,, and ¢, are anti-self-dual.

An analogous calculation to that for Eq. (53) of the N = 1 theory here yields the relation

A

RMVaﬁ - Raﬁ,ul/ = %MEQYB]WLV + GIJAJ,MV) - &I[u')/V](‘pla'B + EIJ)‘?B)] + %[ga[a‘p?]’)/[a'lp;y] - ga_[Ml/_/V]l,y[awa,B]I]
+ [lwzluwlv(’riaﬁ” - eljd)a,B) - &?$§(T71JMV - GIJd),uV)]
- [T;VIJGIJ¢>“'3 —T*%B, eV, ]+ cc (75)

N = 2 generalization of the equation (54) of the N = 1 case is

A A

R,uv - Rv,u = _%[&1[M70(¢£g] + GIJAI/U']J) - &IUY[M/\{W]GUJ + [lpl[,u,lp‘([r(T_”,,]o- - Gud)l/](r) - T[;Uu(iv]a'elj] +c.c
(76)

Self-duality constraints (67) are solved if the following hold:
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B =0, V[JZO, ¢I:O’ ¢I:

6”¢,um =

o

— - = J —1J —
/\IMV - )lI,U,V - GIJ]‘//,MV’ T,uV -

1 .

i
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/\iuf = )‘Lj‘;/ = 61!¢J;LI/’

| N
- 1 — +
Fue’, T,LLV[J EIJ¢,U.I/ - \/-Z—FMVEIJ:

where the supercovariant field strength for the Abelian gauge field A, is

A~ 1 - -
F,uV = F,uv - —(‘Mﬂﬁxj)fn + lﬁl,ulpjvelj)r F/.LV = a[,lLAV]

V2
Then self-duality equations are satisfied if
')/'U“lpl = ’ ’}/Mlpl,u,v = 0’
’jl"“’ - R:‘“’(w 6) (lpl Yu ot ¢1a7M¢1Va) = ¢I l//j EIJF “+ lzl,ulpjafuﬁ_ Va) - Zﬁ‘;aﬁ';a =0,

Q‘

DAaﬁ+ab = Da(é?))ﬁ+ab _ ﬁ lzm’#;zbelj = (),

A f—a A\ —a [ a
D =% = D (@)F~ - EW/ bey = 0. (77)

These make the right-hand sides of Egs. (75) and (76) identically zero. Other equations of motion of the Yang-Mills theory
are also satisfied. It can be checked that Egs. (77) imply the following equations for the gravitino field strengths:

p(@),
¢(d\))¢1ab

where

L. o l-
Rabd:Rabcd(w’ e)+|:2 !

1
__7 UcdRCdab¢1 +

Lyt -

1
ﬁ Y ¢Fab¢m =0,

1 iy P
- E’V“Ucd'R dabl//l,u + E’YMEF;—blp;JLEIJ =0,

(78)

1 - " A
Phple Fred — F Fred + cc. }

2

Contracting (78) with X/, the left-hand side of the first equation is identically zero (i, is anti-self-dual) and the second
equation is the fermion equation (69) for ¢’ = 0. It can also be checked that the field equation (72) for scalar field X' is

satisfied by the above solution.

The self-dual solutions (77) are equations of motion of the N = 2 supergravity action [17,18]:

1
R(a) e) — 1 F,,F*

+ lpl,u,lpJVf”(F_MV + F_#V)]-

-1
e ' L=

Clearly a more general solution of the self-dual con-
straint (67) and the associated fermion equation (69) and
scalar equation (72) would involve N = 2 supermultiplets
of a dilaton and an axion coupled to a gravity supermulti-
plet in a (super)conformally invariant manner as an N = 2
generalization of the gravity solution of the self-dual con-
straint of Sec. II.

V. CONCLUDING REMARKS

We have presented a gauge theory formulation of gravity
based on the complex SU(2) group. The action functional
is quadratic in field strength. Here both the complex gauge
field A; and the metric g, are varied. There is no dynam-
ics for the metric to start with. Varying the action with
respect to the metric gives a constraint equation, which is
solved by self-dual or anti-self-dual field strengths. This

1 _ )
- Z eﬂyaﬁ[¢L7VDa(w)¢1B -

1Yo Do (@] + —=[ bl e, (FH + Frrr)

f

[
then relates the metric to the gauge field. Einstein gravity

equations of motion follow from the self-dual constraint.
Though the starting action has only a complex dimension-
less coupling, dimensionful constants, in particular,
Newton’s gravitational constant, appear as parameters in
the space of solutions.

This theory has some similarities with the Ashtekar
formulation of gravity. But there are some characteristic
differences: (i) The action in the Ashtekar approach is
linear in field strength, whereas it is quadratic here.
(i1) The equations of motion ultimately obtained here are
not pure gravity but gravity coupled to a dilaton and an
axion in a conformally invariant manner. (iii) Symplectic
structure is distinctly different. Canonical momentum con-
jugate to the gauge field A is not a densitized spatial triad
as in the Ashtekar theory (k~2eX), but like in ordinary
gauge theories, it is given by II¥/ = reFi!/. However,
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unlike other ordinary gauge theories, there is an additional
constraint given by the self-duality or anti-self-duality
condition of the field strength. Thus the symplectic struc-
ture is also different from other gauge theories. In fact, this
makes the constrained Poisson bracket (Dirac bracket) of
two gauge fields Aj(z, x) and A’(z, y) nonzero.

The analysis has been extended to the N = 1 complex
SU(2) super Yang-Mills theory. This results in a general-
ized self-duality/anti-self-duality condition not for ordi-
nary gauge field strength, but for supercovariantized field
strength. Finally, for the self-dual case a solution of equa-
tions of motion is given by the equations of the N = 1
supergravity theory.

The discussion has also been extended to N = 2 com-
plex SU(2) super Yang-Mills theories. Results are similar
to those for the N =1 case. The self-duality/anti-self-
duality holds for a generalized field strength which not
only contains the usual gauge field strength and terms
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involving fermions but also other fields of the supersym-
metric Yang-Mills and gravity multiplets. For the self-dual
case, the analysis leads to N = 2 supergravity equations of
motion.

This analysis can also be extended to the N = 4 complex
SU(2) supersymmetric gauge theory. Here self-duality of a
more complicated generalized supercovariant SU(2) field
strength leads to the equations of motion of N =4
supergravity.

A detailed discussion of N = 4 supergravity obtained
from the self-duality constraint in the N =4 complex
SU(2) super Yang-Mills theory and one-loop quantum
corrections in such a theory will be presented elsewhere.
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