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Influence on electron coherence from quantum electromagnetic fields in the presence
of conducting plates
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The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate
on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the
electron is derived by the method of influence functional. We find that the plate boundary anisotropically
modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference
is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence
between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal
case. The presence of the second parallel plate is found to boost these effects. The potential relation
between the amplitude change and phase shift of interference fringes is pointed out. The finite
conductivity effect on electron coherence is discussed.
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I. INTRODUCTION

Quantum coherence entails the existence of the interfer-
ence effects amongst alternative histories of the quantum
states. These effects are nevertheless not seen at the clas-
sical level. The suppression of quantum coherence can be
viewed as the result of the unavoidable coupling to the
environment, and thus leads to the emergence of the clas-
sical behavior in terms of incoherent mixtures. This
environment-induced decoherence has been studied with
the idea of quantum open systems by coarse-graining the
environment where certain statistical measures are intro-
duced [1–5]. Thereby, this averaged effect appears as
decoherence of the system of interest.

In modern cosmology, many efforts have been devoted
to studying how primordial perturbations, created
quantum-mechanically during inflation in the early uni-
verse, undergo the processes of decoherence when their
low momentum modes cross out the horizon [4,6,7]. They
then reenter the horizon during the radiation- or matter-
dominated stage and thus act as the seeds of temperature
inhomogeneities in the cosmic microwave background as
well as the matter density inhomogeneities that lead to the
large-scale structure formation. In addition, special atten-
tion has been paid to the possible observation of decoher-
ence effects in mesoscopic physics such as the phenomena
of quantum tunneling, which are affected by the coupling
with a heat bath [5]. Recent revival of interest in the
decoherence phenomenon is motivated by the study of
the experimental realization of quantum computers in
which the central obstacle has proven to prevent the deg-
radation of the quantum coherence from the coupling of the
computer to the environment [8]. Understanding of the
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aforementioned problems relies on the deeper exploration
of the decoherence dynamics driven by the environment.

The quantum decoherence due to the interaction with the
environment has been discussed by considering the inter-
ference of the electron states coupled to quantum electro-
magnetic fields in vacuum [9,10]. It has been shown that
the electron interference pattern may be altered by particle
creation and vacuum fluctuations of electromagnetic fields,
and the change might be observed through the phase shift
and the contrast change. However, imposition of the
boundary conditions on quantum fields may result in the
modification of vacuum fluctuations. The best-known ex-
ample is the attractive Casimir force between two parallel
conducting plates [11]. This Casimir effect remains one of
the least intuitive consequences of quantum field theory
[12–14]. Therefore, we expect that the presence of the
boundary may further influence the electron interference
and gives rise to observable effects. This type of the
interference experiment can serve as a probe to understand
the nature of quantum fluctuations [9,10].

Here we study the decoherence dynamics of the electron
coupled to quantum electromagnetic fields in the presence
of the perfectly conducting plate. We employ the closed-
time-path formalism to explore the evolution of the density
matrix of the electron and fields [15]. In recent years, this
nonequilibrium formalism has been applied in particle
physics and cosmology by one of us [16]. The reduced
density matrix of the electron can then be derived with the
method of influence functional, which takes account of
backreaction. We assume that the electron is initially in a
coherent superposition of two quantum states with their
mean trajectory along the distinct paths. Then the interfer-
ence fringes can be observed when these states are recom-
bined. The phase shift and amplitude reduction of the
electron interference influenced by quantum fields are
obtained from the influence functional. The leading effect
of the decoherence functional comes from the contribution
-1 © 2006 The American Physical Society
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evaluated along the prescribed electron’s classical trajec-
tory defined by an applied potential. The validity of the
approximation will be discussed [9,17]. Note that this
coherence reduction is given by the double surface inte-
grals of the field strength correlation function defined in
Minkowski spacetime as we will see later. In this sense, it
shares similar features with the known Aharonov-Bohm
effect where the phase shift of the electron interference in
the presence of the classical static magnetic field depends
on the magnetic flux in the region from which the electron
is absent. Here we instead consider the effects on the
interference from nonstationary quantum electromagnetic
fields [18].

Our presentation is organized as follows. In Sec. II, we
introduce the closed-time-path formalism for describing
the evolution of the density matrix of a nonrelativistic
electron interacting with quantum electromagnetic fields.
We then employ the method of influence functional by
tracing out the fields in the Coulomb gauge in which we
find the evolution of the reduced density matrix for the
electron with self-consistent backreaction. The effect of
decoherence can be realized by constructing the decoher-
ence functional from the influence functional under the
classical approximation in Sec. III. In Sec. IV, we evaluate
this decoherence functional for quantum electromagnetic
fields in the presence of the perfectly conducting plate and
study how coherence reduction of the electrons is affected
by the modified vacuum fluctuations due to the boundary.
The finite conductivity effect on electron coherence is
discussed in Sec. V. The results are summarized in
Sec. VI. In addition, in Appendix A, the nature of the
gauge invariance in the decoherence functional is consid-
ered by explicitly computing it with an alternative gauge
fixing. In Appendix B, we outline the method to convert a
summation, which turns out to be slowly convergent, into a
rapidly convergent form.

The Lorentz-Heaviside units with @ � c � 1 will be
adopted unless otherwise noted. The metric is ��� �
diag�1;�1;�1;�1�.
II. INFLUENCE FUNCTIONAL APPROACH

We consider the dynamics of a nonrelativistic electron
interacting with quantum electromagnetic fields in the
presence of the conducting plate. In the Coulomb gauge,
the electric and magnetic fields can be expressed in terms
of the vector potentials as

E � �rA0 � _AT; B � r�AT; (1)

where AT is the transverse component of the potential
satisfying the gauge condition, r �AT � 0. The time com-
ponent of the potential A0 is not a dynamical field, but can
be determined by the Gauss law with the instantaneous
Coulomb Green’s function, which can be defined by
r2G�x; y� � ��3�x� y� subject to the boundary condi-
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tions. The charge and current densities for a nonrelativistic
electron may take the form

%�x; q�t�� � e�3�x� q�t��;

jT�x; q�t�� � e _q�t��3�x� q�t��;
(2)

with a coupling constant e. The current jT satisfies the
transverse condition r � jT � 0. The Lagrangian of the
electron-field system is then given by the transverse com-
ponents of the vector potential as well as the coordinates q
of the nonrelativistic electron,

L�q;AT� �
1

2
m _q2 � V�q�

�
1

2

Z
d3xd3y%�x; q�G�x; y�%�y; q�

	
Z
d3x

�
1

2
�@�AT�

2 	 jT �AT

�
; (3)

where an external potential V is introduced so as to con-
strain the motion of the electron to the prescribed path, and
the Coulomb electrostatic energy term is defined in the
presence of the boundary [13].

The effect of electromagnetic fields on the electron
interference can be realized by the diagonal elements of
the reduced density matrix �r, which is obtained by tracing
out electromagnetic fields in the density matrix of the
electron and fields. Let us consider that the initial density
matrix at time ti can be factorized as

��ti� � �e�ti� 
 �AT
�ti�; (4)

and that initially the fields are assumed in thermal equilib-
rium at temperature, ��1 with the density matrix �AT

�ti�
given by

�AT
�ti� � e��HAT ; (5)

where HAT
is the Hamiltonian for the free electromagnetic

fields, constructed from Eq. (3). Then the zero-temperature
limit corresponding to the initial vacuum state of the fields
can be reached by taking �! 1 limit. The electron-field
system evolves unitarily according to

��tf� � U�tf; ti���ti�U�1�tf; ti�; (6)

with U�tf; ti� the time evolution operator. Thereafter, the
final state of the electron-field system in general becomes
entangled due to the interaction between them. The inter-
action between the electron and fields will be assumed to
be adiabatically switched on in the remote past with ti !
�1, and then switched off in the remote future with tf !
1. We then employ the closed-time-path formalism to
describe the evolution of the density matrix of the electron
field. The reduced density matrix of the electron, by tracing
out the fields, becomes
-2
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�r�qf; ~qf; tf� �
Z
dAThqf;ATj��tf�j~qf;ATi

�
Z
dAT

Z
dq1dA1T

Z
dq2dA2Thq;ATjU�tf; ti�jq1;A1Tihq1;A1Tj��ti�jq2;A2Tihq2;A2TjU�1�tf; ti�j~q;ATi

�
Z
dq1dq2

Z
dATdA1TdA2T

Z qf

q1

Dq	
Z ~qf

q2

Dq�
Z AT

A1T

DA	T
Z AT

A2T

DA�T
Z A1T

A2T

DA�
T

� exp
�
i
Z tf

ti
dtL�q	;A	T ��L�q

�;A�T �
�

exp
�
i
Z ti�i�

ti
dtL0�A

�
T �

�
�e�q1;q2; ti�: (7)
Here we have introduced an identity in terms of a complete
set of eigenstates, jq;ATi,

Z
d3qdATjq;ATihq;ATj � 1; (8)

with jq;ATi given by the direct product of the states of the
electron and those of electromagnetic fields, namely,
jq;ATi � jqi 
 jATi. This identity has been inserted into
the integrand so that the matrix element of the time evolu-
tion operator can be expressed by the path integral along
either the forward or backward time evolution, represented
by q	, A	T , and q�, A�T , respectively. The density matrix
for the thermal state of fields corresponds to the evolution
065022
operator of the fields A�
T along a path parallel to the

imaginary axis of complex time, and the time arguments
of the field operators are limited to the range between the
complex time ti and ti � i�. Thus, the Green’s functions of
the vector potentials possess the periodicity as the result of
the cyclic property of the trace as well as the bosonic nature
of the field operators.

Since the electron interacts with fields via a linear
coupling, the fields can be traced out exactly. Thus, we
obtain the influence functional for the electron by taking
full account of the backreaction. The physics becomes
more transparent when we write the evolution of the re-
duced density matrix in the following form:
�r�qf; ~qf; tf� �
Z
d3q1d

3q2J �qf; ~qf; tf; q1;q2; ti��e�q1;q2; ti�; (9)

where the propagating function J �qf; ~qf; tf; q1;q2; ti� is

J �qf; ~qf; tf; q1;q2; ti� �
Z qf

q1

Dq	
Z ~qf

q2

Dq� exp
�
i
Z tf

ti
dt�Le�q	� � Le�q���

�
F �j	T ; j

�
T �; (10)

and the electron Lagrangian Le�q� is given by [13]

Le�q� �
1

2
m _q2 � V�q� �

1

2

Z
d3xd3y%�x; q�G�x; y�%�y; q�: (11)

Here we introduce the influence functional F �j	T ; j
�
T �,

F �j	T ; j
�
T � � exp

�
�

1

2
e2
Z
d4x

Z
d4x0�j	Ti�x; q	�t��hA	iT �x�A

	j
T �x

0�ij	Tj�x
0; q	�t0�� � j	Ti�x; q	�t��

� hA	iT �x�A
�j
T �x

0�ij�Tj�x
0; q��t0�� � j�Ti�x; q��t��hA�iT �x�A

	j
T �x

0�ij	Tj�x
0; q	�t0�� 	 j�Ti�x; q��t��

� hA�iT �x�A
�j
T �x

0�ij�Tj�x
0; q��t0���

�
; (12)

which contains full information about the influence of quantum electromagnetic fields on the electron, and is a highly
nonlocal object. The Green’s functions of the vector potential are defined by

hA	iT �x�A
	j
T �x

0�i � hAT
i�x�AT

j�x0�i��t� t0� 	 hAT
j�x0�AT

i�x�i��t0 � t�;

hA�iT �x�A
�j
T �x

0�i � hAT
j�x0�AT

i�x�i��t� t0� 	 hAT
i�x�AT

j�x0�i��t0 � t�;

hA	iT �x�A
�j
T �x

0�i � hAT
j�x0�AT

i�x�i � trf�AT
AT

j�x0�AT
i�x�g;

hA�iT �x�A
	j
T �x

0�i � hAT
i�x�AT

j�x0�i � trf�AT
AT

i�x�AT
j�x0�g;

(13)
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and can be explicitly constructed as long as electromag-
netic fields are quantized subject to the boundary condi-
tions. The retarded Green’s function and Hadamard
function of vector potentials are defined, respectively, by

Gij
R �x� x

0� � i��t� t0�h�AT
i�x�;AT

j�x0��i; (14)

Gij
H�x� x

0� � 1
2hfAT

i�x�;AT
j�x0�gi: (15)

Here the influence functional can be expressed in a more
compact form in terms of its phase and modulus by

F �j	T ; j
�
T � � expfW �j	T ; j

�
T � 	 i��j

	
T ; j

�
T �g; (16)

where

��j	T ; j
�
T � �

1

2
e2
Z
d4x

Z
d4x0�j	Ti�x; q	�

� j�Ti�x; q���Gij
R �x� x

0��j	Tj�x
0; q	�

	 j�Tj�x
0; q���;

W �j	T ; j
�
T � � �

1

2
e2
Z
d4x

Z
d4x0�j	Ti�x; q	�

� j�Ti�x; q���Gij
H�x� x

0��j	Tj�x
0; q	�

� j�Tj�x
0; q���:

(17)

For a given initial state for the electron, the reduced density
matrix for the electron at time tf can be obtained from
Eq. (9) when the path integration over q� in Eq. (10) is
carried out. Explicitly written out, the reduced density
operator now becomes

�r�qf; ~qf; tf� �
Z
d3q1d3q2

�Z qf

q1

Dq	
Z ~qf

q2

Dq�

� exp
�
i
Z tf

ti
dt�Le�q	� � Le�q���

�

� expfW �q	;q��g expfi��q	;q��g
�

� �e�q1;q2; ti�: (18)

Let us now consider the initial electron state vector j��ti�i
to be a coherent superposition of two localized states along
world lines C1 and C2, respectively, after they leave the
beam splitter at the moment ti,

j��ti�i � j 1�ti�i 	 j 2�ti�i: (19)

The density matrix of the electron state is then given by

�e�ti� � j��ti�ih��ti�j (20)

� �11�ti� 	 �22�ti� 	 �21�ti� 	 �12�ti�; (21)

where �mn�ti� � j m�ti�ih n�ti�j. The terms �21 	 �12 ac-
count for quantum interference, because when the density
matrix is realized in the coordinate basis, we have
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hqij�e�ti�jqii � j 1�qi; ti�j2 	 j 2�qi; ti�j2

	 2 Ref 2�qi; ti� 1�qi; ti�g; (22)

which expresses the probability of finding an electron at
�ti;qi� in the superposed state. Therefore, at time tf, when
the electron states are recombined at the location qf,
the electron interference pattern can be described by the
diagonal elements of the reduced density matrix
hqfj�r�tf�jqfi � �r�qf;qf; tf� .
III. DECOHERENCE FUNCTIONAL IN THE
CLASSICAL APPROXIMATION

The expression (18) of the reduced density matrix at
time tf accounts for the full quantum effects of the elec-
tron, but the corresponding path integral can not be carried
out without invoking further approximation [9]. In general,
the interaction with quantum electromagnetic fields is ex-
pected to perturb the electron’s trajectory in a stochastic
way about its mean value, and to cause the electron wave
function to spread [19]. It also fluctuates the phase of the
wave function such that the phase coherence between
electrons is lost.

Now considering the electron as a well-defined wave
packet, its mean trajectory follows the classical path con-
strained by an appropriate external potential V�q�. The
effect of the Coulomb electrostatic attraction due to the
presence of the boundary is usually small in the typical
experiment configuration [9], and then its influence on the
trajectory can be ignored. In addition, the backreaction
from quantum field fluctuations, which is of the order of
the weak coupling e2=4� in the influence functional also
has the ignorable correction to the classical paths as ex-
pected. Furthermore, the finite spread of the wave packet of
the electron state, due to uncertainties on both position and
momentum, can be legitimately neglected as long as the
electron’s de Broglie wavelength, 	dB is much shorter than
the characteristic length scale associated with the accuracy
of the measurement l. Thus, as long as l� 	dB, the wave
packet can be viewed as it is sharply peaked in the elec-
tron’s position and momentum, and thus its quantum ef-
fects can be ignored [9]. As such, the leading effect of the
decoherence can be obtained by evaluating the propagating
function (10) along a prescribed classical path of the
electrons. Thereby, the diagonal components of the re-
duced density matrix �r�qf;qf; tf� now becomes

�r�qf;qf; tf� � j 1�qf; tf�j2 	 j 2�qf; tf�j2 	 2eW ��j1
T;

�j2
T�

� Refei���j
1
T;

�j2
T� 1�qf; tf� 2�qf; tf�g; (23)

where the W and � functionals are evaluated along the
classical trajectories, C1 and C2. �j1;2

T is the classical current
along the respective paths. The evolution of the electron
states  1;2�qf; tf� is governed by the Lagrangian Le in
Eq. (11) due to the ignorable backreaction effects.
-4
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The exponent of the modulus of the influence functional
W , determined by the Hadamard function of vector po-
tentials, reveals decoherence between coherent electrons,
while its phase functional �, related to the retarded
Green’s function, results in an overall phase shift for the
electron interference pattern. Both effects arise from the
interaction with quantum fields. The decoherence func-
tional can be obtained from the expectation value of the
anticommutator of the vector potentials. However, in the
semiclassical Langevin equation to describe the stochastic
dynamics of the particle coupled to quantum fields, the
Hadamard function also determines the noise correlation
function from quantum field fluctuations which cause the
stochastic behavior of the particle’s trajectory [20]. Thus,
we can conclude that coherence reduction of the electrons
is driven by field fluctuations. On the other hand, the phase
functional, which is related to the retarded Green’s func-
tion for the commutator of vector potentials, links to the
backreaction dissipation in the Langevin equation on the
dynamics of the particle [20]. Thus, the phase shift may
result from the backreaction dissipation from quantum
fields through particle creation that influences the mean
trajectory of the electrons. These two effects in the
Langevin equation obey the underlying fluctuation-
dissipation theorem. In this aspect, the effects of quantum
decoherence and the phase shift are also likely related by
the fluctuation-dissipation theorem. However, very little
work has been done to establish this relation. It will be
investigated in our future work. Here we only concentrate
on the effect of quantum decoherence induced by vacuum
fluctuations of electromagnetic fields.

In the classical approximation, with the help of Eqs. (2)
and (17), the decoherence factor, the W functional, can be
expressed as

W � �
e2

2

I
C
dxj

I
C
dx0kG

jk
H �x; x

0�; (24)

where x;x0 2 C � C1 � C2 and j; k � 1, 2, 3. The curves
C1;2 are the projection of the world lines C1;2 onto the
hypersurface normal to the time axis in Minkowski space-
time. Then, it is a straightforward calculation to rewrite the
W functional in terms of the fields E and B in a manifestly
gauge invariant way,

W � �
e2

8

Z
C
da��

Z
C
da0�
hfF

���x�; F�
�x0�gi: (25)

Apparently, the decoherence factor involves double surface
integrals of the expectation value of the anticommutator
between the field strength F�� as the area element d
�� of
the integral is bounded by a closed world line of the
electron C in Minkowski spacetime. The closed world
line C � C1 � C2 can be thought of as moving the electron
along its path C1 in the forward time direction and then
along the path C2 in the backward time direction. By
means of the 4-dimensional Stokes’ theorem, we can write
065022
the W functional (25) as

W � �
e2

2

I
C
dx�

I
C
dx0�G

��
H �x; x

0�; (26)

which involves the Hadamard function of the covariant
vector potentials. It is consistent with the result in Ref. [9].

Note that, although the expectation value of the vector
potential hA��x�i in the electromagnetic vacuum state van-
ishes even in the presence of the boundary, the fluctuations
of fields are nonzero in general. The decoherence effect in
Eq. (25) emerges as the result of the double surface inte-
grals of the nonvanishing field correlations in Minkowski
spacetime. Thus the decoherence is found sensitive to the
field strength in the region where the electron is excluded.
In this aspect, it may be regarded as the generalization to
the Aharonov-Bohm effect with time-independent classi-
cal electromagnetic fields. In contrast, in our case, the
decoherence effect is essentially driven by the nonstatic
features of quantum fields.

IV. EVALUATION OF THE W FUNCTIONAL

A. Unbounded space

As for illustration, let us start by considering the W 0

functional for the unbounded space where electromagnetic
fields are initially in the vacuum state [10]. The trajectory
of the electrons can be dictated by an external potential
along the prescribed paths. The velocity of the electron in
the x direction vx is assumed to be constant, while the
motion in the z direction varies with time. Thus, the
respective world lines of electrons are given by C1;2 �
�t; vxt; 0;���t��. The path function ��t� is required to be
sufficiently smooth to avoid enormous photon production
from the kinked corners and it may take the form

��t� � Re��t
2=T2�; (27)

where 2R is the effective path separation and 2T is the
effective flight time. The vector potential can be expressed
by the creation and annihilation operators as

A T�x� �
Z d3k

�2��3=2

1�������
2!
p

X
	�1;2

�̂	�k�a	�k�eik�x�i!t

	 H:c:; (28)

with ! � jkj. The polarization unit vectors �̂	 obey the
transversality condition given by

X
	�1;2

�̂i	�k��̂
j
	�k� � �ij �

kikj

jkj2
: (29)

Since the W functional in Eq. (26) reveals manifest
Lorentz invariance, it proves more convenient to boost to
a frame S moving with the velocity u � �1; vx; 0; 0� at y �
z � 0, in which the electrons are seen to have transverse
motion in the z direction only. Then, the W 0 functional
(24) can be obtained by a straightforward calculation of the
-5
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FIG. 1 (color online). Two different orientations of the elec-
tron path plane relative to the conducting plate.
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z-z component of the vector potential Hadamard function
with the help of the mode expansion (28), and reduces to

W 0 � �2e2
Z d3k
�2��3

1

2!

�
1�

k2
z

!2

�

�

��������
Z
dt _� cos�kz��e

i!t

��������2
; (30)

where _� � d�=dt. We further simplify the calculation by
applying the dipole approximation, cos�kz�� ’ 1, consis-
tent with the nonrelativistic limit. By using the path func-
tion (27), the decoherence functional W 0 ends up with

W 0 ’ �2e2
Z d3k
�2��3

1

2!

�
1�

k2
z

!2

���������Z dt _�ei!t
��������2

� �
e2

4�
R2T2

Z 1
�1

dkz
Z 1
jkzj
d!�!2 � k2

z�e��1=2�!2T2

� �
2e2

3�
R2

T2

�
1

c2

�
; (31)

which is finite without the ultraviolet divergence. The
absence of the potential ultraviolet divergence can be
seen from the corresponding Fourier transform of the
path function (27) where the contribution from the high
frequency modes with ! * O�1=T� is exponentially sup-
pressed. The result free of ultraviolet divergence is quite
general for the smooth path function with the finite flight
time.

In the nonrelativistic limit, since the transverse compo-
nent of the electron velocity vz is about 10�2c in a typical
interference experiment, the decoherence factor W 0, pro-
portional to v2

z , will be of the order of 10�5 to 10�6.
Therefore, it is hard to detect the loss of the interference
contrast due to vacuum fluctuations of quantum fields in
this unbounded case.

B. Presence of the single plate

Now we consider the decoherence effect between the
coherent electrons under the influence of quantum electro-
magnetic fields in the bounded region. In the presence of
the perfectly conducting plate, the tangential component of
the electric field E as well as the normal component of the
magnetic field B on the plate surface vanish. When the
plate is placed at the z � 0 plane, the boundary conditions
of the fields E and B on the plate give rise to

A0 � 0; and Ax � Ay � 0; (32)

which lead to

@Az
@z
� 0 (33)
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as the result of the Coulomb gauge. The transverse vector
potential AT in the z > 0 region is given by [13]

AT�x� �
Z d2kk

2�

Z 1
0

dkz
�2��1=2

2�������
2!
p

�

�
a1�k�k̂k � ẑ sinkzz

	 a2�k�
�
ik̂k

�
kz
!

�
sinkzz� ẑ

�
kk
!

�
coskzz

��
� eikk�xk�i!t 	 H:c:; (34)

where the circumflex identifies unit vectors. The position
vector x is denoted by x � �xk; z� where xk are the com-
ponents parallel to the plate. Similarly, the wave vector is
expressed by k � �kk; kz� with !2 � k2

k
	 k2

z . The crea-
tion and annihilation operators obey the commutation re-
lations

�a	�k�; a
y
	0 �k

0�� � �		0��kk � k0
k
���kz � k0z�; (35)

and otherwise are zero.
The path plane on which the electrons travel can be

either parallel or perpendicular to the plate. When the
path plane is normal to the conducting plate as shown in
Fig. 1, the electron world lines are given by C1;2 �
�t; vxt; 0; z0 � ��t��. We will choose a frame S which
moves along the world line �t; vxt; 0; z0� and has the same
orientation as the laboratory frame. In this frame, the
electrons are seen to have sideways motion in the z direc-
tion only. Then the W? functional depends on the z-z
component of the vector potential Hadamard function,
which is given by

Gzz
H �x; x

0� �
1

2

Z d3k
�2��3

1

2!

�
kk
!

�
2

� coskzz coskzz0e
ikk��xk�x0

k
��i!�t�t0� 	 c:c:

(36)

Thus, the decoherence functional W? can be obtained as
-6
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W? � �
e2

2

�Z
C1

dz
Z
C1

dz0 	
Z
C2

dz
Z
C2

dz0 �
Z
C1

dz
Z
C2

dz0 �
Z
C2

dz
Z
C1

dz0
�
Gzz
H �x; x

0�

� �
e2

4

Z
dt _�dt0 _� 0

Z d3k
�2��3

1

2!

�
kk
!

�
2
fcoskz�z0 	 �� coskz�z0 	 � 0� 	 coskz�z0 � �� coskz�z0 � � 0�

	 coskz�z0 � �� coskz�z0 	 � 0� 	 coskz�z0 	 �� coskz�z0 � � 0�ge�i!�t�t
0� 	 c:c:

� �2e2
Z d3k
�2��3

1

2!

�
1�

k2
z

!2

�
�1	 ei2kzz0�

��������Z dt _� coskz�e�i!t
��������2
: (37)
FIG. 2. The decoherence functional W for the single-plate
boundary as a function of the ratio  � z0=T.
Here � 0 denotes ��t0�. Then, under the dipole approxima-
tion, we arrive at

W? �W 0

�
1	

3

323

�
�4	

�������
2�
p

�1	 42�

� e�22
Erfi�

���
2
p
�
��

(38)

with the path function given by Eq. (27). Here the correc-
tions to the decoherence functional due to the presence of
the conducting plate are expressed in terms of the ratio of
the effective distance of the electrons to the plate over the
parameter T, i.e.,  � z0=T. The imaginary error function
Erfi�z� is defined by

Erfi �z� � �iErf�iz� �
2����
�
p

Z z

0
dses

2
: (39)

Asymptotically, the ratio W?=jW 0j is given by

W?

jW 0j
�

�
�2	 8

5
2 	O�4�; ! 0;

�1� 3
16

1
4 	O� 1

6�; ! 1: (40)

As shown in Fig. 2, the effects of coherence reduction by
vacuum fluctuations in the presence of the boundary are
strikingly deviated from that without the boundary. It can
be understood by the fact that the presence of the perfectly
conducting plate modifies zero-point fluctuations of the
fields which manifest themselves so as to influence the
dynamics of decoherence in the electron interference.

In particular, when the path plane lies normal to the
plate, we find that the modified vacuum fluctuations due
to the boundary further reduce the electron coherence, then
in turn suppress the contrast of the interference fringes for
all values of . It is found that for small , W? � 2W 0

[10]. To understand this, here we provide an explanation in
contrast to the fictitious dipole interpretation suggested by
Ref. [10]. Let us note that, in the reference frame S, the
relevant component of the electromagnetic fields in this
case is the Ez field, which is perpendicular to the conduct-
ing plate. The effect of the neutral conducting plate can be
achieved by placing an image charge at the location sym-
metrical to the original charge with respect to the plate. The
image charge shall carry the opposite sign to the real one as
065022
required by the boundary conditions. As such, the Ez field
produced by the image charge is almost the same as that by
the original one so as to make the total Ez field near the
surface twice that in the unbounded case. Thus, the deco-
herence effect is doubled [10]. However, when the ratio 
increases, the suppression of electron coherence is allevi-
ated as expected and finally reduces to the result without
the boundary in the limit ! 1. Also note that the ratio 
cannot infinitesimally go to zero because z0 has to be larger
than R to constrain the electrons on one side of the plate.

On the other hand, when the path plane lies parallel to
the conducting plate, here the electron world lines are
given by C1;2 � �t; vxt;���t�; z0�. The same reference
frame S is chosen so that the electrons are seen to move
in the y direction. Then, the y-y component of the vector
potential Hadamard function becomes relevant to the W k

and it is given by

Gyy
H �x; x

0� �
1

2

Z d3k
�2��3

1

2!

�
sin2�	

k2
z

!2 cos2�
�

� sinkzz sinkzz
0eikk��xk�x0

k
��i!�t�t0� 	 c:c:;

(41)

where � is the angle between ŷ and k̂k. We then obtain the
decoherence functional W k,
-7
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W k � �e
2

�Z
C1

dy
Z
C1

dy0 �
Z
C1

dy
Z
C2

dy0
�
Gyy
H �x; x

0�

� �2e2
Z d3k
�2��3

1

2!

�
1�

k2
y

!2

�
�1� ei2kzz0�

�

��������
Z
dt _� coskz�e

�i!t

��������2
: (42)

Following the same approximation to obtain Eq. (38), the
W k now is given by

W k �W 0

�
1�

3

643

�
4�1	 42�

�
�������
2�
p

�1	 164�e�22
Erfi�

���
2
p
�
��
; (43)

and asymptotically W k=jW 0j is obtained as

W k

jW 0j
�

�
� 16

5 
2 	 144

35 
4 	O�6�; ! 0;

�1� 3
16

1
4 	O� 1

6�; ! 1: (44)

In contrast to the perpendicular case, near the plate
surface where � 1, the electron coherence is enhanced.
The loss of coherence originally due to vacuum fluctua-
tions in the unbounded space is almost completely com-
pensated by the induced fluctuations due to the boundary,
especially in the limit of ! 0. For small , we find that
W k � 0. Apparently, in the reference frame S, the Ey

component, which is parallel to the plate, is crucial. As
required by the boundary conditions, the presence of the
image charge renders the Ey field almost zero near the
plate surface, leading to the vanishing field fluctuations.
Thus, it is not so surprising that the electron coherence is
restored near the plate surface. However, when the ratio 
is much greater than unity, we expect that the orientation of
the path plane becomes irrelevant. The influence of the
boundary on electron coherence is negligible. The deco-
herence effect reduces to the result in the perpendicular
configuration, and then to that in the unbounded case in the
limit ! 1. We can see from Fig. 2 that the presence of
the boundary makes the electrons more coherent for small
, but less coherent for large  in the parallel configuration.

The presence of the conducting plate anisotropically
modifies the electromagnetic vacuum fluctuations that in
turn influence the dynamics of the electrons coupled to the
fields. In Ref. [19], the authors investigate the Brownian
motion of the test particle coupled to quantized electro-
magnetic fields. An anisotropical modification in the mean
squared fluctuations of the velocity near the conducting
plate is found. Since the mean squared fluctuations of the
velocity reflect vacuum fluctuations of fields, it is con-
cluded that close to the plate, the electromagnetic vacuum
fluctuations are suppressed in the direction transverse to
the plate, compared to the unbounded case, while fluctua-
tions are enhanced in the longitudinal direction. This is
consistent with our results.
065022
C. Presence of the double plates

In the presence of double plates, we place the second
plate at z � a, in addition to the one at z � 0. Thus, the
transverse vector potential AT for the bounded region
between the z � 0 and z � a planes can be expressed by
[12]

AT�x� �

���
2

a

s X100
n�0

Z d2kk
2�

1���������
2!n
p

�

�
a1�kk; n�k̂k � ẑ sin

n�
a
z

	 a2�kk; n�
�
ik̂k

�
n�
!na

�
sin
n�
a
z

� ẑ
�
kk
!n

�
cos

n�
a
z
��
eikk�xk�i!nt 	 H:c: (45)

The double prime on
P

assigns an extra normalization
factor 1=

���
2
p

to the n � 0 mode. The discrete frequencies
!n of the allowed modes for the double-plate boundary are

!2
n � k2

k
	

�
n�
a

�
2
: (46)

Moreover, the creation and annihilation operators obey the
commutation relations

�a	�kk; n�; a
y
	0 �k

0
k
; n0�� � �		0�nn0��kk � k0

k
�; (47)

and otherwise vanish.
As in the single-plate case, we consider that the path

plane lies either parallel or perpendicular to the plates. In
the perpendicular case, we assume that the electrons move
along their world lines, described by C1;2 � �t; vxt; 0;

a
2�

��t��, where the path function � is given by Eq. (27). As
before, we choose the frame S with z0 � a=2, in which the
electrons are observed to move in the z direction. Thereby,
the relevant component of the vector potential Hadamard
function is the z-z component,

Gzz
H �x; x

0� �
1

2a

X1
n��1

Z d2kk
�2��2

1

2!n

�
kk
!n

�
2

� cos
n�
a
z cos

n�
a
z0eikk��xk�x0

k
��i!n�t�t0� 	 c:c:

(48)

Thus, the decoherence functional W? now becomes

W ? � �
2e2

a

X
n�even

Z d2kk
�2��2

1

2!n

�
1�

n2�2

!2
na2

�

�

��������Z dt _� cos
n�
a
�e�i!nt

��������2
: (49)

Then, by applying the dipole approximation, it reduces to
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W? ’ �
e2

2

R2

Ta

X1
n��1

�
jnj&e��1=2�n2&2

	

����
�
2

r
�1� n2&2�Erfc

�
jnj&���

2
p

��
; (50)

with & � 2�T=a. The complementary error function,
Erfc�z�, is defined as

Erfc �z� � 1� Erf�z� �
2����
�
p

Z 1
z
dse�s

2
: (51)

Let us now consider the limit &� 1, that is, a� T,
where the plate separation is much smaller than the flight
time. In this limit, the decoherence functional (50) is
dominated by the n � 0 term with Erfc�0� � 1, while the
n � 0 terms are exponentially suppressed due to large &.
Hence, the W? functional can be approximated by

W ? ’ �
e2

2

R2

Ta

� ����
�
2

r
	

2

�

�
a
T

�
e�2�2�T2=a2� 	 � � �

�
: (52)

INFLUENCE ON ELECTRON COHERENCE FROM . . .
065022
It can be seen that the result is very small for R< a� T.
However, compared with the unbounded case, the ratio
W?=jW 0j is
W?

jW 0j
� �

3�3=2

4
���
2
p

T
a
��1; (53)
thus more significantly degrading electron coherence.
Nonetheless, the ratio a=T cannot indefinitely go to zero,
and is bounded by 2R=T from below since the plate sepa-
ration cannot be smaller than the path separation.

As the ratio a=T becomes much greater than unity, the
value of the decoherence functional reduces to the un-
bounded case. To see it, we convert Eq. (49) to a form
suited for this limit with the method outlined in
Appendix B. The W? functional now takes the form
W? � �
e2

2

R2

Ta

�
8

3&
	 4

X1
n�1

�
�

&

2�2

1

n2 	
1

�2��1=2

1
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n2 	
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4�2

�
e�2�n�=&�2 Erfi

� ���
2
p n�

&

���

’ �e2 R
2

Ta

�
4

3&
	

&3

2�4

X1
n�1

1

n4 e
�2��=&�2n2

	 � � �

�
; for &� 1: (54)
Here the last line is obtained by Taylor expanding the terms
in the square bracket. Thus, we have, in the limit a� T,

W ? ’W 0

�
1	 6

T4

a4 e
��a2=2T2� 	 � � �

�
: (55)

The first term is the contribution to the decoherence effect
from vacuum fluctuations without the boundary, while the
second term, although exponentially small, is the correc-
tion due to the presence of the double plates.

In Fig. 3, the ratio of the W? functional over the
absolute value of W 0 is plotted for a very wide range of
a=T. It is shown that vacuum fluctuations arising from the
presence of the plates always degrades electron coherence
for the perpendicular case as expected from the single-
plate case. In addition, introducing the second plate seems
to boost fluctuations so as to further reduce the electron
coherence significantly in the limit of a=T � 1, where the
effect of the boundary becomes important.

In the parallel case, the electron world lines are given by
C1;2 � �t; vxt;��;

a
2�, and the same reference frame S is

chosen. Then in this frame the electrons are observed to
move in the y direction only. The contributing component
of the vector potential Hadamard function is the y-y com-
ponent, given by
Gyy
H �x; x

0� �
1

2a

X1
n��1

Z d2kk
�2��2
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z sin
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a
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eikk��xk�x0

k
��i!n�t�t0� 	 c:c:;

(56)
where � is the angle between ŷ and k̂k. Then, the decoher-
ence functional W k is

W k � �
2e2

a

X
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Z d2kk
�2��2
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!2
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��������
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��������2
: (57)
Therefore, we obtain
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FIG. 3. The decoherence functional W for the double-plate
boundary as a function of the ratio a=T.
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with qn � n� 1=2. The same approximation we invoked
in the perpendicular case can be applied here. The result of
Eq. (58) is shown in Fig. 3, which reveals the similar
features as in the single-plate case.

In the limit &� 1 or T � a, the dominant contribution
to Eq. (58) comes from the n � 1 term, and the decoher-
065022
ence functional can be further approximated by

W k ’ ��e
2 R

2

a2 e
���2=2��T2=a2�; (59)

which is exponentially small as a=T ! 0. It can be inter-
preted as the fact that the presence of the double-plate
boundary may further suppress vacuum fluctuations in
the direction parallel to the conducting plates as compared
with the single-plate case, and thus enhances the electron
coherence. An interesting feature of the double-plate case
can be seen from Fig. 3, where the plot has a rather wide
plateau for the small a=T up to the value a=T � 1 within
which no appreciable loss of electron coherence could be
observed. It can be understood by the fact that when both
plates come close to one another, the dominant contribu-
tion to Eq. (63) comes from the n � 1 modes. Since their
frequencies, !1 � �=a for all kk obtained from Eq. (57),
have become sufficiently high due to small a, the contri-
butions of those modes are exponentially suppressed as can
be seen from the absolute value of the integral in Eq. (57).
This is quite different from the single-plate case.

Next, in the other limit &� 1 or T � a, it is straight-
forward to show that the W k functional now is given by
W k � �
e2
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��1�n
1

n4 	 � � �

�
; for &� 1: (60)
Then, as a=T � 1, we have

W k ’W 0

�
1	

7�4

120

T4

a4 	 � � �

�
: (61)

The first term of the decoherence functional comes from
the influence of vacuum fluctuations without the boundary,
while the second term arises from the presence of the
double plate.

Some remarks are in place. In the perpendicular con-
figuration, the correction of the decoherence effect in
Eq. (55) takes the exponential form for the large a=T.
This is due to the fact that the double-plate geometry
provides a length scale 2a, the plate separation, in the z
direction, thus introducing this scale into the z-z compo-
nents of the correlation functions. However, in the parallel
configuration, there is no such length scale in this direction.
Thus, it ends up with the correction of the form of the
power of the ratio a=T in the above expression. In addition,
for the result of the W k in either the single-plate or the
double-plate case, as shown in Figs. 2 and 3 respectively,
we observe that W k ’ 0 for small z0=T or a=T, and then
W k approaches the value of W 0 from below in the region
of large z0=T or a=T. Thus, W k must intersect with W 0 at
some value of the ratio, and exist a local minimum in these
cases.
V. BRIEF DISCUSSION ON FINITE
CONDUCTIVITY EFFECT

The finite conductivity effect on electron coherence due
to electromagnetic fields near conducting plates has been
discussed [21]. In the interference experiment, when the
electron moves parallel to the surface of the conducting
plate with velocity v, the induced surface charge in the
conductor is expected to move along with the electron with
the same velocity. As a result, the electric field inside the
conductor in the direction of motion of the electron arises,
and is to be E / ev. The induced current then is given by
the Ohmic law, J � 
E, where 
 is the conductivity of the
conductor. The presence of the current inside the conductor
leads to energy loss due to Joule heating at a rate PJoule,
roughly given by PJoule / E � J / �e2=
�v2 with v � jvj.
We assume that the electron moves at a distance d from the
surface of the conducting plate. Then the d-dependence of
the Joule energy loss rate PJoule is given in Ref. [22] in the
context of classical electrodynamics,
-10
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PJoule �
1

16�

�
e2

d

��
v2


d2

�
: (62)

For a resistive plate boundary at room temperature, the
effect of Joule heating is found to play a key role on
electron coherence in the interference experiment [21].
The observed contrast of electron interference fringes de-
creases due to large energy loss from Ohmic resistance as
the electron moves close to the boundary. However, that is
a different channel of decoherence from what we study.
Here we consider electron decoherence due to vacuum
fluctuations of electromagnetic fields with the perfectly
conducting plate boundary. In contrast, when the electron
travels parallel to the conducting plate, electron coherence
is enhanced instead as it gets closer to the boundary since
the electric field, responsible for decoherence, is vanishing
along the plate surface. It is of interest to estimate the value
of conductivity 
 at which the decoherence dynamics due
to vacuum fluctuations is not masked by Ohmic dissipa-
tion. In the typical interference experiment, the electron
moves with low velocities, and its velocity change is
determined by the electric field with an overall factor
e=m. The mean squared velocity dispersion owing to vac-
uum fluctuations of the fields along the surface of the
conducting plate is given by [19]

h�v2i �
1

4�2

�
e2

d

��
1

md

��
1

m

�
; (63)

where the parameter d is the distance of the electron to the
plate. As long as the Joule energy loss during the electron’s
flight time T is much smaller than average energy fluctua-
tions obtained from the velocity fluctuations above, the
effect from the finite conductivity of the boundary can be
ignored for the large enough conductivity given by


 �
�
2

mvL
d
� 1020

�
v

10�4c

��
10 �m

d

��
L

10 cm

�
s�1;

(64)

with the electron’s path length L � vT. This required high
conductivity roughly about 2 orders of magnitude larger
than that of Copper at room temperature can possibly be
achieved for metallic material at low temperature.

VI. SUMMARY AND CONCLUSION

In the present work, we investigate the influence of zero-
point fluctuations of quantum electromagnetic fields in the
presence of the perfectly conducting plates on electrons.
The effects of modified vacuum fluctuations can be ob-
served through the electron interference experiment, and
are manifested in the form of the amplitude change and
phase shift of the interference fringes. Here we first of all
outline the closed-time-path formalism to describe the
evolution of the density matrix of the electron and fields.
Then, the method of influence functional is employed by
tracing out the fields in the Coulomb gauge from which we
065022
find the evolution of the reduced density matrix of the
electron with self-consistent backreaction.

Under the classical approximation with the prescribed
electron’s trajectory dictated by an external potential, we
find that the exponent of the modulus of the influence
functional describes the extent of the amplitude change
of the interference contrast, and its phase results in an
overall shift for the interference pattern. In addition, it is
known that the semiclassical Langevin equation for con-
sidering the stochastic behavior of the particle coupled to
quantum fields involves backreaction dissipation in terms
of the retarded Green’s function of fields as well as the
accompanying stochastic noise with the noise correlation
function given by its Hadamard function. These two effects
are in general linked by the fluctuation-dissipation theorem
[20]. Thus, we may conclude that reduction of coherence is
driven by field fluctuations while the phase shift results
from backreaction dissipation through particle creation
that influences the mean trajectory of the electron.

We evaluate the decoherence functional of the electrons
with the boundary on quantum electromagnetic fields. The
boundary conditions can be imposed by the presence of
either a single plate or double parallel plates. In each case,
the path plane on which the electrons travel for the inter-
ference experiment can be parallel or perpendicular to the
plate(s). It is found that the effects of coherence reduction
of the electrons by zero-point fluctuations with the bound-
ary are strikingly deviated from that without the boundary.
Thus, the presence of the conducting plate anisotropically
modifies electromagnetic vacuum fluctuations that in turn
influence the decoherence dynamics of the electrons. In
particular, as the electrons are close to the plate, electron
coherence is enhanced in the case where the path plane of
the electrons is parallel to the plate. It is resulted from the
suppression of zero-point fluctuations due to the boundary
in the direction transverse to the plate. On the other hand,
the electron coherence is reduced in the perpendicular
configuration where zero-point fluctuations are boosted
instead along the direction longitudinal to the plate. In
addition, in the presence of double parallel plates bound-
ary, zero-point fluctuations seem to make the electrons
more coherent in the parallel configuration, but less coher-
ent in the perpendicular one, as compared with the single-
plate boundary.

Thus, the loss of decoherence of the electrons can be
understood from zero-point fluctuations of electromagnetic
fields given by the Hadamard function of vector potentials.
On the other hand, the backreaction dissipation through
photon emission can influence the mean trajectory of the
electron, and in turn leads to the phase shift on the electron
inference pattern through the retarded Green’s function.
We wish in our future work to address the issue of the
relation between the amplitude change and phase shift
of interference fringes via the fluctuation-dissipation
theorem, which might be testable in the interference
experiment.
-11
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APPENDIX A: THE DECOHERENCE
FUNCTIONAL IN THE FEYNMAN GAUGE

The decoherence functional W obtained in the
Coulomb gauge can be cast into the gauge invariant ex-
pression (25). Here, we illustrate the nature of the gauge
invariance by explicitly computing the decoherence func-
tional with an alternative gauge fixing. We choose the
Feynman gauge as an example, and then the Green’s
functions of the vector potentials in the presence of the
conducting plates can be obtained by the method of the
image charge [17].

In the following discussion, we assume that path func-
tion ��t� is required to be sufficiently smooth and an even
function of time t. The range of time t extends from�1 to
	1 such that, for the motion of the electron to be physi-
065022
cally meaningful, the first time derivative of the path
function must vanish at end points, that is, _���1� �
_��	1� � 0 in this case.

A. The single plate

Consider a conducting plate lying at the z � 0 plane.
The W functional, with the help of the image method, is
given by

W � �
e2

2

I
C
dx�

I
C
dx0�

1

4�2

�
���

4t2 �4x2
k
� �z� z0�2

�
���� 	 2n�n��

4t2 �4x2
k
� �z	 z0�2

�
�W �0� 	W �R�; (A1)

where n� � �0; 0; 0; 1� is a unit vector normal to the plate.
4t and 4xk denote t� t0 and xk � x0

k
, respectively.

Apparently, the W functional can be written as the sum
of W �0� from the vacuum fluctuations in the unbounded
space and W �R� from the contribution of the image charge
that accounts for the presence of the conducting plate. The
W �0� term is explicitly given by
W �0� � �
e2

8�2

I
C
dx�

I
C
dx0�

���

4t2 �4x2
k
� �z� z0�2

�
e2

4

�Z
C1

Z
C1

	
Z
C2

Z
C2

�
Z
C1

Z
C2

�
Z
C2

Z
C1

�
dtdt0�1� v � v0�

Z d3k
�2��3

1

2!
�eikk��xk�x0

k
�	ikz�z�z0��i!�t�t0� 	 c:c:�;

(A2)
where v � dx=dt and C � C1 � C2. We only consider the
case that the path plane is perpendicular to the plate and
denote the decoherence functional as W?. The extension
to the parallel case is straightforward.

The world lines of the electrons are chosen to take the
form, C1;2 � �t; vxt; 0; z0 � ��t��. The Lorentz invariance
of the decoherence functional enables us to choose the
frame S moving along a straight line described by
�t; vxt; 0; z0� defined in Sec. V. Observed from this refer-
ence frame, the electrons are to move only transversally in
the z direction. Then, the W �0�

? term reduces to

W �0�
? � e

2

�Z
dtdt0�1� _� _� 0�

Z d3k
�2��3

1

2!
e�ikz����

0�	i!�t�t0�

�
Z
dtdt0�1	 _� _� 0�

Z d3k
�2��3

1

2!
e�ikz��	�

0�	i!�t�t0�
�

(A3)
� 2e2

�Z
dtdt0

Z d3k
�2��3

1

2!
sinkz� sinkz�

0ei!�t�t
0�

�
Z
dtdt0 _� _� 0

Z d3k
�2��3

1

2!
coskz� coskz� 0ei!�t�t

0�

�
:

(A4)

We then perform the integration by parts on the first term of
Eq. (A4) and obtain

W �0�
? � �2e2

Z d3k
�2��3

1

2!

�
1�

k2
z

!2

�

�

��������Z dt _� coskz�e
i!t

��������2
: (A5)

Following the similar procedures leads to the W �R�
? func-

tional given by
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W �R�
? �

e2

8�2

I
C
dx�

I
C
dx�

X1
n��1

��� � n�n�

4t2 �4x2
k
� �z� z0 � 2na�2

� �2e2
Z d3k
�2��3

1

2!
e�2ikzz0

�
1�

k2
z

!2

���������
Z
dt _� coskz�e

i!t

��������2
: (A6)

Then, putting Eqs. (A5) and (A6) together, the W? functional becomes

W ? � �2e2
Z d3k
�2��3

1

2!

�
1	 e�2ikzz0

��
1�

k2
z

!2

���������Z dt _� cos�kz��ei!t
��������2
; (A7)

which is of the same form as Eq. (37) derived in the Coulomb gauge.

B. The double plates

We now turn to the case with two conducting plates at the z � 0 and z � a planes, respectively. The W functional is
given by

W � �
e2

8�2

I
C
dx�

I
C
dx0�

X1
n��1

�
���

4t2 �4x2
k
� �z� z0 � 2na�2

�
��� 	 2n�n�

4t2 �4x2
k
� �z	 z0 � 2na�2

�
�W �I� 	W �II�;

(A8)

in terms of a sum of the contributions from the image charges. The W �I� can be written explicitly as

W �I� � �
e2

8�2

I
C
dx�

I
C
dx�

X1
n��1

���

4t2 �4x2
k
� �z� z0 � 2na�2

�
e2

2

�Z
C1

Z
C1

	
Z
C2

Z
C2

�
Z
C1

Z
C2

�
Z
C2

Z
C1

�
dtdt0�1� v � v0�

X1
n��1

Z d3k
�2��3

1

2!

� �eikk��xk�x0
k
�	ikz�z�z0�2na��i!�t�t0� 	 c:c:�; (A9)

with the velocity v � dx=dt and the closed path given by C � C1 � C2. The integration over kz can be carried out by the
identity

X1
n��1

e2ikzna �
�
a

X1
m��1

�
�
kz �

m�
a

�
: (A10)

We consider the case that the path plane of the electrons is perpendicular to the plates and the world lines of electrons are
described by C1;2 � �t; vxt; 0;

a
2� ��t��. We evaluate the decoherence functional W? in the frame S with z0 � a=2.

Therefore, the W? function is simplified to

W �I�
? �

e2

2a

X1
n��1

�Z
dtdt0�1� _� _� 0�

Z d2kk
�2��2

1

2!n
e�i�n�=a�����

0�	i!n�t�t0�

�
Z
dtdt0�1	 _� _� 0�

Z d2kk
�2��2

1

2!n
e�i�n�=a���	�

0�	i!n�t�t0�
�

�
e2

a

X1
n��1

�Z
dtdt0

Z d2kk
�2��2

1

2!n
sin
n�
a
� sin

n�
a
� 0ei!n�t�t0� �

Z
dtdt0 _� _� 0

Z d2kk
�2��2

1

2!n
cos

n�
a
� cos

n�
a
� 0ei!n�t�t0�

�
:

(A11)

Taking the integration by parts for the first term of the above expression, the W �I�
? functional ends up with

W �I�
? � �

e2

a

X1
n��1

Z d2kk
�2��2

1

2!n

�
1�

n2�2

!2
na2

���������
Z
dt _� cos

n�
a
�ei!nt

��������2
: (A12)

Following the similar procedures, we come to
065022-13
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W �II�
? �

e2

8�2

I
C
dx�

I
C
dx0�

X1
n��1

��� 	 2n�n�

4t2 �4x2
k
� �z	 z0 � 2na�2

� �
e2

a

X1
n��1

Z d2kk
�2��2

��1�n

2!n

�
1�

n2�2

!2
na

2

���������Z dt _� cos
n�
a
�ei!nt

��������2
: (A13)
Then, the sum of two contributions gives rise to the W?

function of the form

W ? � �
2e2

a

X
n�even

Z d2kk
�2��2

1

2!n

�
1�

n2�2

!2
na

2

�

�

��������
Z
dt _� cos

n�
a
�ei!nt

��������2
; (A14)

which is also consistent with the result Eq. (49) in the
Coulomb gauge.

APPENDIX B: TRANSFORMATION OF THE
SLOWLY CONVERGENT SUMMATION

Here we outline the method to convert an expression of
summation, which turns out to be slowly convergent, into
another form to carry out the sum more efficiently [23]. In
general, one may express a summation by a contour inte-
gral,

X1
n�1

f�n� �
I

�
dz

f�z�

e2i�z � 1

�

�Z
�1

	
Z

�2

	
Z

�3

	
Z

�4

�
dz

f�z�

e2i�z � 1
; (B1)

where the closed path � is chosen to enclose all simple
poles at z 2 Z	 in a counterclockwise sense, and other-
wise quite arbitrary. It proves convenient to express the
closed contour � with the following 4 segments:

�1: z � s� i�; � < s <1;

�2: z � 1	 is; �� < s < �;

�3: z � s	 i�; � < s <1;

�4: z � �	 is; �� < s < �;

where �! 0	 and 0 � � < 1. The contour integral can be
carried out as follows.

Since �1 lies just below the real axis, one may expand
the denominator of the integrand in terms of e�2i�z to
ensure convergence of the integralZ

�1

dz
f�z�

e2i�z � 1
�
Z 1�i�
��i�

ds
f�s�

e2i�s � 1

�
X1
k�1

Z 1
�
dsf�s�e�2i�ks: (B2)
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On the contrary, the denominator of the integrand is ex-
panded with respect to e2i�z as the path �3 lies slightly
above the real axis as

Z
�3

dz
f�z�

e2i�z � 1
� �

Z 1	i�
�	i�

ds
f�s�

e2i�s � 1

�
X1
k�0

Z 1
�
dsf�s�e2i�ks

�
Z 1
�
dsf�s� 	

X1
k�1

Z 1
�
dsf�s�e2i�ks:

(B3)

The line integral along the path �2 turns out to be zero:

Z
�2

dz
f�z�

e2i�z � 1
�
Z 1	i�
1�i�

ds
f�s�

e2i�s � 1
� 0 (B4)

for a regular function f�z�. Special care must be taken for
the line integral along the path �4. The value of � can be
chosen within 0 � � < 1, which leads to the same result of
the contour integral. However, in the limit �! 0, the path
may come across a pole at z � 0 so it must be deformed to
avoid the pole. Then, in this case, the path �4 can be chosen
to be a semicircle connecting 0	 i� and 0� i� clockwise,
that is, z � �ei� with ��=2< �<�=2. The line integral
then becomes

Z
�4

dz
f�z�

e2i�z � 1
� �i�

Z �=2

���=2�
d�

ei�

e2i��i� � 1
f��ei��

� �
1

2
f�0�: (B5)

However, for a nonzero �, the integral vanishes just as that
over the path �2,

Z
�4

dz
f�z�

e2i�z � 1
� �

Z �	i�

��i�
ds

f�s�

e2i�s � 1
� 0: (B6)

Putting these results together, we have

X1
n�1

f�n� �
I

�
dz

f�z�

e2i�z � 1

� �
1

2
f�0���0 	

Z 1
�
dsf�s�

	 2
X1
k�1

Z 1
�
dsf�s� cos�2i�ks�: (B7)
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The third term on the right-hand side of the above repres-
sion is essentially a Fourier transformation of f�s�, which
transforms the variable s to variable k roughly related by
065022
k � 1=s. Thus, when the summation
P
nf�n� converges

slowly, the summation shown in the right-hand side of
Eq. (B7) will be carried out more efficiently.
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Y. Giraud-Héraud, and J. Trân Thanh Vân (Editions
Frontieres, Gif-sur-Yvette, 1996); Y. Levinson, J. Phys.
A 37, 3003 (2004); P. Sonnentag and F. Hasselbach, Braz.
J. Phys. 35, 385 (2005).

[22] T. H. Boyer, Phys. Rev. A 9, 68 (1974).
[23] H. Boschi-Filho, C. P. Natividade, and C. Farina, Phys.

Rev. D 45, 586 (1992).
-15


