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We elucidate the geometry of the polynomial formulation of the non-Abelian Stueckelberg mechanism.
We show that a natural off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) differential exists allowing
to implement the constraint on the � field by means of BRST techniques. This is achieved by extending
the ghost sector by an additional U(1) factor (Abelian embedding). An important consequence is that a
further BRST-invariant but not gauge-invariant mass term can be written for the non-Abelian gauge fields.
As all versions of the Stueckelberg theory, also the Abelian embedding formulation yields a nonpower-
counting renormalizable theory in D � 4. We then derive its natural power-counting renormalizable
extension and show that the physical spectrum contains a physical massive scalar particle. Physical
unitarity is also established. This model implements the spontaneous symmetry breaking in the Abelian
embedding formalism.
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I. INTRODUCTION

The Stueckelberg formalism [1,2] allows for a gauge-
invariant mass term for non-Abelian vector bosons without
the need to introduce physical scalar fields in the classical
action. The main disadvantage of the non-Abelian
Stueckelberg mechanism is the fact that it yields a
nonpower-counting renormalizable theory. In particular
the Stueckelberg mass term
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with � � exp�igTa’a�x�� an element of the non-Abelian
gauge group G, contains an infinite number of interaction
vertices involving the fields ’a�x�.

There have been some attempts in the literature aiming
at a polynomial formulation of the Stueckelberg mecha-
nism [3,4]. It is hoped that a polynomial interaction could
help in establishing a consistent subtraction scheme for the
definition of the Stueckelberg theory at the quantum level.

In Ref. [4] it has been pointed out that a polynomial
action implementing the Stueckelberg construction can be
derived from an interpolating action which reproduces for
different choices of its parameters the Stueckelberg theory,
the Higgs model as well as an embedding of the Higgs
model which includes additional physical scalar fields. The
construction makes use of a BRST-like (on-shell nilpotent)
symmetry involving a pair of ghost-antighost fields which
are singlet under the non-Abelian gauge transformations.
An extension of this approach has been used in [5] in order
to propose a model for massive gauge bosons without
fundamental scalars.

In this paper we elucidate the geometry of the polyno-
mial formulation of the Stueckelberg theory. We show that
the requirement of polynomiality of the Stueckelberg in-
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teraction can be formulated by means of a truly off-shell
nilpotent BRST symmetry. This leads to an Abelian em-
bedding implementing the �model constraint by means of
an additional U(1) pair of ghost-antighost fields. These
fields play the role of the G-singlet ghost-antighost fields
proposed in [4]. Moreover it turns out that an Abelian
gauge connection B� can be introduced and given a mass
without violating the BRST invariance. B� can be chosen
to be a free massive U(1) field.

The BRST invariants of this theory are particularly
interesting in the case of the group SU(2). For this group
a polynomial composite vector field can be constructed
which transforms as a connection under the BRST differ-
ential (but not under the SU(2) gauge transformations).
The rather surprising consequence is the possibility to
generate a new polynomial BRST-invariant but not gauge-
invariant mass term for the non-Abelian gauge fields.

As all known versions of the Stueckelberg mechanism,
the Abelian embedding model is not power-counting re-
normalizable. We then study an extension thereof which is
both power-counting renormalizable and physically uni-
tary. Its physical spectrum is analyzed by BRST techniques
and shown to contain the three physical polarizations of the
massive gauge fields as well as a physical scalar particle.
We prove by cohomological techniques that this theory is
indeed physically unitary to all orders in the perturbative
expansion and give the whole set of counterterms of the
model.

This theory provides an alternative implementation of
the spontaneous symmetry breaking. Since it is power-
counting renormalizable, one could conjecture that it is
physically equivalent to the Higgs model, i.e. that it yields
the same physical S-matrix elements. The check of the
physical equivalence in the perturbative expansion is an
interesting question which deserves to be further
investigated.
-1 © 2006 The American Physical Society
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The paper is organized as follows. In Sec. II we briefly
review the standard formulation of the Stueckelberg model
based on the use of a flat connection for the gauge group G
and discuss how the Higgs model can be derived as the
power-counting renormalizable extension of the flat con-
nection version of the Stueckelberg theory. In Sec. III we
develop the Abelian embedding formalism for the
Stueckelberg model. The additional BRST-invariant but
not gauge-invariant mass term that can be written for G �
SU�2� is discussed in Sec. IV. In Sec. V we move to the
analysis of a physically unitary and power-counting renor-
malizable extension of the Abelian embedding formalism.
Power-counting renormalizability is established as a con-
sequence of a set of functional identities defining the
theory. The physical spectrum is constructed in Sec. VI.
Conclusions are finally given in Sec. VII.
II. FLAT CONNECTION FORMULATION OF THE
STUECKELBERG MODEL

For the sake of definiteness we consider the gauge group
G � SU�2�. We follow the derivation given in Ref. [6] (for
a review of the standard Stueckelberg mechanism see also
[2]). The (global SU(2)-symmetric) Yang-Mills action in
the Proca gauge is

S �
Z
d4x��1

4Ga��G
��
a �m2 Tr�A�A

���; (2)

where A� � �aAa�. �a are the Pauli matrices and Ga�� is
the field strength

Ga�� � @�Aa� � @�Aa� � gfabcAb�Ac� (3)

with fabc � 2�abc. Let us now perform an operator-valued
SU(2) local transformation

A0� � �yA���
i
g

�y@�� (4)

with � 2 SU�2�. Then one gets the Stueckelberg action

S �
Z
d4x

�
�

1

4
Ga��G

��
a �

m2

g2 Tr��g�yA��

� i�y@����g�yA��� i�y@����
�
: (5)

S is invariant under the local SU(2) left transformations

A0� � ULA�U
y
L �

i
g
UL@�U

y
L; �0 � UL�: (6)

� is the Stueckelberg field [1,2]. The matrix � can be
parametrized in terms of three independent fields �a as
follows:

� �
g

2m
��0 � 1� i�a�a� (7)

with the constraint
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�2
0 ��

2
a �

4m2

g2 : (8)

Equation (8) allows to express�0 in terms of the fields�a

�0 �

���������������������
4m2

g2 ��
2
a

s
: (9)

Therefore, as a consequence of Eq. (9), the action S in
Eq. (5) contains an infinite number of interaction vertices
and the theory is not renormalizable by power counting (in
D � 4). Physical unitarity of the Stueckelberg model in the
Landau gauge has been discussed in detail in [7].

By setting

� �

���
2
p
m
g

�v� �
1���
2
p

i�1 ��2

�0 � i�3

� �
; (10)

with vT� � 0 1
� �

the Stueckelberg mass term reduces toZ
d4x�D���y�D���: (11)

By dropping the constraint on the field �0 one obtains the
Higgs model [8–10]. In contrast with the Stueckelberg
model, the Higgs model is power-counting renormalizable
in D � 4. In the Higgs model �0 becomes an independent
field. As is well known, in addition to the gauge-invariant
term in Eq. (11) power-counting renormalizability in D �
4 allows for two further invariants depending on �, namelyR
d4x�y� and

R
d4x��y��2. Their coefficients can be

chosen in such a way that spontaneous symmetry breaking
is triggered by the tree-level potential and consequently�0

acquires a nonvanishing vacuum expectation value (vev) v.
The resulting action depends on an additional parameter �
which controls the strength of the quartic Higgs self-
interaction:

S� �
Z
d4x

�
�

1

4
Ga��G

��
a � �D���y�D���

� �
�
�y��

v2

2

�
2
�
: (12)

After the shift �0 � �� v, which amounts to the redefi-
nition

�! ��
v���
2
p v�; (13)

one obtains a theory for massive non-Abelian gauge bo-
sons which contains an additional physical scalar particle
described by the physical Higgs field �. The Stueckelberg
model can be formally obtained by taking the limit �! 1
in the action (12), yielding the constraint

�y��
v2

2
� 0: (14)

This coincides with Eq. (8) by setting m � gv
2 .
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III. ABELIAN EMBEDDING FORMULATION OF
THE STUECKELBERG MODEL

In Ref. [4] it has been pointed out that a polynomial
action implementing the Stueckelberg mechanism can be
derived from an interpolating action which reproduces for
different choices of its parameters the Stueckelberg theory,
the Higgs model as well as an embedding of the Higgs
model which includes additional physical scalar fields. The
construction makes use of a BRST-like (on-shell nilpotent)
symmetry involving a pair of ghost-antighost fields which
are singlet under the non-Abelian gauge transformations.

It is the purpose of this section to obtain a polynomial
formulation of the Stueckelberg action based on a truly off-
shell nilpotent BRST symmetry. We perform a R�-gauge-
fixing of the action

S0 �
Z
d4x��1

4Ga��G
��
a � �D���yD��� (15)

in the BRST formalism and obtain the gauge-fixed action

S00 � S0 �
Z
d4x

�
�
2
B2
a � Ba�@Aa � �gv�a�

� �!a�@
��D�!�a � �g

2v��� v�!a

� �g2v�abc�b!c�

�
: (16)

!a are the non-Abelian ghost fields, �!a the corresponding
antighosts. Ba are the Nakanishi-Lautrup multiplier fields.
� is the gauge parameter.
S00 is invariant under the following BRST differential

sAa� � �D�!�a � @�!a � gfabcAb�!c;

s!a � �
1
2gfabc!b!c; s� � ig!a�a�;

s�0 � �g!a�a; s�a � g�!a�0 � �abc�b!c�;

s �!a � Ba; sBa � 0: (17)

At this point we wish to implement the constraint in
Eq. (14)

�y��
v2

2
�

1

2
�2 � v��

1

2
�2
a � 0 (18)

by means of BRST techniques. The simplest possibility is
to introduce an antighost field �c transforming under s as
follows:

s �c � �y��
v2

2
: (19)

Since the constraint in Eq. (18) is gauge invariant, s2 �c � 0.
One should also introduce the ghost c corresponding to the
antighost �c, which we pair in a BRST doublet [11–13] with
a scalar field X as follows

sX � vc; sc � 0: (20)

Although it is not strictly necessary, it is tempting to
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consider c as the Abelian ghost of a U(1) connection B�,
so that one might also set

sB� � @�c: (21)

Then the original BRST symmetry is embedded in a larger
differential with an Abelian component given by Eqs. (20)
and (21).

We remark that in the embedding theory the quartic
potential in S� in Eq. (12) is s-exact since

�
Z
d4x�

�
�y��

v2

2

�
2
� s

�Z
d4x

�
�� �c

�
�y��

v2

2

���
:

(22)

By adding to the action S00 in Eq. (16) the following term

Sconstr �
Z
d4xs

�
1

v
X� �c

�
�
Z
d4x

�
� �c�c�

1

2v
X���2 � 2v���2

a�

�
;

(23)

the constraint of the Stueckelberg model is reproduced in
the way suggested in Ref. [4]. The nonrenormalizability by
power counting is induced by the interaction vertices
1

2v X���2 ��2
a� in the right-hand side (rhs) of Eq. (23).

By looking at Eqs. (20) and (21) it is also clear that one
can add a kinetic term and a mass term for B� without
violating the BRST symmetry:

SU�1� �
Z
d4x

�
�

1

4
F��F�� �

1

2
M2

�
B� �

1

v
@�X

�
2
�
;

(24)

where

F�� � @�B� � @�B�: (25)

With the choice of Eq. (24)B� is a free massive U(1) gauge
field.

IV. FURTHER BRST-INVARIANT MASS TERMS

We now go back to Eq. (15) and consider the current
linearly coupled to the gauge fields Aa�:

j�a � �ig@��y�a�� ig�y�a@
��: (26)

We evaluate its variation under a gauge transformation
	� � ig
a�a� with gauge parameters 
a�x�:

	j�a � �2g2�y�@�
a � gfabcj
�
b 
c: (27)

This is not the transformation of a gauge connection due to
the appearance of the factor �y� in front of the gradient of

a. This factor can be compensated by the Abelian anti-
ghost field as follows. We consider the composite vector
field

~F �
a � j�a � 2g2 �c@�!a (28)
-3
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and compute its BRST variation:
s ~F�a � sj�a � 2g2

�
�y��

v2

2

�
@�!a � 2g2 �c@�

�
�
g
2
fabc!b!c

�
� �2g2�y�@�!a � gfabcj

�
b !c � 2g2

�
�y��

v2

2

�
@�!a � 2g2 �cgfabc@�!b!c

� �v2g2@�!a � gfabc� ~F
�
b � 2g2 �c@�!b�!c � 2g2 �cgfabc@�!b!c � �v2g2@�!a � gfabc ~F�b !c: (29)
The above equation allows us to derive a vector field which
transforms as a connection under s by properly rescaling
~F�a : by setting

F�a � �
1

g2v2
~F�a

� �
1

g2v2 ��ig@
��y�a�� ig�y�a@

��

� 2g2 �c@�!a�; (30)

we get

sF�a � @�!a � gfabcF
�
b !c: (31)

By Eq. (31) one can use F�a in order to generate a new
polynomial BRST-invariant (but not gauge-invariant) mass
term for A�a , given by

1
2m

2�A�a � F
�
a �2: (32)

This term is absent in the standard flat connection formu-
lation of the Stueckelberg theory.

As a final point we remark that for an arbitrary gauge
group G with generators Ta Eq. (27) becomes

	j�a � �g2�yfTa; Tbg�@
�
b � gfabcj

�
b 
c: (33)

From the above equation we see that in order to apply the
compensation mechanism based on the Abelian antighost �c
the anticommutator fTa, Tbg has to be proportional to 	ab
times the identity matrix.

V. A POWER-COUNTING RENORMALIZABLE
EXTENSION OF THE ABELIAN EMBEDDED

STUECKELBERG MODEL

In this section we discuss a mechanism for obtaining a
power-counting renormalizable theory of massive gauge
bosons from the Abelian embedding formulation of the
Stueckelberg model. We will require that the BRST differ-
ential controlling the theory is off-shell nilpotent.
Moreover we wish to formulate the theory without higher
derivatives. For that purpose we set now

sX1 � vc; sc � 0;

s �c � �y��
v2

2
� vX2; sX2 � 0:

(34)

The gauge-fixed action obtained from S� is
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S0� � S� �
Z
d4x

�
�
2
B2
a � Ba�@Aa � �gv�a�

� �!a�@
��D�!�a � �g

2v��� v�!a

� �g2v�abc�b!c�

�
: (35)

To this action we add

Sconstr;X2
�
Z
d4x

�
s
�
X1 � X2

v
��� 2�v2� �c

�
�
v2

2�
X2

2

�
�
Z
d4x

�
� �c��� 2�v2�c�

1

v
�X1 � X2�

	 ��� 2�v2�

�
1

2
�2 � v��

1

2
�2
a � vX2

�
�
v2

2�
X2

2

�
: (36)

We also introduce the antifields for Aa�, !a, �, �a, �c,
which we denote by A
a�, !
a, �
, �
a, �c
. The complete
action is finally given by

��0� � S0� � Sconstr;X2
�
Z
d4x

�
A
a��D

�!�a � g�

!a�a

� g�
a�!a��� v� � �abc�b!c�

�
1

2
!
agfabc!b!c

� �c

�

1

2
�2 � v��

1

2
�2
a � vX2

��
: (37)

We can assign a ghost number to the fields and antifields of
the theory. Aa�, �a, �, Ba, X1, X2, �c
 have ghost number
zero, A
a�, �
a, �
, �!a, �c have ghost number�1, !a, and c
ghost number �1 while !
a has ghost number �2.

We notice that ��0� is separately invariant under the
BRST differential s0 given by

s0Aa� � �D�!�a � @�!a � gfabcAb�!c;

s0!a � �
1
2gfabc!b!c; s0� � �g!a�a;

s0�a � g�!a��� v� � �abc�b!c�;

s0 �!a � Ba; s0Ba � 0;

s0 �c � s0c � s0X1 � s0X2 � 0

(38)

and under the BRST differential s1 given by
-4
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s1X1 � vc; s1c � 0;

s1 �c � �y��
v2

2
� vX2; s1X2 � 0;

s1Aa� � s1� � s1�a � s1!a � s1 �!a � s1Ba � 0:

(39)

��0� fulfills the following functional identities

(i) th
e non-Abelian ghost equation

	��0�

	 �!a

� @�
	��0�

	A�
a
� �gv

	��0�

	�
a
(40)
(ii) th
e Abelian ghost equation

	��0�

	 �c
� ���� 2�v2�c (41)
(iii) th
e Abelian antighost equation

	��0�

	c
� ��� 2�v2� �c (42)
(iv) th
e B-equation

	��0�

	Ba
� �Ba � @Aa � �gv�a (43)
(v) th
e X1-equation

	��0�

	X1

�
1

v
��� 2�v2�

	��0�

	 �c

(44)
(vi) th
e X2-equation

	��0�

	X2

�
1

v
��� 2�v2�

	��0�

	 �c

� ��� 2�v2��X1

� X2� �
v2

�
X2 � v �c


(45)
(vii) th
e Slavnov-Taylor (ST) identity

S���0�� �
Z
d4x

�
	��0�

	A�
a

	��0�

	Aa�
�
	��0�

	�

	��0�

	�

�
	��0�

	�
a

	��0�

	�a
�
	��0�

	!
a

	��0�

	!a

�
	��0�

	 �c

	��0�

	 �c
� Ba

	��0�

	 �!a
� vc

	��0�

	X1

�
� 0: (46)
By virtue of Eq. (42) invariance of ��0� under s0 is
recovered by projecting Eq. (46) at order zero in powers
065024
of c while invariance of ��0� under s1 is obtained by
projecting Eq. (46) at order one in powers of c.

The choice of gathering both invariances into a single ST
identity equipped with the grading in c proves useful in the
renormalization of the model, as is discussed in the
Sec. V C.

A. Power-counting rules

In Appendix A we give the propagators of the model.
Diagonalization of the quadratic part in the fields of ��0� is
achieved by setting

B0a � Ba �
1

�
�@Aa � �gv�a�; �0 � �� X1 � X2:

(47)

The corresponding UV mass dimensions of the fields and
external sources can be summarized as follows. Aa�, �0,
X1, X2, �a, �!a, !a, �c, and c have dimension one, B0a has
dimension two. �c
, A
a�, �
a, �
, and !
a have dimension
two.

All interaction vertices in ��0� with the exception of

1

v
�X1 � X2��

�
1

2
�2 �

1

2
�2
a

�
(48)

have UV dimension� 4. We remark for future use that the
interaction vertices depend on X1, X2 only via the combi-
nation X1 � X2.

B. Power-counting renormalizability

In this section we show that the model is indeed power-
counting renormalizable, despite the fact that it contains
the vertices in Eq. (48). We impose Eqs. (40)–(45) on the
1-PI vertex functional �:

	�

	 �!a
� @�

	�

	A�
a
� �gv

	�

	�
a
; (49)

	�

	 �c
� ���� 2�v2�c; (50)

	�

	c
� ��� 2�v2� �c; (51)

	�

	Ba
� �Ba � @Aa � �gv�a; (52)

	�

	X1
�

1

v
��� 2�v2�

	�

	 �c

; (53)

	�

	X2
�

1

v
��� 2�v2�

	�

	 �c

� ��� 2�v2��X1 � X2�

�
v2

�
X2 � v �c
: (54)
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The above set of functional equations hold together with
the ST identity

S��� �
Z
d4x

�
	�

	A�
a

	�

	Aa�
�
	�

	�

	�

	�
�

	�

	�
a

	�

	�a

�
	�

	!
a

	�

	!a
�
	�

	 �c

	�

	 �c
� Ba

	�

	 �!a
� vc

	�

	X1

�
� 0:

(55)

We develop � according to the loop order as follows

� �
X1
j�0

@
�j���j�: (56)

From Eq. (53) we get

	��j�

	X1

�
1

v
��� 2�v2�

	��j�

	 �c

; j � 1 (57)

and therefore ��j� depends on X1 only via the combination

�c 
 �
1

v
��� 2�v2�X1: (58)

From Eq. (54) we get

	��j�

	X2

�
1

v
��� 2�v2�

	��j�

	 �c

; j � 1 (59)

which implies that ��j� depends on X2 only via the combi-
nation

�c 
 �
1

v
��� 2�v2�X2: (60)

Equation (58) together with Eq. (60) yields that the depen-
dence of ��j� on X1, X2 is only via

b�c
 � �c
 �
1

v
��� 2�v2��X1 � X2�: (61)

Moreover from Eq. (49) we have

	��j�

	 �!a

� @�
	��j�

	A�
a
� �gv

	��j�

	�
a
; j � 1; (62)

i.e. ��j� depends on �!a only via the combinationsdA
a� � A
a� � @� �!a; c�
a � �
a � �gv �!a: (63)

From Eqs. (50) and (51) we get
065024
	��j�

	 �c
� 0;

	��j�

	c
� 0; j � 1; (64)

and thus ��j� does not depend on �c, c. From Eq. (52) we
obtain

	��j�

	Ba
� 0; (65)

hence ��j� does not depend on Ba.
Therefore we can restrict the analysis of the divergences

of the theory to the 1-PI Green functions depending on
Aa�,�a,�,!a, A
a�,�
a,�
,!
a, �c
 (those depending on at
least one of X1, X2, �!a can be obtained by functional
differentiation of Eqs. (57), (59), and (62) respectively).
In all these amplitudes X1 and X2 are exchanged within 1-
PI graphs in the combination X � X1 � X2. The latter is
associated to the propagator

�XX � �X1X1
��X2X2

� �
i

p2 � 2�v2 �
i

p2 � �2�� 1
��v

2

�
iv2

��p2 � 2�v2��p2 � �2�� 1
��v

2�
(66)

which falls off for p2 ! 1 as 1=�p2�2. This means that X
has UV dimension zero and thus the vertex in Eq. (48) still
obeys the power-counting renormalizability bounds.
Moreover, since Aa�, �a, �, !a, A
a�, �
a, �
, !
a, �c


have positive dimension, only a finite number of counter-
terms is needed in order to remove all the divergences of
the theory.

C. Structure of the counterterms

We assume that divergences have been recursively sub-
tracted up to order n� 1 in the loop expansion and that the
ST identity holds up to order n. We assume as well that the
set of functional equations (49)–(54) is fulfilled up to order
n. The nth order ST identity reads for the symmetrically
regularized nth order vertex functional ��n�R

	��n�R � �
Xn�1

j�1

���j�;��n�j��; (67)

where 	 is the linearized ST operator
	 �
Z
d4x

�
�D�!�a

	
	Aa�

� g!a�a
	
	�
� g�!a��� v� � �abc�b!c�

	
	�a

�
1

2
gfabc!b!c

	
	!a

� Ba
	
	 �!a

� vc
	
	X1

�

�
1

2
�2 � v��

1

2
�2
a � vX2

�
	
	 �c
�
	��0�

	A�a

	
	A
a�

�
	��0�

	�a

	
	�
a

�
	��0�

	�
	
	�


�
	��0�

	!a

	
	!
a

�
	��0�

	 �c
	
	 �c


�
(68)
and the bracket in the rhs of Eq. (67) is given by
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�X; Y� �
Z
d4x

�
	X

	A
�a

	Y
	Aa�

�
	X
	�
a

	Y
	�a

�
	X
	�


	Y
	�
�
	X
	!
a

	Y
	!a

�
	X
	 �c


	Y
	 �c

�
: (69)
Since the divergences have been recursively subtracted up
to order n� 1, the rhs of Eq. (67) is finite. Thus, as a
consequence of Eq. (67), the divergent part ��n�R;div of ��n�R
must obey the linearized ST identity

	��n�R;div � 0: (70)

In order to solve Eq. (70) it is useful to decompose 	
according to the degree induced by the counting operator
for the 	-invariant variable b�c
 in Eq. (61). Then 	 can be
065024
written as

	 � 	0 � 	1; (71)

where 	0 preserves the number of b�c
’s and 	1 increases it
by one. The explicit action of the differentials 	0, 	1 on the
variables of the model is given in Eqs. (B4) and (B5).

The most general solution to Eq. (70) of dimension � 4
and subject to the constraints in (57), (59), (62), (64), and
(65) is derived in Appendix B. It is given by
��n�R;div � d1

Z
d4xG��aG

��
a � d2

Z
d4x�D���y�D��� � d3

Z
d4x

�
�y��

v2

2

�
� d4

Z
d4x

�
�y��

v2

2

�
2

� d5

Z
d4x	0��̂



a�a� � d6

Z
d4x	0��


�� � d7

Z
d4x	0�

dA
a�A�a � � d8

Z
d4x	0�!



a!a� � d9

Z
d4x b�c


� d10

Z
d4x b�c
��y��

v2

2

�
� d11

Z
d4x b�c
2

�
Z
d4x b�c
��d6 � d5��

2 � �d6 � 2d5�v��; (72)
where d1; . . . ; d11 parameterize the nth loop overall local
divergences. After the recursive subtraction has been per-
formed, the nth order local divergences ��n�R;div are removed
by adding the nth order counterterms ���n�R;div. The ST
identity is preserved by this subtraction.

We notice that one can always add to the resulting nth
order vertex functional

��n� � ��n�R � ����n�R;div�

a functional of the same form as in Eq. (B13) with finite
coefficients a1; . . . ; a11 while preserving the nth order ST
identity and the functional equations (49)–(54). These
ambiguities have to be fixed by a suitable choice of nor-
malization conditions. A convenient set of normalization
conditions is given at the end of Sec. VI.

VI. PHYSICAL UNITARITY

In this section we address the issue of Physical Unitarity.
We first discuss the tree-level approximation and then
move to the analysis of the renormalized theory.

A. Tree level

The ST identity in Eq. (46) yields by projection at order
zero in powers of c the following functional identity:

S0��
�0�� �

Z
d4x

�
	��0�

	A�
a

	��0�

	Aa�
�
	��0�

	�

	��0�

	�
�
	��0�

	�
a

	��0�

	�a

�
	��0�

	!
a

	��0�

	!a
�Ba

	��0�

	 �!a

�
� 0: (73)

Moreover, projection of Eq. (46) at order one in powers of
c yields

S 1��
�0�� �

Z
d4x

�
	��0�

	 �c

	��0�

	 �c
� vc

	��0�

	X1

�
� 0: (74)

The functional identity in Eq. (73) is generated by the
invariance of ��0� under the BRST differential s0 in
Eq. (38), the functional identity in Eq. (74) is generated
by the invariance of ��0� under the BRST differential s1 in
Eq. (39).

Correspondingly there are two conserved asymptotic
charges Q0 and Q1 associated with Eq. (73) and (74),
respectively. They act as follows on the fields of the theory
(�; �� denotes the anticommutator):

�Q0; Aa�� � @�!a; �Q0; !a�� � 0;

�Q0; �a� � gv!a; �Q0; �!a�� � Ba;

�Q0; Ba� � 0; �Q0; �� � 0; �Q0; X1� � 0;

�Q0; X2� � 0; �Q0; �c�� � 0; �Q0; c�� � 0; (75)

and

�Q1; Aa�� � �Q1; �a� � �Q1; �� � �Q1; Ba� � �Q1; !a��

� �Q1; �!a�� � 0;

�Q1; X1� � vc; �Q1; X2� � 0;

�Q1; �c�� � v�� vX2; �Q1; c�� � 0: (76)

We characterize the physical Hilbert space H phys as the
space

H phys �H 0 \H 1; (77)
-7
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where

H 0 �
kerQ0

ImQ0
and H 1 �

kerQ1

ImQ1
: (78)

That is, H phys is the intersection of the quotient spaces
[14–17] associated with the two conserved BRST charges
Q0 and Q1.

In the sector spanned by �, X1, X2 the mass eigenstates
are �0 � �� X1 � X2, X1 and X2. �0 and X1 have mass
p2 � 2�v2, X2 has mass p2 � �2�� 1

��v
2. �c and c have

mass p2 � 2�v2. �!a, !a have mass p2 � ��gv�2, �a and
the longitudinal component @Aa of Aa� have mass p2 �

��gv�2.
We first construct H 0. From Eq. (75) we see that H 0

contains �c, c, X1, X2, and �0. Moreover the only modes
belonging to H 0 in the sector spanned by Aa�,�a, Ba, �!a,
and !a are the three transverse components (in the four-
dimensional sense) of Aa�, i.e. those whose polarization
vector ���p� fulfills

���p�p� � 0 at p2 � �M�0�A �
2 � �gv�2: (79)

In the above equation M�0�A stands for the tree-level mass of
Aa�. Indeed we find (in the momentum space representa-
tion)

�Q0; ���p�A
�
a �p�� � �i���p�p

�!a � 0: (80)

Moreover �!a and Ba are Q0-doublets [11–17]:

�Q0; �!a�� � Ba; �Q0; Ba� � 0 (81)

and hence they are not in H 0. The ghost !a is also paired
into a Q0-doublet with the longitudinal polarization ���p�

of Aa� (i.e. such that ���p�p� � 1 at p2 � ��M�0�A �
2):

�Q0; ���p�A
�
a �p�� � �i���p�p�!a: (82)

From the above equation we see that !a and ���p�A
�
a �p�

are not in H 0. Finally �a does not belong to the kernel of
Q0 and thus it is outside H 0.

We now characterize H 1. Since by Eq. (76)

�Q1; �
0� � �vc (83)

we get that �0 is not in H 1. By Eq. (76) we also see that X1

is not in H 1 while X2 belongs to H 1. For any finite value
of � the Q1-invariant combination �0 � X1 is Q1-exact
since

�Q1; �c�� � v�� vX2 � v��0 � X1�: (84)

Therefore �0 � X1 does not belong to H 1. From the above
equation we also see that �c is not in H 1. Furthermore c is
not in H 1 since it forms a Q1-doublet with 1

v X1. This
implies that the only mode in H 1 in the sector spanned by
X1, X2, �, �c, c is X2. Its mass is given by
065024
mX2
�

�
2��

1

�

�
v2: (85)

From Eq. (76) we get that Aa�, �a, �!a, !a, Ba are also in
H 1.

By taking into account the above construction of H 0

and H 1 we conclude according to Eq. (77) that H phys is
spanned by the transverse polarizations of Aa� in Eq. (79)
and by the scalar X2.

B. Higher orders

The analysis of the physical states in the renormalized
theory follows a similar path. By Eq. (51) the ST identity in
Eq. (55) can be projected at order zero in powers of c
yielding

S0��� �
Z
d4x

�
	�

	A�
a

	�

	Aa�
�
	�

	�

	�

	�
�

	�

	�
a

	�

	�a

�
	�

	!
a

	�

	!a
� Ba

	�

	 �!a

�
� 0: (86)

Moreover, the projection of Eq. (55) at order one in powers
of c gives

S 1��� �
Z
d4x

�
	�

	 �c

	�

	 �c
� vc

	�

	X1

�
� 0: (87)

These are the renormalized ST identities associated with
the BRST differentials s0 and s1, respectively.

By taking into account global SU(2) invariance and
Eq. (51) we derive the action of the conserved asymptotic
chargesQ0 andQ1 associated with Eq. (86) and (87) on the
fields of the theory:

�Q0; Aa�� � �!bA
a�!b; �Q0; !a�� � 0;

�Q0; �a� � �!b�
a!b; �Q0; �!a�� � Ba;

�Q0; Ba� � 0; �Q0; �� � 0; �Q0; X1� � 0;

�Q0; X2� � 0; �Q0; �c�� � 0; �Q0; c�� � 0;

(88)

and

�Q1; Aa�� � �Q1; �a� � �Q1; �� � �Q1; Ba� � �Q1; !a��

� �Q1; �!a�� � 0;

�Q1; X1� � vc; �Q1; X2� � 0;

�Q1; �c�� � �� �c
�� �X1 �c
X1 � �X2 �c
X2;

�Q1; c�� � 0: (89)

The shorthand notations �!bA
a� , �!b�
a , �� �c
 , �X1 �c
 , and
�X2 �c
 stand for the two-point 1-PI Green functions
-8
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�!bA
a� �
	2�

	!b��p�	A
a��p�

����������0
;

�!b�


a
�

	2�

	!b��p�	�
a�p�

����������0
;

�� �c
 �
	2�

	���p�	 �c
�p�

����������0
;

�X1 �c
 �
	2�

	X1��p�	 �c
�p�

����������0
;

�X2 �c
 �
	2�

	X2��p�	 �c
�p�

����������0
;

(90)

where � is a collective notation for all the fields and
external sources of the theory. It is also useful to introduce
the scalar form factor G�p2� for �!bA
a� by setting

�!bA
a� � ip�	
abG�p2�: (91)

Again the physical Hilbert space H phys is defined as the
intersection of the quotient spaces H 0 and H 1 associated
with the conserved charges Q0 and Q1.

We study first H 0 � kerQ0=ImQ0. From Eq. (88) we
get that �, X1, X2 �c, and c belong to H 0. In the sector
spanned by Aa�,�a, Ba, �!a,!a the analysis proceeds as in
the standard treatment given in [14–17]. From the first of
Eqs. (88) we obtain that the transverse polarizations ���p�
of Aa� (i.e. those obeying

���p�p
� � 0 at p2 � M2

A; (92)

where M2
A is the renormalized mass of the gauge bosons

Aa�) are in H 0. This follows since

�Q0; ���p�A
�
a �p�� � �i���p��!bA


�
a
!b

� ���p�p
�G�p2�!a � 0: (93)

In the above equation we have used Eqs. (91) and (92).
Equation (86) together with Eqs. (49) and (52) ensures
[14–17] that the unphysical modes described by @Aa,
�a, �!a, and !a have a common mass M� located at the
solution of the equation

�!b �!a
� ip��!bA
�a � �gv�!b�
a � 0: (94)

The longitudinal polarization ���p�, obeying

���p�p� � 1 at p2 � M2
�; (95)

forms a Q0-doublet with !a:

�Q0; ���p�A
�
a �p�� � �i���p��!bA
�a!b

� ���p�p
�G�p2�!a: (96)

Thus ���p�A
�
a �p� and !a do not belong to H 0. �a is not

in the kernel of Q0 and hence it is outside H 0. Finally �!a
and Ba form a Q0-doublet
065024
�Q0; �!a�� � Ba (97)

and consequently they are not in H 0. We conclude that
H 0 is spanned by X1, X2, �c, c, � and the three transverse
polarizations of Aa�.

The analysis of H 1 � kerQ1=ImQ1 at the quantum
level requires to discuss the mixing in the sector spanned
by �, X1, X2. The relevant two-point functions are con-
trolled by Eqs. (53) and (54). One gets

��X1
�

1

v
��p2 � 2�v2��� �c
 ; (98)

��X2
�

1

v
��p2 � 2�v2��� �c
 ; (99)

�X1X1
�

1

v
��p2 � 2�v2��X1 �c


�

�
1

v

�
2
��p2 � 2�v2�2��c
 �c
 ; (100)

�X1X2
�

1

v
��p2 � 2�v2��X2 �c


�
1

v
��p2 � 2�v2�

�
1

v
��p2 � 2�v2���c
 �c
 � v

�
;

(101)

�X2X2
�

1

v
��p2 � 2�v2��X2 �c
 �

v2

�
� �p2 � 2�v2�

�
1

v
��p2 � 2�v2�

�
1

v
��p2 � 2�v2���c
 �c
 � 2v

�
�
v2

�
; (102)

where we have used the fact that, again as a consequence of
Eqs. (53) and (54),

�X1 �c
 �
1

v
��p2 � 2�v2���c
 �c
 ;

�X2 �c
 �
1

v
��p2 � 2�v2���c
 �c
 � v:

(103)

The determinant of the two-point function matrix �2 in the
sector spanned by �, X1, X2 is

det�2 �
1

�
�p2 � 2�v2�2��2

� �c
 � ��� ��c
 �c
 ����� � 0:

(104)

Therefore the masses of the particles in this sector are
located at

p2 � 2�v2 (105)

and at the solution of the equation

�2
� �c
 �p

2� � ��� ��c
 �c
 �p2������p2� � 0: (106)
-9
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We denote the solution to Eq. (106) by

p2 � �M2: (107)

We notice the appearance in Eqs. (100)–(102) of the
combination �p2 � 2�v2�2. Its coefficient must be zero in
order to ensure that the asymptotic states are described by
pure Klein-Gordon fields (no dipole components).
Remarkably, from Eqs. (100)–(102) this requirement can
be fulfilled by imposing the single normalization condition

��c
 �c
 jp2�2�v2 � 0: (108)

The above normalization condition is compatible with the
symmetries of the theory. It can be imposed order by order
in the loop expansion by exploiting the 	-invariantZ

d4x b�c
2
; (109)

which can be freely added to the nth order effective action
while preserving all the functional identities of the model.

Next we decompose the two-point function ��� into its
tree-level contribution and the quantum correction ��� as
follows

����p
2� � p2 � 2�v2 �����p

2�: (110)

It is convenient to use the 	-invariantZ
d4x

�
�y��

v2

2

�
2

(111)

in order to enforce recursively, order by order in the loop
expansion, the normalization condition

���jp2�2�v2 � 0: (112)

The analysis of the states spanned by �, X1, X2 can be
done by studying the eigenstates of the two-point matrix

�2 �

��� ��X1
��X2

�X1� �X1X1
�X1X2

�X2� �X2X1
�X2X2

0B@
1CA (113)

at p2 � 2�v2 and at p2 � �M2, respectively.
We first describe the asymptotic states at p2 � 2�v2.

We introduce a vector ’
]

collecting the fields �, X1, X2 (at
p2 � 2�v2) by setting

T’] � ��]; X1]; X2]�: (114)

The subscript ] means that �, X1, X2 are taken at p2 �
2�v2. The solutions of the equation

�2jp2�2�v2u � 0; (115)

where we have set Tu � �u�; uX1
; uX2
�, parametrize the

asymptotic states at p2 � 2�v2 on the basis spanned by
the components of ’]. The field corresponding to the
vector u is thus

’]�u� � u � ’
]
� u��] � uX1

X1] � uX2
X2]: (116)
065024
From Eqs. (98)–(102) and by taking into account Eq. (108)
and (112) we get that there are two independent solutions
to Eq. (115):

Tu1 � �1; 0; 0�;
Tu2 � �0; 1; 0� (117)

so that

’]�u1� � �]; ’]�u2� � X1]: (118)

u1 and u2 allow to introduce a projector �2�v2 on the mass
eigenstates at p2 � 2�v2. �2�v2 acts on any vector Tw �
�w1; w2; w3� as follows:

�2�v2�w� � �u1 � w�u1 � �u2 � w�u2: (119)

Correspondingly the action on ’]�w� is given by

�2�v2�’]�w�� � �u1 � w�’]�u1� � �u2 � w�’]�u2�

� w1�] � w2X1]: (120)

From Eq. (89) we see that ’]�u2� � X1] does not be-
long to H 1 while ’]�u1� � �] does. Moreover from
Eq. (89) we also obtain that c is not in H 1 since it forms
a Q1-doublet with 1

v X1]. Furthermore �] is Q1-exact also
at the quantum level. Indeed from Eq. (89) the action ofQ1

on �c reads

�Q1; �c�� � �� �c
�] � �X1 �c
X1] � �X2 �c
X2]: (121)

Since �c has support at p2 � 2�v2, we need to apply the
operator �2�v2 to the rhs in order to project it on the
subspace of asymptotic states at p2 � 2�v2. By
Eq. (120) we obtain

�Q1; �c�� � �2�v2��� �c
�] � �X1 �c
X1] � �X2 �c
X2]�

� �� �c
�] � �X1 �c
X1]: (122)

The second term in the second line of the above equation
vanishes at p2 � 2�v2 as a consequence of the first of
Eqs. (103). Then one is left with

�Q1; �c�� � ��c
��]: (123)

Equation (123) implies that �] is Q1-exact provided that

��c
�jp2�2�v2 � 0: (124)

If Eq. (124) is fulfilled, � does not belong to H 1. We
notice that the condition in Eq. (124) is verified at tree level
since

��0��c
� � v

and can be recursively preserved at the quantum level by
making use of the 	-invariantZ

d4x b�c
��y��
v2

2

�
: (125)

Moreover, Eq. (124) together with Eq. (112) implies that
the solution of Eq. (106) cannot coincide with p2 � 2�v2.
This implies that the solution of
-10
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�2jp2� �M2 ~u � 0 (126)

at p2 � �M2 (asymptotic state at p2 � �M2) is Q1-invariant.
This can be proven as follows. We denote by �[, X1[, X2[
the fields �, X1, X2 at p2 � �M2. Then the solution to
Eq. (126) is associated to the field

’[�~u� � ~u��[ � ~uX1
X1[ � ~uX2

X2[: (127)

This is Q1-invariant, since by Eq. (89) �Q1; �[� � 0,
�Q1; X2[� � 0, and also �Q1; X1[� � 0, due to the fact
that by Eq. (41) c has support at p2 � 2�v2. It cannot be
Q1-exact since the only scalarG-singlet field with negative
ghost number is �c, which by Eq. (51) has support at p2 �
2�v2. ’[�~u� in Eq. (127) is the physical mode which is
described at tree level by the field X2.

From Eq. (89) we also see that Aa�, �a, Ba, !a, �!a are
in H 1. Therefore H 1 is spanned by Aa�, �a, Ba, !a, �!a

and the mode in Eq. (127).
By taking into account the above characterization of

H 0 and H 1 we conclude that the space H phys in
Eq. (77) contains the three transverse polarization modes
of the gauge field Aa� and a scalar particle with mass p2 �
�M2 given by the solution of Eq. (106).

At this point we are in a position to provide the physical
interpretation of the parameters a1; . . . ; a11 in Eq. (B13).
a1 is associated with the finite renormalization of the gauge
coupling constant, a2 with that of the mass of the non-
Abelian gauge bosons. a3 has to be used to impose the
normalization condition (absence of � tadpole)

	�

	�

����������0
�p2 � 0� � 0: (128)

Analogously a9 allows to set the normalization condition
(absence of X1 and X2 tadpoles)

	�

	X1

����������0
�p2 � 0� �

	�

	X2

����������0
�p2 � 0� � 0: (129)

a4 is associated with the normalization condition on the
two-point function ��� at zero momentum and is used to
enforce Eq. (112). a5, a6, a7, a8 are associated to finite
field redefinitions of �a, �, Aa�, !a, respectively. By
Eq. (106) a10 controls the finite renormalization of the
mass of the physical scalar mode. Finally the freedom on
the choice of a11 is used in order to impose Eq. (108),
which guarantees the absence of dipole fields in the asymp-
totic states in the sector spanned by �, X1, X2.
VII. CONCLUSIONS

A polynomial formulation of the Stueckelberg mecha-
nism has been derived by making use of an off-shell
nilpotent BRST symmetry. This symmetry is related to a
natural Abelian embedding of the Stueckelberg action. The
antighost field of the U(1) symmetry is responsible for the
implementation of the Stueckelberg constraint. Moreover
065024
we have shown that a mass term for the additional U(1)
gauge connection B� can be introduced in a BRST-
invariant way.

We have proven that for the gauge group SU(2) a com-
posite vector field transforming as a connection under the
BRST differential (but not under the SU(2) gauge trans-
formations) can be obtained by using the Abelian antighost
field. This allows us to generate a new polynomial BRST-
invariant but not gauge-invariant mass term for the non-
Abelian gauge fields. We have given a sufficient condition
for the existence of this type of mass term for a general
gauge group G.

The Abelian embedded Stueckelberg model discussed in
this paper is not power-counting renormalizable. We have
shown that there is a natural theory which extends it to a
power-counting renormalizable model. The resulting the-
ory is physically unitary and contains in the physical sector
the three physical polarizations of the massive gauge fields
as well as a physical scalar particle.

The existence of the conserved chargeQ0 shows that the
spontaneous symmetry breaking mechanism is imple-
mented in the model. Since the theory is power-counting
renormalizable, one could conjecture that it is physically
equivalent to the Higgs model, i.e. that it yields the same
physical S-matrix elements. The check of the conjectured
equivalence in the full perturbative expansion is an inter-
esting question which deserves to be further investigated.
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APPENDIX A: PROPAGATORS

By setting B0a � Ba �
1
� �@Aa � �gv�a� the propaga-

tors for B0a, Aa�, and �a are diagonal:
�B0aB0b
�
i
�
	ab; ��a�b

�
i

p2 � ��gv�2
	ab;

�Aa�Ab� � i
�

1

�p2 � �gv�2
T�� �

1

� p2

� � �gv�
2

�
	ab:

(A1)
Moreover we set� � �0 � X1 � X2. Then the propagators
for X1, X2, and �0 are
��0�0 �
i

p2 � 2�v2 ; �X1X1
� �

i

p2 � 2�v2 ;

�X2X2
�

i

p2 � �2�� 1
��v

2
:

(A2)
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In the ghost sector

� �!a!b
�

i

�p2 � ��gv�2
	ab; ��cc �

i

p2 � 2�v2 :

(A3)

The remaining off-diagonal mixed propagators are all
zero.
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APPENDIX B: ANALYSIS OF THE COHOMOLOGY
OF � IN THE ACTIONLIKE SECTOR

The nilpotent linearized ST operator 	 acts as follows on
the fields and the antifields of the model:
	Aa� � �D�!�a; 	� � �g!a�a; 	�a � g�!a��� v� � �abc�b!c�; 	X1 � vc; 	X2 � 0;

	 �c �
1

2
�2 � v��

1

2
�2
a � vX2; 	c � 0; 	 �!a � Ba; 	Ba � 0; 	!a � �

1

2
gfabc!b!c;

	dA
a� � 	�0

	Aa�
; 	�
 �

	�0

	�
; 	�̂
a �

	�0

	�a
; 	 b�c
 � 0; 	!
a �

	�0

	!a

(B1)

where �0 is given by

�0 � S� �
Z
d4x

�dA
a��D�!�a � �

��g!a�a� � g�̂



a�!a��� v� � �abc�b!c� �

1

2
!
agfabc!b!c

� b�c
�1

2
�2 � v��

1

2
�2
a � vX2

��
: (B2)

It is convenient to decompose 	 according to the degree induced by the counting operator for b�c
:
	 � 	0 � 	1; (B3)

where 	0 preserves the number of b�c
’s and 	1 increases it by one. 	0 is given by

	0Aa� � �D�!�a; 	0� � �g!a�a; 	0�a � g�!a��� v� � �abc�b!c�; 	0X1 � vc; 	0X2 � 0;

	0 �c �
1

2
�2 � v��

1

2
�2
a � vX2; 	0c � 0; 	0 �!a � Ba; 	0Ba � 0; 	0!a � �

1

2
gfabc!b!c;

	0
dA
a� � 	�0

	Aa�
; 	0�


 �
	�0

	�

��������b�c
�0
; 	0�̂



a �

	�0

	�a

��������b�c
�0
; 	0

b�c
 � 0; 	0!


a �

	�0

	!a
: (B4)
	1 is zero on all variables but �
 and �̂
a:

	1�
 � ��� v� b�c
; 	1�̂


a � �a

b�c
: (B5)

We now derive the most general solution to the equation

	� � 0; (B6)

where � is at most of dimension 4 in the fields, the anti-
fields, and their derivatives and fulfills the same identities
as ��j� in Eqs. (57), (59), (62), (64), and (65). Since b�c
 has
dimension two, the expansion of � in powers of b�c
 stops at
the second order term

� � �0 ��1 ��2; (B7)

where �j contains j b�c
’s. Thus Eq. (B6) is equivalent to the
coupled set of equations

	0�0 � 0; 	0�1 � 	1�0 � 0;

	0�2 � 	1�1 � 0:
(B8)

The solution to the first of the above equations is known
[11,12,18–20] and can be written in terms of eight inde-
pendent parameters a1; . . . ; a8

�0 � a1

Z
d4xG��aG

��
a � a2

Z
d4x�D���y�D���

� a3

Z
d4x

�
�y��

v2

2

�
� a4

Z
d4x

�
�y��

v2

2

�
2

� a5

Z
d4x	0��̂



a�a� � a6

Z
d4x	0��


��

� a7

Z
d4x	0�

dA
a�A�a � � a8

Z
d4x	0�!



a!a�:

(B9)

Evaluation of 	1�0 gives

	1�0 �
Z
d4x b�c
�2�a6 � a5�g�!a�a � �a6

� 2a5�gv!a�a�

� 	0

�Z
d4x�� b�c
��a6 � a5��

2 � �a6 � 2a5�v���
�
:

(B10)
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Therefore the second of Eqs. (B8) is solved by

�1 �
Z
d4x b�c
��a6 � a5��

2 � �a6 � 2a5�v��

� a9

Z
d4x b�c
 � a10

Z
d4x b�c
��y��

v2

2

�
; (B11)

where the terms in the second line of Eq. (B11) are
	0-invariant. a9, a10 are free parameters. Obviously
065024
	1�1 � 0 and thus the last of Eqs. (B8) reduces to 	0�2 �
0. By power counting

�2 � a11

Z
d4x b�c
2

; (B12)

where a11 is again a free parameter. Finally we get that the
most general solution to Eq. (B6), compatible with
Eqs. (57), (59), (62), (64), and (65), is
� � a1

Z
d4xG��aG

��
a � a2

Z
d4x�D���y�D��� � a3

Z
d4x

�
�y��

v2

2

�
� a4

Z
d4x

�
�y��

v2

2

�
2

� a5

Z
d4x	0��̂



a�a� � a6

Z
d4x	0��
�� � a7

Z
d4x	0�

dA
a�A�a � � a8

Z
d4x	0�!
a!a� � a9

Z
d4x b�c


� a10

Z
d4x b�c
��y��

v2

2

�
� a11

Z
d4x b�c
2

�
Z
d4x b�c
��a6 � a5��2 � �a6 � 2a5�v��: (B13)
We notice that the fact that the dependence of � on X2 is only via the combination b�c
 prevents the appearance of further
	-invariants with dimension � 4 like
Z
d4xX2

�
�y��

v2

2

�
;

Z
d4xX2

2

�
�y��

v2

2

�
;

Z
d4x	��
X2�: (B14)
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