
PHYSICAL REVIEW D 73, 065023 (2006)
Dynamics of theO�N�model in a strong magnetic background field as a modified noncommutative
field theory

Amir Jafari Salim1,* and Néda Sadooghi2,†
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In the presence of a strong magnetic field, the effective action of a composite scalar field in a scalar
O�N� model is derived using two different methods. First, in the framework of world-line formalism, the
1PI n-point vertex function for the composites is determined in the limit of a strong magnetic field. Then,
the n-point effective action of the composites is calculated in the regime of lowest Landau level
dominance. It is shown that in the limit of a strong magnetic field, the results coincide and an effective
field theory arises which is comparable with the conventional noncommutative field theory. In contrast to
the ordinary case, however, the UV/IR mixing is absent in this modified noncommutative field theory.
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I. INTRODUCTION

In recent years, there has been remarkable interest in
noncommutative geometry [1], which has made a dramatic
appearance in string theory [2] and has made noncommu-
tative field theory (NCFT) [3] an active field of study. The
various aspects of noncommutative gauge theories have
been extensively studied and a number of novel phe-
nomena discovered (for a review see [4] and the references
therein). The conventional noncommutative gauge theory
is characterized by replacing the familiar product of func-
tions by the Moyal ? product and is therefore a nonlocal
theory involving higher order derivatives between the
fields. From a perturbative point of view, the theory con-
sists therefore of planar and nonplanar diagrams. The latter
are usually the source of the appearance of a certain duality
between ultraviolet (UV) and infrared (IR) behavior of the
theory. This UV/IR mixing phenomenon manifests itself in
the singularity of the amplitudes in two limits of the small
noncommutativity parameter � and the large cutoff � of
the theory [5].

Apart from these features noncommutative field theory
exhibits certain dynamics of a quantum mechanical model
in a strong magnetic field [6]. Recently the connection
between the dynamics in relativistic field theories in a
strong magnetic background field and that in NCFT has
been studied in [7–10]. In [7], the nontrivial dynamics of
the fermionic Nambu-Jona-Lasinio (NJL) model in a con-
stant magnetic background is considered. The effective
action of this theory is determined for a strong magnetic
field in the regime of lowest Landau level (LLL) domi-
nance and its dynamics is compared with a conventional
noncommutative field theory. Similarly the chiral dynam-
ics of QED and QCD is shown to be governed by a
complicated nonlocal NCFT [8–10]. In all these cases,
address: jafari_amir@mehr.sharif.edu
address: sadooghi@sharif.edu

06=73(6)=065023(10)$23.00 065023
however, the emergent effective noncommutative field the-
ory is different from the NCFT ones considered in the
literature [3]. In particular, the UV/IR mixing [5], taking
place in the conventional NCFT, is absent in these classes
of ‘‘modified’’ noncommutative field theories.

In this paper, we will present another example of this
phenomenon. Here, we will determine the effective action
of a composite scalar field in a scalar O�N� model in the
presence of a strong magnetic background field using two
different methods. In Sec. II, we will introduce the scalar
O�N� model in Euclidean spacetime and will compute the
effective action for the composite scalar field. In Sec. III, in
the framework of the world-line path integral method [11–
14], the one-particle irreducible (1PI) n-point vertex func-
tion for the composite field will be determined in the limit
of a strong magnetic background field. The emergent
n-point function will be comparable with the n-point ver-
tex function of a certain modified noncommutative field
theory, where no UV/IR mixing occurs. In this case, as in
the previous cases [7–10], besides the usual Moyal phase
factor, an additional Gaussian-like form factor appears in
the n-point vertex function of the composites. This expo-
nentially damping form factor reflects an inner structure of
the composites and is responsible for the removal of the
UV/IR mixing.

In Sec. IV, the effective action of n composite fields will
be calculated in the strong magnetic field limit, using the
same method as in [7]. First the Green’s function of the
theory will be determined in the regime of LLL domi-
nance. Then, using this effective propagator, the contribu-
tion of n composites to the full effective action of the
theory will be determined. In Sec. V, the 1PI n-point vertex
from Sec. III will be compared with the LLL n-point
effective action from Sec. IV. We will show that here, as
in the NJL model in the presence of a constant magnetic
background [15], a dimensional reduction from D � 4 to
D � 2 occurs in the longitudinal section of the effective
theory where a free propagation of the composites is
-1 © 2006 The American Physical Society
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observed. In the transverse section, however, a modified
noncommutative field theory arises where no UV/IR mix-
ing occurs.
2The reader is also referred to the excellent review of M.
II. EFFECTIVE ACTION FOR THE COMPOSITE
SCALAR FIELD

Let us start with the Lagrangian density of a scalarO�N�
model in Euclidean spacetime,

L � �jD��j2 �m2���� 1
2���

���2; (2.1)

where � � ��1; �2; . . . ; �N� and the covariant derivative
D� is defined by

D�� � @��� ieA��: (2.2)

To study the dynamics of the bound state formed in this
theory,1 we introduce the composite field� � ���� and a
new coupling constant g � �N. The Lagrangian density
(2.1) can then be given by

L � �jD��j2 �m2���� �����
N
2g
�2; (2.3)

and the effective action for � reads

~���	 � ���	 �
N
2g

Z
d4x�2; (2.4)

where ���	 is found using the standard deformation

e���	 �
Z

D��D� exp
�
�
Z
d4x�jD��j2 �m2���

� ����	
�

�
Z

D��D� exp
�
�
Z
d4x����D�D� �m2

� �	�
�

� exp��Tr ln��D�D� �m2 � �	�; (2.5)

and is therefore given by

���	 � �Tr ln��D�D� �m2 � �	: (2.6)

In the following two sections, we will calculate ���	 in the
presence of a strong magnetic background field using two
different methods. In Sec. III, we will calculate the 1PI
n-point vertex function �1PI�p1; . . . ; pn	 using the world-
line path integral formalism [11–14]. In Sec. IV, we will
follow the method which was used in [7] to determine the
effective action of a �D� 1�-dimensional NJL model in
the regime of lowest Landau level (LLL) dominance.
1In Appendix A, we will show that even in a theory with one
flavor a condensate is built in the presence of a strong magnetic
field.
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III. EFFECTIVE ACTION OF THE COMPOSITE
FIELD FROM THE WORLD-LINE FORMALISM

The world-line formalism was originally introduced in
[11] as a useful mathematical tool to study the effective
field theory limit of the underlying string theory. In this
formalism, all path integrals are manipulated into Gaussian
form, and this reduces their computation to the calculation
of world-line propagators and determinants. In this section,
we will stay very close to the notation of [14],2 where
among many other examples the n-point amplitude of a
massive ’3 theory in the one-loop level and QED in a
constant magnetic background field are calculated sepa-
rately. Here, we will combine the results presented in [14],
and determine the n-point vertex function of the composite
field �. At the end, we will consider the limit of a constant
but strong magnetic field as background. In this way, we
arrive at an effective vertex function which is comparable
with the vertex function of a certain modified NCFT for the
composite field �, where, besides the Moyal ? product of
the conventional noncommutative field theory, a certain
exponentially damping factor occurs in the interaction
vertices of � [7]. This factor is shown to play an important
role in providing consistency of this class of modified
NCFT [7–10].

Let us start with the world-line path integral representa-
tion for the effective action (2.6), which reads [12,14]

���	 � N
Z 1

0

dT
T
e�m

2T



Z
x�T��x�0�

Dx���e�
R
T

0
d���1=4� _x2�ie _x�A�x�������x�����;

(3.1)

where coefficient N before the integral reflects the 2N
degrees of freedom of our scalar O�N� model.3 This path
integral is to be calculated using the Gauss formula

Z
dxe�x�O�x�2b�x � �det�O����1=2�eb�O

�1�b; (3.2)

with O�1 the inverse of the operator O. To build O�1, we
have to be careful about the zero eigenvalues of O, which
are to be excluded from its spectrum. To deal with these
zero modes,4 contained in the coordinate path integralR
Dx as constant loops, they are to be separated from their

orthogonal nonzero modes y��� by evaluating x��� around
the loop center of mass x0. In other words, replacing x����
by x���� � x�0 � y

���� with
Strassler [12] for more useful examples and details.
3If we were working only with one neutral scalar field, this

coefficient would be 1
2 .

4In the eigenvalue equation O � � these zero modes
correspond to constant eigenfunctions  � const.
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Z T

0
d�y���� � 0;

the coordinate path integral reduces to an integral over the
relative coordinate y���,Z

Dx �
Z
dx0

Z
Dy: (3.3)

In this way, the effective action ���	 is expressed by an
effective Lagrangian Leff , represented as an integral over
the space of all loops with a fixed common center of mass
x0 [14],

���	 �
Z
dx0Leff��; x0	: (3.4)

At this stage, we restrict the background to be constant.
Using Fock-Schwinger gauge centered at x0 we may take
A��x� in (3.1) to be of the form [13]

A��x� �
1
2y
�F��; (3.5)

where F�� is the constant field-strength tensor of A�. After
removing the zero modes, the operator d2

d�2 � 2ieF d
d� be-

comes invertible. The world-line Green’s function is then
given by [14]

2
�
�i

��������
�
d2

d�2 � 2ieF
d
d�

�
�1
���������j

�
� GB��i; �j�;

where

G B��i; �j� �
T

2Z2

�
Z

sinZ
e�iZ _GBij � iZ _GBij � 1

�
; (3.6)

with Z � eFT and

GBij � GB��i; �j� � j�i � �jj �
��i � �j�2

T
;

_GBij � _GB��i; �j� � sign��i � �j� � 2
��i � �j�

T
:

(3.7)
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The Green’s function (3.6) is used as the correlation func-
tion for the coordinate field

hy���i�y
���j�i � �g

��GB��i; �j�: (3.8)

To proceed, we also need to calculate the free world-line
path integral

Z
Dy exp

�
�
Z T

0
d�
�
1

4
_y2 � ie _y � A�y����

����������A���1=2�y�F��

� det0��1=2�

�
�
d2

d�2 � 2ieF
d
d�

�

� �4�T���D=2�det0��1=2�

�
1� 2ieF

�
d
d�

�
�1
�

� �4�T���D=2�det��1=2�

�
sin�eFT�
eFT

�
: (3.9)

This result is obtained using the method introduced in [14].
On the second and third lines, the primes denote the
absence of the zero modes in the determinant.

Let us now turn back to the effective action ���	 from
(3.1) containing the interaction term �. To find the n-point
vertex function, we recall from quantum field theory that
the 1PI n-point function can be obtained from the one-loop
action ���	 by an n-fold functional differentiation with
respect to �. In momentum space, this operation is imple-
mented by replacing the background by a sum of plane
waves,

��x� �
Xn
i�1

eipi�x; (3.10)

and picking out the term containing every pi only once. We
arrive at
�1PI�p1; . . . ; pn	 � N��1�n
Z 1

0

dT
T
e�m

2T
Z T

0

Yn
i�1

d�i
Z
dx0

Z
Dy exp

�
i
Xn
i�1

pi � xi

�
e�
R
T

0
d���1=4� _x2�ie _x�A�x�����: (3.11)

Having xi � x��i� � x0 � y��i�, the x0 integral leads to energy-momentum conservation,

Z
dx0 exp

�
ix0 �

Xn
i�1

pi

�
� �2��D	

�Xn
i�1

pi

�
:

To perform the y integration, we use the result from (3.9). This leads to the following parameter integral:

�1PI�p1; . . . ; pn	 � N��1�n�2��D	
�Xn
i�1

pi

�Z 1
0

dT
T
�4�T���D=2�e�m

2Tdet��1=2�

�
sin�eFT�
eFT

�Yn
i�1

Z T

0
d�i


 exp
�
1

2

Xn
i;j�1

GB��i; �j�pi � pj

�
: (3.12)

To proceed, we will replace GB��i; �j� by �GB��i; �j�, which is defined by
-3
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�G B��i; �j� � GB��; �� �
T

2Z

�
e�i _GBijZ � cosZ

sinZ
� i _GBij

�
; (3.13)

with the coincidence limits

G B��; �� �
T

2Z2 �Z cotZ� 1�; _GB��; �� � i cotZ�
i
Z
; (3.14)

which are found by applying the relations

_GB��; �� � 0; _G2
B��; �� � 1: (3.15)

After replacing �i ! Tui in (3.7), the 1PI n-point vertex function in the presence of an electromagnetic background field is
given by

�1PI�p1; . . . ; pn	 � N��1�n�2��D	
�Xn
i�1

pi

�Z 1
0

dT

T1�n �4�T�
��D=2�e�m

2Tdet��1=2�

�
sin�eFT�
eFT

�



Yn
i�1

Z 1

0
dui exp

� Xn
i<j�1

�GB�ui; uj�pi � pj

�
: (3.16)

At this stage, a constant magnetic field is chosen for the background. With the B-field chosen along the z axis, we introduce
matrices g? and gk projecting on x; y and z; � planes, respectively,

F̂ �

0 1 0 0
�1 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; g? �

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; gk �

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA; (3.17)

with F̂ � F
B . The determinant factor in (3.16) becomes

det��1=2�

�
sinZ

Z

�
�

z
sinhz

; (3.18)

where we have introduced z � eBT. Further, the world-line Green’s function (3.6) is given by

�G B�ui; uj� � GBijgk �
T
2z

�
cosh�z _GBij�

sinhz
� cothz

�
g? �

T
2z

�
sinh�z _GBij�

sinhz
� _GBij

�
iF̂: (3.19)

As was stated before, it is desirable to obtain the effective vertex function in the presence of a strong magnetic field. Let us
therefore look at the world-line Green’s function (3.19) in the limit of a strong magnetic field. Rearranging the parameters
as u1  u2  � � �  un�1  un is allowed. By this convention, it is seen that z _GBij � z. We obtain

lim
B!1

�GB�ui; uj� � GBijgk �
1

2jeBj
g? �

i
2eB

_GBijF̂: (3.20)

Moreover, the determinant behaves in this limit as

lim
B!1

z
sinhz

� 2ze�z: (3.21)

In (3.20) and (3.21), we choose the sign of eB> 0 and we denote it by jeBj whenever eB arises from a term that is even in
eB. Replacing (3.20) and (3.21) in (3.16) for dimension D � 4 yields5

�1PI�p1; . . . ; pn	 � NjeBj��1�n�2�2�	
�Xn
i�1

pi

�Z 1
0

dT

T2�n e
��m2�jeBj�T

Yn
i�1

Z 1

0
dui


 exp
� Xn
i<j�1

�
GBijgk �

1

2jeBj
g? �

i
2eB

_GBijF̂
�
pi � pj

�
: (3.22)
5By �
	 pi � pj for 
 � gk, g? or F̂ in (3.22), we mean 
��pi�pj�. Here, i and j denote the ith and jth incoming momentum; � and
� denote the �th and �th component of the four-vector.
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To make the meaning of this equation more transparent, each part will be considered independently. We refer to the three
terms in the exponent as gk, g?, and F̂ terms. Among them, g? and F̂ terms are independent of T, thus can be taken out of
the T integral.

For the g? term we have

exp
� Xn
i<j�1

g?
2jeBj

pi � pj

�
� exp

�
1

2jeBj
�p1? � p2? � p1? � p3? � � � � � pn�1? � pn?�

�
; (3.23)
where p? � �px; py�. Applying the energy-momentum
conservation

Pn
i�1 pi? � 0, we get

exp
� Xn
i<j�1

g?
2jeBj

�pi � pj�?

�
� exp

�
�

1

4jeBj

Xn
i�1

p2
i?

�
:

(3.24)

This is exactly the damping factor which also appears in
[7], where the effective action of the NJL model is calcu-
lated in the LLL approximation.

To calculate the F̂ term, we use (3.7) with the replace-
ment �i ! uiT, and are led to

exp
�
�

i
2eB

Xn
i<j�1

�sign�ui � uj� � 2�ui � uj�	F̂pi � pj

�
:

(3.25)

To build some parallels to the (modified) noncommutative
065023
effective field theory which should arise in the large B
limit, we introduce the (noncommutativity) parameter

�ab �
1

eB
�ab; (3.26)

with �ab the ordinary antisymmetric tensor of rank 2 and
indices a and b denoting transverse directions, i.e. x and y
coordinates. Using this new definition the product on the
right-hand side of (3.25) becomes

1

eB
F̂pi � pj � pi

a�abpj
b �: pi 
 pj : (3.27)

In the definition of the cross product, we will skip the
subscript ? for the transverse coordinates. Adhering to
our rearrangement for u1  u2  � � �  un�1  un and
using the freedom to choose the zero somewhere in the
world loop for setting un � 0, we have
Xn
i<j�1

��pi 
 pj��ui � uj�	 � �p1 
 p2��u1 � u2� � �p1 
 p3��u1 � u3� � � � � � �p1 
 pn��u1��p2 
 p3��u2 � u3� � � � �

� �p2 
 pn��u2� � � � � � �pn�1 
 pn��un�1�: (3.28)

Using further the energy-momentum conservation and the antisymmetry property of the cross product, defined in (3.27),
we obtain

Xn
i<j�1

��pi 
 pj��ui � uj�	 � 0: (3.29)

The F̂ term therefore becomes

exp
�
�

i
2eB

Xn
i<j�1

� _GBijF̂	pi � pj

�
� exp

�
�
i
2

Xn
i<j�1

pi 
 pj

�
: (3.30)

The same phase factor also appears in the Fourier transform of the vertices in the ordinary noncommutative field theory [4]
that is defined by replacing the ordinary product of functions by the Moyal ? product.

Putting now (3.24) and (3.30) together in (3.22), we finally obtain the 1PI n-point function for the composite field � in a
strong magnetic field,

�1PI�p1; . . . ; pn	 � NjeBj��1�n�2�2�	
�Xn
i�1

pi

�
exp

�
�

1

4jeBj

Xn
i�1

p2
i?

�
exp

�
�
i
2

Xn
i<j�1

pi 
 pj

�



Z 1

0

dT

T2�n e
��m2�jeBj�T

Yn
i�1

Z 1

0
dui exp

� Xn
i<j�1

�GBijgk	pi � pj

�
: (3.31)

Comparison with the 1PI n-point vertex function
-5
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�1PI�p1; . . . ; pn	 � N��1�n�2��D	
�Xn
i�1

pi

�Z 1
0

dT

T1�n �4�T�
��D=2�e�m

2T
Yn
i�1

Z 1

0
dui exp

� Xn
i<j�1

GBijpi � pj

�
; (3.32)
6As it was stated earlier eB is chosen to be jeBj whenever it
appears in even terms.

7A similar method was also used in [17].
which is obtained by turning off the electromagnetic field
in (3.16), reveals that the parallel sector of (3.31), involving
the � and z directions, is up to some factor which is the
same as the �1PI (3.32) inD � 2 dimensions, provided that
m2 ! m2 � jeBj. In the next section, using the method
introduced in [7], we will find the n-point contribution to
the effective action of the composites� in the presence of a
strong magnetic field in an appropriate LLL approxima-
tion. The result will have common features with (3.31). In
particular, the phases (3.24) and (3.30) reappear in the final
result.

IV. EFFECTIVE ACTION OF THE COMPOSITE
FIELD IN THE LLL APPROXIMATION

In the first part of this section, starting from the full
bosonic Green’s function derived in the seminal work of J.
Schwinger [16] in the framework of Schwinger proper-
time formalism, we will determine the propagator of a
multidimensional complex scalar field � in the LLL ap-
proximation. We then use the LLL propagator to determine
the effective action of n composite fields � in the LLL
regime.

Let us start with the Schwinger propagator in
Minkowski space,

G�x0; x00� � P�x0; x00�D�x0 � x00�; (4.1a)

with

P�x0; x00� � exp
�
ie
Z x0

x00
d
�A��
�

�
; (4.1b)

and

D�x0 � x00� �
1

�4��2
Z 1

0

ds

s2 e
�ism2


 exp
�
�1

2
Tr ln

�
sinheFs
eFs

��


 exp
�
�
i
4
�x0 � x00�eF coth�eFs��x0 � x00�

�
:

(4.1c)

In the symmetric gauge

A� �
B
2
�0; x2;�x1; 0�;

the part consisting of the Schwinger line integral is equal to

P�x0; x00� � e�ieB=2��abx0ax00b; a; b � 1; 2: (4.2)

Here, as in the previous section, B is chosen to be a
constant magnetic background field in the x3 direction. In
the translationally invariant part D�x0 � x00� in (4.1c), it is
065023
easy to show that

x��eF coth�eFs�	�x �
1

s
x2
k
� eB cot�eBs�x2

?; (4.3)

with x2
k
� x2

0 � x
2
3 and x2

? � x2
1 � x

2
2, and

exp
�
�

1

2
Tr ln

�
sinh�eFs�
eFs

��
�

eBs
sin�eBs�

: (4.4)

Putting (4.3) and (4.4) in (4.1c) and after taking the Fourier
transformation, we obtain

~D�k� � �
Z 1

0

ds
cosh�eBs�


 exp
�
�s

�
m2 � k2

0 � k2
?

tanh�eBs�
eBs

� k2
3

��
:

(4.5)

Here, we assume again that eB > 0 and replace eBs! s.
We arrive at6

~D�k� � �
1

eB

Z 1
0

ds
coshs

e�s��� tanh�s�; (4.6)

with � � k2
?=jeBj and � � �m2 � k2

k
�=jeBj. Further,

k2
k
� k2

0 � k
2
3 and k2

? � k2
1 � k

2
2 are introduced. To deter-

mine the regime of LLL dominance of ~D�k�, we first use
(B4) from Appendix B to obtain7

~D�k� � �
e��

jeBj

X1
n0�0

��1�n
0
L��1�
n0 �2��

Z 1
0
ds
e�s���2n0�

coshs
;

(4.7)

where L��n0 is the generalized Laguerre polynomial. Then,
using (C4) from Appendix C, we get

~D�k� �
e��

2jeBj

X1
n0�0

��1�n
0
L��1�
n0 �2��

�
 
�
�� 2n0 � 1

4

�

�  
�
�� 2n0 � 3

4

��
: (4.8)

Next, we expand the digamma function  �z� [18] accord-
ing to

 �1� z� � ���
X1
m0�1

z
m0�m0 � z�

; (4.9)

and arrive at
-6
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~D�k� �
e��

2jeBj

X1
n0�0;m0�1

��1�n
0
L��1�
n0 �2��




�
�� 2n0 � 3

m0�4m0 � �� 2n0 � 3�

�
�� 2n0 � 1

m0�4m0 � �� 2n0 � 1�

�
: (4.10)

Before we continue and determine the LLL form of ~D�k�,
we note that when the dynamics of a particle is stationary,
as in the present case with pure constant magnetic back-
ground, the energy spectrum can be read from the poles of
the propagator. In other words, the energy spectrum of a
particle in a magnetic background that is obtained from the
relativistic Klein-Gordon equation coincides with the poles
of the propagator that entails corrections due to the back-
ground. This fact enables us to obtain the effective propa-
gator in the LLL dominant regime.

The energy spectrum of a scalar field in the presence of a
magnetic background is known to be (see e.g. [19])

E‘0 �k� �
���������������������������������������������������
m2 � jeBj�2‘0 � 1� � k2

3

q
;

for ‘0 � 0; 1; 2; . . . ;1:
(4.11)

Choosing ‘0 � 0 the energy of the LLL is given by

E0
2 � k3

2 �m2 � jeBj: (4.12)

To find the LLL form of ~D�k�, we determine the variables
m and n in (4.10) such that the LLL energy arising from the
poles of the propagator (4.10) coincides with (4.12). Using
the notation introduced before, we get E2

0 � k
2
3 �m

2 �

k2
k
�m2 � jeBj, which yields � � �1. As it turns out,

the only valid choice satisfying the first pole equation
m0�4m0 � 2n0 � 4� � 0 from the first denominator in
(4.10) is �m0 � 1; n0 � 0�. The second pole equation
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m0�4m0 � 2n0 � 2� � 0 from the second denominator in
(4.10) does not have any valid solution and therefore does
not contribute to the LLL propagator. Thus, plugging
�m0 � 1; n0 � 0� into (4.10) and using L��1�

0 �2�� � 1, we
get

~D LLL�k� � e��k
2
?
=jeBj� 2

k2
k
� �m2 � jeBj�

: (4.13)

In the coordinate space the LLL effective propagator
(4.1a)–(4.1c) can therefore be written in the form

GLLL�x0; x00� � P�x0; x00�F�1f ~DLLL�k�g; (4.14)

where P�x0; x00� is defined in (4.2) and F�1 denotes the
inverse Fourier transform. From now on, we drop the sub-
script LLL, but it is always assumed. G�x0; x00� obviously
factorizes into two independent transverse and longitudinal
parts,

G�x0; x00� � G?�x0?;x
00
?�Gk�x

0
k
� x00

k
�; (4.15a)

where the transverse part is

G?�x0?;x
00
?� �

jeBj
2�

e�ieB=2��abx0ax00be��jeBj=4��x0? � x00?�
2;

(4.15b)

including the Schwinger line integral (4.2) and the Fourier
transform of the phase factor e�k2

?
=jeBj from (4.13), and the

longitudinal part is

Gk�x0k � x00
k
� � F�1

	
1

k2
k
� �m2 � jeBj



: (4.15c)

At this stage, we have all the necessary tools to calculate
the n-point vertex function �n� for n-composite fields �. It
is obtained through
�n� �
Z
d4x1 � � � d4xn���x1�G�x1; x2���x2�G�x2; x3� � � ���xn�G�xn; x1�	: (4.16)

Using now (4.15a)–(4.15c) for G�x0; x00�, inserting the Fourier transform of the composite fields �, and carrying out the
integrations over x, the n-point contribution to the effective action reads

�n� � 2�NjeBj
Z
d2x1k � � � d2xnk

d4p1

�2��4
� � �

d4pn
�2��4

	2

�Xn
i�1

pi?

�
exp

�
i
Xn
i�1

pik � xik

�
exp

�
�

1

4jeBj

Xn
i�1

p2
i?

�


 exp
�
�
i
2

Xn
i<j�1

pi 
 pj

�
���p1�Gk�x1k;x2k���p2�Gk�x2k;x3k� � � ���pn�Gk�xnk;x1k�	: (4.17)
The cross product on the second line is defined in (3.27)
and includes only the transverse coordinates of pi i.e.
pi? � �pi1; pi2�. In the next section we compare this result
with the 1PI n-point vertex function (3.31), which we
obtained in the previous section in the limit of a strong
magnetic field.
V. MODIFIED NONCOMMUTATIVE FIELD
THEORY

Let us consider the n-point vertex function (3.31) which
was found in the framework of the world-line formalism
and the n-point effective action (4.17) which was obtained
-7
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in the LLL approximation. As for the parallel sector of the
effective theory, similar to (3.31) and (4.17), it shows a free
propagation of the composite field � in the longitudinal
coordinates, with the effective square massm2 � jeBj. The
same dimensional reduction from D � 4 to D � 2 dimen-
sions was also observed in the dynamics of fermion pairing
065023
in a constant magnetic field for an effective NJL model
[15].

As for the transverse part, the general structure of both
results (3.31) and (4.17) can be compared with the general
structure of an n-point vertex of a conventional NCFT (see
for instance [4]),
Z
dDx��x� ? � � � ? ��x�

z��������������}|��������������{n-times

�
Z dDp1

�2��D
� � �

dDpn
�2��D

	D
�Xn
i�1

pi

�
exp

�
�
i
2

Xn
i<j�1

pi 
 pj

�
��p1� � � ���pn�: (5.1)
Here, the ordinary Moyal ? product is defined by

��x� ? ��x� � e�i=2��ij�@=@yi��@=@zj���y���z�jy�z�x; (5.2)

which reflects the noncommutativity in the xi and xj coor-
dinates

�xi; xj	 � i�ij; (5.3)

with the noncommutativity parameter �ij. Similarly, as was
originally shown in [7] for a fermionic NJL model, the
noncommutative feature of (3.31) and (4.17) manifests
itself in the phase factor containing the cross product pi 

pj � pai �abp

b
j with a; b � 1; 2 and � defined in (3.26).

However, in contrast to the ordinary noncommutative field
theory, in (3.31) as well as in (4.17) an additional phase
factor,

exp
�
�

1

4jeBj

Xn
i�1

p2
i?

�
; (5.4)

appears which modifies the noncommutativity between the
longitudinal coordinates (5.3) to

�xa; xb	 � i�̂ab; a; b � 1; 2: (5.5)

The modified noncommutative parameter �̂ is given by [7]

�̂ �
1

jeBj
i sign�eB�

�sign�eB� i

� �
: (5.6)

Using this definition, the full phase factor which manifests
the noncommutative properties of the effective n-point
vertex function can be rewritten as

exp
�
�

1

4jeBj

Xn
i�1

p2
i? �

i
2

Xn
i<j�1

pi 
 pj

�

� exp
�
�
i
2

Xn
i<j�1

pi
̂pj

�
;

with pi
̂pj � pai �̂abp
b
j , a; b � 1; 2. In the special case

where the composites are independent of the longitudinal
coordinates, xk, the effective action of n composites,
(4.17), in coordinate space is
�n� �
Z
d2xkd2x?��x?�?̂ � � � ?̂��x?�|����������������{z����������������}

n-times

; (5.7)

with the modified Moyal ?̂ product defined by

��x?�?̂��x?� � e�i=2��̂ab�@=@ya��@=@zb���y���z�jy�z�x;

a; b � 1; 2: (5.8)

Alternatively, the above phase factor (5.4) can be absorbed
in the definition of the composite field �, leading to a new
smeared field [7]

��x� � e�
~r2
?=4jeBj���x�: (5.9)

In terms of the smeared fields �, the effective action �n� of
n composites in coordinate space is similar to (5.7) with �
replaced by � and the modified ?̂ product replaced by the
ordinary ? product (5.2).

It is worth mentioning that the damping phase factor
(5.4) protects the modified NCFT from the appearance of
the UV/IR mixing [5] which appears in the ordinary NCFT.
This can be shown by writing the one-loop correction to the
tree-level propagator Gtree

� �p�. The one-loop vertices can
be read e.g. from (4.17) for n � 4. The explicit calculation,
similar to what is performed in [7] for the NJL model,
shows that when the loop momentum ‘�1, the loop
integral is convergent for all external legs momenta p,
even for p? ! 0.

VI. CONCLUSION

In this paper, using two apparently different methods,
the effective action of n-composite scalar fields is derived
in the presence of a strong magnetic background field. In
Sec. III, the 1PI n-point amplitude of these composites is
determined in the framework of world-line formalism.
Following the standard manipulations, we arrived first at
the path integral representation of the n-point vertex func-
tion in the presence of a constant magnetic field. As a
novelty, we then took the limit of a strong magnetic field
and ended up with an effective n-point vertex function
which is similar to the vertex function of a modified non-
commutative field theory. In comparison to the standard
noncommutative field theory a phase factor occurs which
-8
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protects the effective field theory from inconsistencies due
to the appearance of UV/IR mixing.

In Sec. IV, we followed the method presented in [7] and
calculated the contribution of n composites to the effective
action in the regime of LLL dominance. First, starting from
the full Schwinger propagator of the scalar field in the
presence of a background field, we derived the effec-
tive propagator of the theory in an appropriate LLL ap-
proximation. Then, using this effective Green’s function,
we determined the n-point effective action in this
approximation.

In Sec. V, we compared both results from Secs. III and
IV. We showed that here, as in the NJL model in the
presence of a constant magnetic background [15], a di-
mensional reduction from D � 4 to D � 2 occurs in the
longitudinal section of the effective theory where a free
propagation of the composites is observed. In the trans-
verse section, however, a modified noncommutative field
theory arises where no UV/IR mixing occurs. The emer-
gence of a modified noncommutativity is due to a break-
down of the translational invariance which, in Sec. IV,
exhibits itself in an explicit dependence of the full
Green’s function of the theory on a Schwinger phase line
integral. Although the Schwinger line integral does not
appear explicitly in the world-line formalism in Sec. III,
in the heart of this formalism is, in fact, the expectation
value of the Wilson loop which is the Schwinger phase line
integral taken along a closed loop.
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APPENDIX A

In this appendix, we show that in four dimensions and in
the presence of a constant magnetic background field,
dynamical symmetry breaking occurs and a condensate
always develops. This authenticates our assumption for
the introduction of the composite field � in Sec. II. The
condensate is expressed through the complex boson propa-
gator G�x0; x00� � ih0j���x0���x00�j0i,

h0j���j0i � �i lim
x0!x00

G�x0; x00�

� �
ijeBj

�4��2
Z 1

0

ds
s sin�jeBjs�

e�ism
2
: (A1)

To deal with the infinity in the integral arising from the s!
0 limit, we can either restrict the lower limit of s! 1

�2 or
alternatively render it finite through �-function regulariza-
tion. Here we opt for the latter. After rotating the contour of
the s integration by s! �is, we introduce � in the
exponent of (A1) to get
065023
h0j���j0i � �
jeBj

�4��2
Z 1

0
ds

s��1

sinh�s�
e�s�m

2=jeBj�: (A2)

In the spirit of dimensional regularization, we will analyti-
cally continue to �! 0. By making use of the integral
representation of the Hurwitz � function,

��r; �� �
1

��t�

Z 1
0
dttr�1 e�t�

1� e�t
;

Ret > 1; Re� > 0: (A3)

Thus, the integration in (A2) can be written as

h0j���j0i �
�jeBj21��

�4��2
�����

�
�;

m2

2jeBj
�

1

2

�
: (A4)

Expansion around the poles yields

h0j���j0i � �
jeBj

8�2

�
1

�
� ��O���

��
m2

2jeBj

�

�
ln�

�
m2

2jeBj
�

1

2

�
�

1

2
ln�2��

�
�
�
; (A5)

where we have used the identities

��0; �� �
1

2
� �;

@
@r
��r; ��jr�0 � ln���� �

1

2
ln�2��:

(A6)

Keeping the finite terms in (A5) and taking the limit m2 !
0, we obtain

h0j���j0i �
jeBj

�4��2
ln�2�: (A7)

This relation shows that in the presence of a constant
magnetic background field the expectation value of the
condensate is nonzero and the composite field � is always
formed. As it was implied earlier the condensate is pro-
portional to jeBj.
APPENDIX B

In this appendix, we derive the useful formulas which
will help us to determine the LLL effective propagator in
Sec. IV. We start with the identity

�1� z����1� exp
�
�z
z� 1

�
�

X1
n0�0

L��n0 ���z
n0 ; for jzj< 1;

(B1)

where L��n0 are the generalized Laguerre polynomials [18].
For  � �1, (B1) can be written as

exp
�
�
2

�
z� 1

z� 1

��
� e���=2�

X1
n0�0

L��1�
n0 ���z

n0 ; for jzj< 1;

(B2)

with L��n0 satisfying
-9
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L��1�
n0 ��� � Ln0 ��� � Ln0�1���: (B3)

Defining z � �e�2s and using (B2), we obtain8

e�� tanh�s� � exp
�
��

�
es � e�s

es � e�s

��

� e��
X1
n0�0

��1�n
0
L��1�
n0 �2��e

�2n0s: (B4)

APPENDIX C

In order to perform the integrals of the form
Z 1

0
dt

e�zt

cosh�t�
; (C1)

we start from the definition of the digamma function [18]

AMIR JAFARI SALIM AND NEDA SADOOGHI
8The condition jzj< 1 is satisfied because in (4.7) s � 0 is a
singular point. To deal with this infinity the integral is always
proper-time regularized by replacing the integration interval
from �0;�1� to � 1

�2 ;1�.

065023
 �z� � � �
Z 1

0
dt
�
e�t � e�zt

1� e�t

�

�
Z 1

0
dt
�

e��t=2� � e��z��1=2��t

�et=4 � e��t=4���et=4 � e��t=4��

�
:

(C2)

Then it is easy to show that

 
�
z�

3

4

�
�  

�
z�

1

4

�
�
Z 1

0
dt
�

e�zt

�et=4 � e��t=4��

�
: (C3)

Replacing t! 4t, we finally arrive at

Z 1
0
dt

e�zt

cosh�t�
�

1

2

�
 
�
z� 3

4

�
�  

�
z� 1

4

��
: (C4)
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