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General boundary quantum field theory: Timelike hypersurfaces in the Klein-Gordon theory
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We show that the real massive Klein-Gordon theory admits a description in terms of states on various
timelike hypersurfaces and amplitudes associated with regions bounded by them. This realizes crucial
elements of the general boundary framework for quantum field theory. The hypersurfaces considered are
hyperplanes on the one hand and timelike hypercylinders on the other hand. The latter lead to the first
explicit examples of amplitudes associated with finite regions of space, and admit no standard description
in terms of ‘‘initial’’ and ‘‘final’’ states. We demonstrate a generalized probability interpretation in this
example, going beyond the applicability of standard quantum mechanics.
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I. INTRODUCTION

State spaces in quantum field theory are normally asso-
ciated with spacelike hypersurfaces. What is more, in flat
spacetime one usually only considers one state space,
identifying all of them through time-translation symmetry.
The restriction to spacelike hypersurfaces has various rea-
sons, among them the necessity to conserve probabilities in
the standard formulation of quantum mechanics.

In contrast, we contend that this restriction is artificial.
Indeed, we have shown in [1] that considering states on
certain timelike hypersurfaces seems to make perfect
sense. The example considered was the real massive
Klein-Gordon theory and the hypersurfaces discussed
were hyperplanes. In particular, we found a consistent
vacuum state on arbitrary hyperplanes and elucidated the
nature of particle states on timelike hyperplanes.

An underlying framework into which these results may
be fitted is the so called general boundary formulation of
quantum mechanics, also called general boundary quan-
tum field theory. The foundations of this framework are laid
out in the companion paper [2]. However, the present paper
should be readable independently.

The basic idea of this approach, going back to [3,4], is
that transition amplitudes make sense not only between
instances of time, but may also be associated with regions
of spacetime which are not necessarily defined by a time
interval. Furthermore, the relevant state spaces are associ-
ated with the boundary hypersurfaces of these regions.

In the present article we continue the development of
Klein-Gordon theory in this framework. The key new
example of hypersurface we consider is an infinite timelike
hypercylinder. More precisely, consider a sphere in space
and extend it over all of time. This is what we call the
hypercylinder. The spacetime regions of interest in this
context are the solid hypercylinder as well as a solid
hypercylinder with another one cut out.

Using the Schrödinger representation combined with the
Feynman path integral (explained in Sec. II) we work out
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state spaces of wave functions, field propagators, vacuum
states and particle states. We show that all these structures
are consistent in the sense of general boundary quantum
field theory. In doing so, we start by reviewing spacelike
hyperplanes (Sec. III) to clarify the approach, then move to
recall and elaborate on the general hyperplane case
(Sec. IV). The main technical results are obtained in the
treatment of the hypercylinder case (Sec. V), with the
novel situation of an amplitude associated with a region
of spacetime with a connected boundary. This case requires
a genuinely new interpretation and the general boundary
formulation shows its full force here.

After the technical part we move to a discussion of the
interpretation (Sec. VI). This consists first of a discussion
of the meaning of particle states on timelike hypersurfaces.
In particular, we elaborate on the fact that particles within a
state acquire the property of being incoming or outgoing
individually. Second, we apply the probability interpreta-
tion proposed in [2] to the case of the solid hypercylinder.
Because of the connectedness of the boundary an ampli-
tude is to be evaluated on a single state. While this is out of
the range of applicability of standard quantum mechanics,
the proposed interpretation yields a physically fully satis-
factory answer. We close with a few remarks (Sec. VII).
II. GENERALIZED SCHRÖDINGER-FEYNMAN
APPROACH

Our aim is to show how the Klein-Gordon theory admits
a generalized description in terms of a general boundary
quantum field theory. More precisely, we wish to show how
it admits states on hypersurfaces that are not necessarily
spacelike and amplitudes associated with spacetime re-
gions which are not necessarily time intervals. It turns
out that to this end the Schrödinger representation (where
states are wave functions) combined with the Feynman
path integral [5] are particularly suitable [4]. Since the
former is not usually employed in quantum field theory,
we refer to the review [6].

We start by introducing the basic structures and their
heuristic definition. This includes state spaces, inner prod-
-1 © 2006 The American Physical Society
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ucts, propagators, etc. Most of these exist already in the
standard formalism, but will be defined here in a general-
ized way. Furthermore, consistency conditions will be
formulated that these structures must satisfy. These con-
ditions may be derived directly from the axiomatic frame-
work presented in the companion paper [2]; see also Sec. 7
of that paper. Again, these generalize consistency condi-
tions of the standard quantum mechanical framework, in-
cluding unitarity, composability of time evolutions, etc.
That this generalization really makes sense is the subject
of the remaining part of this article.

A. States and amplitudes

The basic spacetime objects we will need are hyper-
surfaces � and regions (4-submanifolds) M in Minkowski
space. The former generalize spacelike hypersurfaces and
the latter generalize regions of time evolution between
them.

On a given hypersurface � we consider the space of field
configurations, which we denote by K�. Since we are
dealing with a theory of one real scalar field this is basi-
cally the space of real-valued functions on �.1 The
Schrödinger representation prescribes now that states are
complex-valued wave functions on this configuration
space. Thus, we associate with � its space of states
(wave functions) which we denote H �. This state space
carries an inner product, defined through an integral over
field configurations,

h ; 0i� :�
Z
K�

D’ �’� 0�’�: (1)
Note the following important property of state spaces.
Take a hypersurface � which is the disjoint union of two
hypersurfaces �1 [ �2. The field configurations on � are
then obviously pairs of field configurations on �1 and on
�2, i.e., K� � K�1

� K�2
. Thus, wave functions on � can

be expanded into products of wave functions on �1 and �2,
i.e., H � �H �1

�H �2
.

We will make use of another structure on hypersurfaces:
orientation. From now on, we will think of each hypersur-
face as oriented, i.e., each hypersurface has a chosen
‘‘side.’’ For a given oriented hypersurface �, we denote
its oppositely oriented version by ��, i.e., using an over-bar.
Although the associated state spaces H � and H �� are
canonically identical (indeed, so far we have not distin-
guished between them), their physical meaning must be
distinguished in the following. However, there is a map that
tells us which state on �� corresponds physically to a given
state on �. This map, denoted by ��: H � !H ��, is given
1We will later see that this naive definition is not always
correct. However, it will suffice here for the intuitive picture.
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by the complex conjugation of wave functions,

���� ���’� :�  �’� 8  2H �; ’ 2 K�: (2)

Let M be a region with boundary �. The hypersurface �
is oriented by choosing the ‘‘outside’’ of M. We define the
amplitude associated with M as the map �M: H � ! C,
associating with each wave function a complex number as
follows,

�M� � :�
Z
K�

D’ �’�ZM�’� 8  2H �; (3)

ZM�’� :�
Z
KM;�j��’

D�eiSM��� 8  2 K�: (4)

The second integral is the Feynman path integral over ‘‘all
field configurations’’ � 2 KM in the region M that reduce
to ’ on the boundary �. SM is the action integral over the
region M. The quantity ZM�’� is called the field propaga-
tor. It formally looks like a wave function, but might not be
normalizable with respect to the inner product (1).

Consider a region M with boundary � consisting of the
disjoint union of two components �1 and �2. Then, the
amplitude �M: H �1

�H �2
! C induces a map

~�M: H �1
!H ��2

via

�~�M� ���’
0� �

Z
K�1

D’ �’�ZM�’;’0�

8  2H �1
; ’0 2 K ��2

:

(5)

Note that the orientation reversal on �2 comes from the
fact that the Hilbert space H �2

must be dualized when
moved from the domain of �M to the image. But the inner
product (1) together with the conjugation (2) make H ��2

precisely into the dual space of H �2
. The physical mean-

ing of ~�M is that (in suitable circumstances) we may think
of it as describing the evolution (not necessarily in time) of
the system from �1 to ��2.

In particular, suppose we have two spacelike hypersur-
faces �1 and ��2 and call the intermediate region M. Then,
~�M� � is the time-evolved wave function on ��2 for the
initial wave function  on �1. Note here that �1 and ��2

have the same orientation with respect to the time direc-
tion, namely, with their ‘‘past’’ side selected. Indeed, the
reason why the orientation of hypersurfaces does not ap-
pear explicitly in the standard formulation is that all space-
like hypersurfaces can be coherently oriented in the same
way, using the time direction.

We now formulate what a unitarity evolution (i.e., an
evolution preserving the inner product) means. One can
check that for ~�M to be unitary the propagator must satisfy
-2
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the following formal condition,Z
K�2

D’2ZM�’1; ’2�ZM�’
0
1; ’2� � ��’1; ’

0
1�

8 ’1; ’
0
1 2 K�1

:

(6)

Finally, consider a regionM1 with a boundary consisting
of disconnected components �1 and � and a region M2

with a boundary consisting of disconnected components ��
and �2 such that M1 andM2 may be glued along � to form
a new regionM. We then want that the evolution associated
withM is the composition of the evolutions associated with
M1 and M2. That is, ~�M1[M2

� ~�M2
� ~�M1

. In terms of
propagators this meansZ

K ��

D’ZM1
�’1; ’�ZM2

�’;’2� � ZM1[M2
�’1; ’2�

8 ’1 2 K�1
; ’2 2 K ��2

:

(7)

If we write the propagator in terms of the path integral (4)
the validity of (7) becomes obvious.2

B. Vacuum

We postulate that there is a distinguished vacuum wave
function on each hypersurface �, denoted  �;0. We require
the vacuum to satisfy certain properties (the vacuum axi-
oms of [2]). This is, first, the compatibility with conjuga-
tion. This means that the vacuum wave function on a
hypersurface is complex conjugate to the vacuum on the
hypersurface with the opposite orientation. Formally,

 ��;0�’� � ���� �;0���’� �  �;0�’� 8 ’ 2 K�: (8)

Another property of the vacuum state we expect is that
for a hypersurface � consisting of disjoint hypersurfaces
�1 and �2 the vacuum wave function should be the product
of the individual vacuum wave functions, i.e.,

 �;0�’1; ’2� �  �1;0�’1� �2;0�’2�

8 ’1 2 K�1
; ’2 2 K�2

:
(9)

We also want the vacuum states to be normalized, i.e.,Z
K�

D’j �;0�’�j2 � 1: (10)

Finally, the amplitude of the vacuum state should be
unity. Suppose M is a region with boundary �, then

�M� �;0� �
Z
K�

D’ �;0�’�ZM�’� � 1: (11)

As can be shown [2] these properties imply that the
vacuum is preserved under evolution in the sense described
2However, it becomes much less obvious when going beyond
the naive picture presented here. We will see this in the
following.
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above. That is, evolving from a hypersurface �1 to a
hypersurface ��2 via a region M with evolution map
~�M: H �1

!H ��2
, the vacuum satisfies

 ��2;0
�’2� � �~�M� �1;0���’2�

�
Z
K�1

D’1 �1;0�’1�ZM�’1; ’2�

8 ’2 2 K�2
:

(12)

In the context of parallel equal-time hyperplanes this is the
standard notion of time-evolution invariance of the
vacuum.

III. SPACELIKE HYPERPLANES

In this section we review standard elements of the
Schrödinger representation of the Klein-Gordon theory.
This will make the later generalization and its meaning
more transparent. We follow here a presentation close to
[1]. Hypersurfaces are here equal-time hyperplanes and
regions are time intervals extended over all of space. We
use time-translation symmetry to identify the spaces of
wave functions associated with all (past oriented) equal-
time hyperplanes. (See [2] for a more detailed discussion
of this identification.)

We start by recalling elementary features of the classical
Klein-Gordon theory of a real scalar field�with massm in
Minkowski space. The equations of motion are given by
the Klein-Gordon equation, ���m2�� � 0, with � :�
@2

0 �
P
i	1@

2
i . The action on a region M of Minkowski

space is given by

SM����
1

2

Z
M

d4x
�
�@0���@0���

X
i	1

�@i���@i���m2�2

�
:

We may rewrite this as follows,

SM��� � �
1

2

Z
M

d4x����m2��

�
1

2

Z
@M

d3x�
�
n0@0 �

X
i	1

ni@i

�
�: (13)

Here ni is the local Euclidean normal vector to the bound-
ary @M ofM pointing outwards. Note that by the equations
of motion, the action applied to a solution reduces to the
boundary term.

A. Propagator

Consider two instants in time t and t0. The time interval

t; t0� defines a region in Minkowski space in the obvious
way. Its boundary has two connected components associ-
ated with the two instants of time. Using the variational
principle that determines the equations of motions together
with the fact that the action is quadratic we can evaluate the
field propagator (4) for this region. Choosing a classical
solution �cl matching the boundary data at t and t0 and
-3
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shifting the integration variable yields

Z
t;t0��’;’
0� �

Z
�jt�’;�jt0�’

0
D�eiS
t;t0����

�
Z
�jt�0;�jt0�0

D�eiS
t;t0 ���cl���

� N
t;t0�e
iS
t;t0 ���cl�; (14)

where � :� t0 � t. The normalization factor is formally
given by

N
t;t0� �
Z
�jt�0;�jt0�0

D�eiS
t;t0 ����:

Using (13) the evaluation of the action on a classical
solution reduces to a boundary integral. In the present
case this is

S
t;t0���cl� �
1

2

Z
t0

d3x�cl�t0; x�@0�cl�t0; x�

�
1

2

Z
t
d3x�cl�t; x�@0�cl�t; x�: (15)

We split the classical solution into positive and negative
energy components,

�cl�t; x� � e�i!t’��x� � ei!t’��x�; (16)

where ! is the operator

! :�
����������������������������
�
X
i	1

@2
i �m

2
s

:

Inserting this decomposition into (15) and inverting the
formal linear transformation

’
’0

� �
�

e�i!t ei!t

e�i!t0 ei!t0

� �
’�

’�

� �
yields the field propagator (see [4]),

Z
t;t0��’;’0��N
t;t0�exp
�
�

1

2

Z
d3x ’ ’0

� �
W
t;t0�

’
’0

� ��
:

(17)

The operator-valued matrix W
t;t0� is given by

W
t;t0� �
�i!

sin!�
cos!� �1
�1 cos!�

� �
:

B. Vacuum

To obtain the vacuum wave function, consider the
Gaussian ansatz

 0�’� � C exp
�
�

1

2

Z
d3x’�x��A’��x�

�
(18)

for an unknown operator A and a normalization constant C.
Imposing the time-evolution invariance (12) yields the
equation A2 � !2. We choose A � !, following the stan-
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dard conventions. At the same time, this fixes the normal-
ization factor N
t;t0� to be formally

N�1

t;t0� �

Z
D’ exp

�
�

1

2

Z
d3x’�x�

! exp�i!��

i sin�!��
’�x�

�
:

(19)

One can check that, with this normalization, the propagator
satisfies both the unitarity condition (6) and the composi-
tion property (7).

The normalization condition (10) for the vacuum fixes
the factor C (up to a phase),

jCj�2 �
Z

D’ exp
�
�

1

2

Z
d3x’�x��2!’��x�

�
: (20)

We choose C to be real. We will come back to the reason
for this later. Note that this implies that the vacuum wave
function is real and thus [implementing (8)] the same for
both orientations of an equal-time hyperplane.

The property (9) is now a definition that only comes into
force if we consider unions of different equal-time hyper-
planes. The unit amplitude property (11) follows from the
other properties already implemented.

C. Particle states

The particle states can be found by use of suitable
creation and annihilation operators (see [6]) or through
an expansion of the propagator in terms of eigenstates.
We will not enter into the details here.

Using the Fourier transform,

�’�p� � 2E
Z

d3x eipx’�x�;

’�x� �
Z d3p

�2��32E
e�ipx �’�p�;

the one-particle wave function of momentum p is given by

 p�’� � �’�p� 0�’�: (21)

These wave functions have a distributional normalization,
given by

h p;  p0 i � �2��32E�3�p� p0�: (22)

The two-particle state with momenta p and p0 is given by
the wave function

 p;p0 �’� � � �’�p� �’�p0� � �2��32E�3�p� p0�� 0�’�:

(23)

The n-particle wave function is a polynomial of degree n in
Fourier transforms times the vacuum wave function. To
obtain it explicitly for given momenta p1; . . . ; pn, one may
project the wave function

�’�p1� � � � �’�pn� 0�’�
-4
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to the orthogonal complement of the spaces of states with
less than n particles.

In contrast to the vacuum, particle wave functions are
generically not real. Thus, (2) prescribes that a given
particle wave function change explicitly to its complex
conjugate when considered on an equal-time hyperplane
with opposite orientation. Since we have taken ‘‘past ori-
entation’’ as standard, we denote a wave function  , when
specifying the same state but with ‘‘future orientation’’ by
� .

The transition amplitude from an n-particle state
 p1;...;pn at time t1 to an m-particle state  q1;...;qm is given
by the amplitude function (3) and evaluates to

�
t;t0�� p1;...;pn �
� q1;...;qm�

�
Z
Kt�Kt0

D’D’0  p1;...;pn�’� q1;...;qm�’
0�Z
t;t0��’;’

0�

� �n;me
�i�n

i�14Ei
X
��Sn

Yn
i�1

�2��32Ei�
3�pi � q��i��:

The sum runs over all permutations � of n elements.
Using (5) the notation for the amplitude may be brought

into the more conventional form

�
t;t0�� p1;...;pn �
� q1;...;qm� � h q1;...;qm ; ~�
t;t0�� p1;...;pn�i;

(24)

which recovers the usual bra-ket notation.
IV. GENERAL HYPERPLANES

We now generalize from equal-time hyperplanes to ar-
bitrary hyperplanes in Minkowski space [1]. We start with
a particular timelike hyperplane.

Consider the hyperplane aligned with the time axis and
spanned by coordinate directions �t; x2; x3�. We will denote
the coordinates x2, x3 collectively by ~x. A crucial differ-
ence to the spacelike case arises as follows. When consid-
ering field configurations in the sense of Sec. II we have to
keep in mind that a field configuration together with the
conjugate momentum should correspond to a classical
solution. If we consider configuration and momentum on
a spacelike hyperplane, then clearly, a configuration can be
essentially any real function on the hyperplane. However,
on a timelike hyperplane not every real function extends to
a classical solution. It is easy to see that the space of
configurations that do extend is the subspace of the space
of ‘‘all’’ configurations on which the square of the operator

�1 :�
���������������������������������������
�@2

0 �
X
i	2

@2
i �m

2
s

has non-negative eigenvalues. (Thus, �1 itself is well de-
fined on this space.) We call this the physical configuration
space.
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A. Timelike propagator

The first object of interest in this context is the propa-
gator, say for the spacetime region defined by the interval

x1; x

0
1�. It was shown in [1] that it can be calculated along

lines entirely analogous to the equal-time hyperplane case.
Namely, the path integral can be evaluated with the help of
a classical solution matching the boundary data. This in-
volves using the boundary form (13) of the action eval-
uated on the classical solution. This time, the step
analogous to the decomposition (16) is the decomposition
in terms of solutions with positive versus negative momen-
tum in the x1 direction,

��t; x� � ei�1x1’��t; ~x� � e�i�1x1’��t; ~x�:

This leads to the result

Z
x1;x01�
�’;’0� � N
x1;x01�

exp
�
�

1

2

�
Z

dt d2~x ’ ’0
� �

W
x1;x01�
’
’0

� ��
;

(25)

with � :� jx01 � x1j. The operator-valued matrix W
x1;x01�
is

given by

W
x1;x01�
�

i�1

sin�1�
cos�1� �1
�1 cos�1�

� �
:

B. Timelike vacuum

To determine the vacuum state we make the ansatz
analogous to (18), i.e., using a Gaussian bilinear form
with undetermined operator A. Explicit computation yields
A2 � �2

1. We choose A � �1, justifying this choice later.
Note that this also fixes the normalization factor N
x1;x01�

appearing in the propagator to

N�1

x1;x01�

�
Z

D’ exp
�
�

1

2

Z
dt d2~x’

i�1 exp��i�1��

sin�1�
’
�
:

One can check now that the unitarity condition (6) as well
as the composition property (5) are satisfied.

In particular, the latter fact is actually surprising and
merits a remark. The composition property (7), when in-
troduced in Sec. II, seemed obviously correct. This was for
the simple reason that the propagator (4) is a path integral,
which by its very meaning should be sliceable into pieces if
one integrates over all intermediate configurations.
However, since the path integral is over all configurations
(real functions) in spacetime, the configurations to be
integrated over on the boundary between slices should be
all configurations (real functions). This is not what we are
doing. We are only integrating over the physical configu-
rations as explained above. That the composition rule holds
nevertheless is thus a nontrivial fact (in contrast to the
spacelike case).
-5
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The normalization condition (10) on the vacuum now
yields

jCj�2 �
Z

D’ exp
�
�

1

2

Z
dtd2~x’2�1’

�
:

One may argue that this yields the same jCj as (20) by
putting the two configurations’ spaces and their measures
into correspondence. There is a novel aspect concerning
the phase of C here. Recall from (8) that the vacuum wave
function on an oppositely oriented hyperplane must be
given by the complex conjugate. However, we may use a
spatial rotation to transform a timelike hyperplane into
itself, but with opposite orientation. Thus, rotating the
vacuum this way and requiring equality with the complex
conjugate yields the condition that the vacuum wave func-
tion must be real. This implies that C is real.3

C. Timelike particle states

After having convinced ourselves that the structures
defined have all properties listed in Sec. II we move to
consider particle states. Since a state is a wave function on
physical configurations on the hyperplane, a basis of one-
particle states may be characterized by the Fourier modes
in this hyperplane. In the standard (spacelike) case these
are labeled by 3-momentum. In the present (timelike) case
these are labeled by the (possibly negative) energy and the
momentum in the ~x directions. We will consider here
merely the formal properties of particle states, postponing
a discussion of their meaning to Sec. VI.

Since we set the energy variable to be positive, E> 0,
we distinguish the actual sign of the energy by an index
,
using a Fourier transform of the form

�’
�E; ~p� :� 2p1

Z
dt d2~x e
i�Et�~p ~x�’�t; ~x�: (26)

The one-particle state of energy E (or �E) and 2-
momentum ~p is given by the wave function

 
E;~p�’� � �’
�E; ~p� 0�’�: (27)

Its eigenvalue under ‘‘spatial evolution’’ from x1 to x01 is
given by exp�i�p1�, where p1 is the positive square root

p1 �
������������������������������
E2 � ~p2 �m2

p
. The inner product of one-particle

states is given by the distribution

h aE;~p;  
a0
E0;~p0 i � �2��

32p1�a;a0��E� E
0��2�~p� ~p0�:

(28)

The complex conjugation of the wave function associated
with a change of orientation of the hyperplane simply
3One might try to use a similar argument in the spacelike case
using a time reflection transformation. However, this transfor-
mation is not connected to the identity of the Poincaré group and
thus might not necessarily be expected to leave the vacuum
invariant.
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changes the sign index,

�’
�E; ~p� 0�’� � �’��E; ~p� 0�’�: (29)

Multiparticle states are formed in analogy to the space-
like case, namely, by starting with a monomial in (26)
times the vacuum wave function and then projecting out
the components in subspaces of lower particle number. For
example, the two-particle state takes the form

 a;a
0

�E;~p�;�E0;~p0��’� � � �’a�E; ~p� �’a
0
�E0; ~p0�

� �2��32p1�a;�a0��E� E
0�

� �2�~p� ~p0�� 0�’�: (30)

Similarly to the spacelike case, we may identify state
spaces associated with parallel hyperplanes by using a
spatial translation symmetry. We may thus write ampli-
tudes between such parallel hyperplanes. For example, the
one-particle to one-particle amplitude is

�
x1;x01�
� aE;~p �  

a0
E0;~p0�

�
Z
Kx1
�Kx0

1

D’D’0  aE;~p�’� 
a0
E0;~p0�’

0�Z
x1;x01�
�’;’0�

� ei4p1�2��32p1�a;�a0��E� E
0��2�~p� ~p0�: (31)

Note that no explicit complex conjugation appears here,
since we have chosen the wave functions with respect to
the orientations of the carrying hyperplanes as boundaries
of the enclosed region.

As in the spacelike case we may rewrite the amplitude in
a form analogous to (24), reminiscent of the bra-ket nota-
tion. However, this is no longer very useful. In contrast to
the spacelike case, rotational symmetry prevents a consis-
tent orientation of all timelike hypersurfaces from the
outset. Thus, none of the two possible ways of writing
the amplitude (31) in the form (24), arising from the two
possible orientations, is preferred.

D. General vacuum

We now turn to arbitrary hyperplanes in Minkowski
space. Such a hyperplane is either spacelike, timelike or
null. In the first case we can obtain it by a Poincaré trans-
formation from the equal-time hyperplane considered in
Sec. III. In the second case we can obtain it by a Poincaré
transformation from the timelike hyperplane considered
above. Since the theory is fully Poincaré covariant, state
spaces, propagators, etc. can all be obtained in a straight-
forward way by the induced transformations. We will not
detail the results here, but limit ourselves to one object
which indicates the consistency of the present approach in
a surprising way. This is the vacuum wave function.

Consider an arbitrary hyperplane. Suppose the angle
between the time axis and the Euclidean normal vector to
the hyperplane is given by 	. Since the effect of trans-
lations and of spatial rotations is straightforward and un-
-6
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interesting, we translate and rotate our coordinate system
such that the hyperplane in question is spanned by coor-
dinate directions �s; x2; x3�. Here s is a Euclidean coordi-
nate along the hyperplane such that x1 � s cos	 and
t � s sin	.

It was shown in [1], using suitable Lorentz boosts, that
both in the spacelike as well as in the timelike case the
vacuum wave function on the hyperplane may be written as

 0�’� � C exp
�
�

1

2

Z
ds d2~x’�s; ~x��
’��s; ~x�

�
; (32)

where 
 is an operator. What is more, the operator 
 takes a
simple form which covers both the spacelike and the time-
like case,


 �

�������������������������������������������������������������
�@2

s � cos2	
�
�
X
i	2

@2
i �m

2

�s
: (33)

It is easy to see that for 	 � 0 we recover ! and for 	 �
�=2 we recover �1. (This fixes the choice of sign encoun-
tered earlier.) Remarkably, however, the vacuum wave
function depends smoothly on the angle 	, not only in
the intervals 0 � 	< �=4 (spacelike) and �=4<	 �
�=2 (timelike), but even at and near �=4 (null). On the
one hand, this indicates that our separate treatments of the
spacelike and timelike cases are indeed consistent with
each other. On the other hand, this suggests that even states
on null hyperplanes may make sense.

V. THE HYPERCYLINDER

In this section we consider hypersurfaces which are
infinite hypercylinders (and hyperspheres) in the following
sense. Consider a sphere of radius R in space. Take the
hypersurface formed by the extension of this sphere over
all of time in Minkowski space. We will call this simply the
hypercylinder of radius R. At the same time we consider
regions of spacetime given by a solid hypercylinder BR.
Furthermore, we consider the solid hypercylinder (of ra-
dius R̂) with a smaller solid hypercylinder (of radius R) cut
out, denoting this region by B
R;R̂�.

A. Coordinates, classical solutions, etc.

We use spherical coordinates in space, parametrized by
angles � 2 
0; �
 and � 2 
0; 2�
 and the radius r 2

0;1
. Concretely, we use the coordinate transformations
x1 � r sin� cos�, x2 � r sin� sin�, x3 � r cos�. The
Laplace operator 4 :�

P
i	1@

2
i takes the form 4 � 4r �

4� with

4r :�
2

r
@r � @2

r and

4� :�
cos�

r2 sin�
@� �

1

r2 sin�
@2
� �

1

r2 sin�
@2
�:

We can expand solutions of the equations of motions in
terms of spherical harmonics via
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��t; r;�� �
Z

dE
X1
l�0

Xl
m��l

	l;m�E�e
�iEtfl�pr�Y

m
l ���:

(34)

The integral over E is constrained to jEj 	 m and p is the
positive square root p :�

������������������
E2 �m2
p

. � is a collective
notation for the angle coordinates ��;��. fl denotes a
spherical Bessel function of order l. We will consider
spherical Bessel functions of the first kind, denoted jl,
and of the second kind, denoted nl. The former describe
globally defined solutions, while the latter describe solu-
tions that are singular at the origin. We will also employ the
spherical Bessel functions of the third kind (or Hankel
functions) hl :� jl � inl and hl :� jl � inl.
Yml denotes the spherical harmonic defined through the

associated Legendre function Pml via

Yml ��;�� :�

����������������������������������
�2l� 1��l�m�!

4��l�m�!

s
Pml �cos��eim�:

Note that complex conjugation yields Yml � Y�ml . The
spherical harmonics satisfy the orthogonality relationZ

d�Yml Y
m̂
l̂
� �l;l̂�m;m̂:

Here d� :� 1
4� d�d� sin�. We also remark that

�4rfl��pr� �
�
�p2 �

l�l� 1�

r2

�
fl�pr�;

�4�Yml ���� � �
l�l� 1�

r2 Yml ���;

(35)

where fl is any of the spherical Bessel functions.
As in the case of timelike hyperplanes the space of

physical field configurations on a hypercylinder is the
space of only those configurations that extend to a classical
solution. From jEj 	 m we can infer that the eigenvalues
of the operator �@2

0 on the physical configuration space
must be larger or equal to m2. Note that we parametrize all
hypercylinders in the same way, irrespective of radius,
namely, via the solid angle � and the time t.

B. Propagators

We shall be interested in two types of propagation
regions: the solid hypercylinder BR and the region B
R;R̂�
between two hypercylinders. In both cases we wish to
evaluate the path integral (4) in the same way used in the
cases of hyperplanes, namely, using a classical solution
matching the boundary data. This entails a seeming contra-
diction. Namely, if the field configuration on a single
hypercylinder is in one-to-one correspondence to classical
solutions then the combination of field configurations on
two hypercylinders cannot be in one-to-one correspon-
dence to classical solutions and vice versa. This apparent
contradiction has the following resolution. We only require
-7
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the classical solutions to be defined within the propagation
region. This implies that for the solid hypercylinder BR we
are restricted to the solutions (34) with spherical Bessel
functions of the first kind. In contrast, the region B
R;R̂�
does not contain the time axis. Hence, in addition we may
admit solutions arising from spherical Bessel functions of
the second kind. We shall see that this somewhat heuristic
procedure leads to a consistent picture.

The propagator for the full hypercylinder is the easier
one to work out. Note that the boundary version (13) of the
action on a classical solution now takes the form

SR��cl� � �
1

2

Z
dt d� 4�R2�cl�t; R;���@r�cl��t; R;��:

(36)

Combining this with (34) using the spherical Bessel func-
tions of the first kind yields the propagator

ZR�’� � NR exp
�
�

1

2

Z
dt d� 4�’�t;��ipR2

�
j0l�pR�
jl�pR�

’�t;��
�
: (37)

Here j0l denotes the derivative of jl. The expression

pR2 j
0
l�pR�
jl�pR�

is to be understood as an operator defined through its
eigenvalues on a mode expansion of the field configuration.
To this end note that p �

������������������
E2 �m2
p

can be extracted from
the temporal plane wave mode expansion while l can be
extracted from the spherical harmonic mode expansion.

Consider now the region B
R;R̂� between nested hyper-
cylinders. The boundary form of the action is the difference
of two terms of the form (36). To obtain a propagator we
may start by splitting a classical solution into two compo-
nents. For example, in terms of a regular and a singular
component we have

�cl�t; r;�� � jl�pr�’reg:�t;�� � nl�pr�’sing:�t;��:

Here jl�pr� and nl�pr� are understood as operators in the
sense described above. The radial derivative yields

�@r�cl��t; r;�� � pj0l�pr�’reg:�t;��

� pn0l�pr�’sing:�t;��:

Using this and inverting the formal linear transformation

’
’̂

� �
�

jl�pR� nl�pR�
jl�pR̂� nl�pR̂�

� �
’reg:

’sing:

� �

leads to the propagator
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Z
R;R̂��’; ’̂� � N
R;R̂� exp
�
�

1

2

�
Z

dt d� 4� ’ ’̂
� �

W
R;R̂�
’
’̂

� ��
(38)

with

W
R;R̂� :�
ip

�l�pR;pR̂�

R2�l�pR̂; pR� � 1
p2

� 1
p2 R̂2�l�pR;pR̂�

0@ 1A:
The functions �l and �l are to be understood as operators
and have the following definitions:

�l�z; ẑ� � jl�z�nl�ẑ� � nl�z�jl�ẑ�

�
i

2
�hl�z�hl�ẑ� � hl�z�hl�ẑ��;

�l�z; ẑ� � jl�z�n
0
l�ẑ� � nl�z�j

0
l�ẑ�

�
i

2
�hl�z�hl

0�ẑ� � hl�z�h
0
l�ẑ��:
C. Vacuum

We now turn to the question of the vacuum state on the
hypercylinder. Again we make a Gaussian ansatz of the
form (18). The precise form is now

 IR;0�’� � CR exp
�
�

1

2

Z
dt d� 4�’�t;���BIR’��t;��

�
:

Here BIR denotes a family of operators indexed by the
radius R. Recall that a state with a given physical meaning
changes depending on the orientation of the carrying hy-
persurface with respect to the propagation region.
Furthermore, in contrast to the case of hyperplanes, a
hypercylinder with a given orientation is not related to
the hypercylinder with opposite orientation by any sym-
metry. Thus, we must a priori expect the vacuum wave
function to be different for the two orientations. We have
indicated this above by the superscript I, with  IR;0 being
the vacuum on the inner side of the hypercylinder.
Correspondingly, we denote by  OR;0 the vacuum on the
outside and by BOR the associated family of operators. Of
course we expect the two vacua to satisfy (8), i.e., to be
related by complex conjugation, BOR � BIR. We also sup-
pose that we can choose CR to be real.

An obvious condition to be satisfied by the operators BIR
(or BOR ) is that they must be related to each other, for
different radii, by propagation via (38). This condition is
weaker than a full invariance condition, which was essen-
tially sufficient to determine the vacuum in the case of
hyperplanes. We might thus expect to require additional
conditions to determine the vacuum uniquely. In any case,
the propagation condition leads to the equation
-8
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�z2�l�ẑ; z� � ip�l�z; ẑ�BIR��ẑ
2�l�z; ẑ� � ip�l�z; ẑ�BIR̂� � 1;

(39)

with z :� pR and ẑ :� pR̂.
For the general boundary formulation to be consistent

over various topologies and geometries of hypersurfaces
we would like the vacuum to be determined ‘‘locally’’ in a
suitable sense. That is, the dependence of the vacuum wave
function on the field configuration on a small piece of a
hypersurface should be independent of the global topologi-
cal or geometrical nature of the hypersurface. Furthermore,
we would like the vacuum functional to ‘‘change
smoothly’’ under ‘‘smooth changes’’ of the hypersurface.
In terms of the ansatz (18) we desire these properties of the
operator A. In the concrete case at hand we may use this to
demand that the operator BIR for large radii approximates
the operator �1 (and its appropriately rotated versions)
which was found to describe the vacuum on timelike
hyperplanes.

Concretely, consider a small region near the positive x1

axis at large fixed radius R, i.e., in spherical coordinates
� � 0 and � � �=2 at r � R. There, @2 �

1
R @� and @3 �

1
R @�. Thus, @2

2 � @
2
3 �

1
R2 �@2

� � @
2
�� � 4�. We thus de-

mand

BIR � R2
������������������������������������
�@2

0 �4� �m2
q

(40)

for large R in a suitable sense. Note that in this form the
condition is rotationally invariant, independent of our ini-
tial consideration of a specific spatial direction (namely the
x1 axis). The factor R2 comes from the differently scaled
integration measures on the hyperplane versus the hyper-
cylinder. In terms of eigenvalues on spherical harmonics
and plane temporal waves, the expression (40) takes the
form

BIR � R2

����������������������������
p2 �

l�l� 1�

R2

s
���!
R!1

pR2:

The indicated limit is understood with respect to fixed
eigenvalues p and l.

Our strategy is thus to take the condition (39), solve for
BIR, insert BI

R̂
� pR̂2 and evaluate the limit R̂! 1.

Indeed, the limit exists and the solution is

BIR �
1� iz2�jl�z�j0l�z� � nl�z�n

0
l�z��

p�j2
l �z� � n

2
l �z��

�
1� iz2

2 �hl�z�hl
0�z� � hl�z�h0l�z��

phl�z�hl�z�
:

Reinserting this for BIR and BI
R̂

into (39) confirms that we
have found an actual solution for this equation. We remark
also that, as is easy to see, there is another solution to (39)
given by �BIR which asymptotically approximates ��1,
thus recovering the ambiguity encountered earlier.
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Note that BIR turns out to be a rational function of z,
without singularities for positive z. Moreover, the operator
z2�j2

l �z� � n
2
l �z�� can be expressed in terms of p2 and 4�

via a sum as follows,

z2�j2
l �z��n

2
l �z���

X1
k�0

Yk�1

j�0

2j�1

2j�2

1

p2

�
�4��

j�j�1�

R2

�
:

This can be derived using the eigenvalues (35) and suitable
facts about spherical Bessel functions; see e.g. [7].

Turning to the outside version of the vacuum, we ob-
serve that the relevant propagator (from R̂ to R) is the
same as (38) except for the overall sign of the exponent.
Since the exponent is purely imaginary this corresponds
to a complex conjugation and the resulting relation
between BOR and BO

R̂
is simply the complex conjugate of

(39). Consequently, BOR :� BIR solves the condition.
Furthermore, it obviously has the same asymptotic limit
as BIR and is thus the required outside vacuum. Hence, the
vacuum satisfies the conjugation condition (8) as expected.
One may speculate that the imaginary parts of BIR and BOR
are related to the curvature of the hypersurface.

The normalization condition (10) for the vacuum yields

jCRj
�2 �

Z
D’ exp

�
�

1

2

Z
dt d� 4�’�t;��

�

�
2

phl�pR�hl�pR�
’
�
�t;��

�
:

In turn we can use this to determine the normalization of
the propagators. By condition (11) the contraction of the
outside vacuum with the full hypercylinder propagator (37)
should give 1. This implies

N�1
R � CR

�1
Z

D’ exp
�
�

1

2

Z
dt d� 4�’�t;��

�

�
1

pjl�pR�hl�pR�
’
�
�t;��

�
:

For the normalization of the propagator for the nested
hypercylinders we obtain

N�1

R;R̂�
� CRC�1

R̂

Z
D’ exp

�
�

1

2

Z
dt d� 4�’�t;��

�

�
ihl�pR̂�

phl�pR��l�pR;pR̂�
’
�
�t;��

�
:

One can now check that the unitarity condition (6) is
satisfied for both types of propagators. Furthermore, the
composition property (7) is satisfied both for composing
(38) with itself as well as for composing (38) with (37). As
in the case of timelike hyperplanes, the restriction of
configuration spaces makes the validity of the composition
rule a nontrivial result.
-9
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D. Particle states

We now turn to particle states. As in the case of timelike
hyperplanes, we present here a purely technical discussion,
postponing the interpretational questions to Sec. VI.

We start with the one-particle state. We consider first an
‘‘outside’’ state. The state may be characterized in terms of
the mode expansion, i.e., through its energy E and angular
momentum ‘‘quantum numbers’’ l and m. Set

�’
R;l;m�E� �
Z

dt d� 4�

���
2
p

����
p
p
jhl�pR�j

e
iEtY�ml ���’�t;��:

(41)

As in (26) we set E> 0 and encode the sign of the energy
through a separate index. With this, a one-particle state
reads

 O;
R;E;l;m�’� � �’
R;l;m�E� 
O
R;0�’�:

The inner product is given by

h O;aR;E;l;m;  
O;a0

R;E0;l0;m0 i
O
R � 8�2��E� E0��l;l0�m;m0�a;a0 :

(42)

The corresponding ‘‘inside’’ state is the complex con-
jugate, i.e.,

 I;
R;E;l;m�’� �  O;
R;E;l;m�’� � �’
R;l;m�E� 
O
R;0�’�

� �’�R;l;m�E� 
I
R;0�’�: (43)

The inner product is the same as (42), with index O
replaced by index I.

An outside two-particle state is given by

 O;a;a
0

R;�E;l;m�;�E0;l0;m0��’�� � �’aR;l;m�E� �’a
0

R;l0;m0 �E
0��8�2��E�E0�

��l;l0�m;m0�a;a0 � 
O
R;0�’�:

Multiparticle states are obtained in analogy to the proce-
dure in the case of hyperplanes, i.e., by starting with the
suitable monomial times the vacuum as the wave function
and projecting out particle states of lower particle number.

Amplitudes may now be associated with two different
types of regions. On the one hand, we have ‘‘transition’’
amplitudes between hypercylinders of different radii via
the propagator (38). This is somewhat analogous to the
propagation between parallel hyperplanes although with
the difference that the two hypersurfaces in question are
not isometric. On the other hand, we have the conceptually
novel possibility of considering amplitudes for a single
hypercylinder via its solid propagator (37). This amplitude
cannot be written as a transition amplitude between hyper-
surfaces in the sense of (5).

The boundary of the region B
R;R̂� consists of two hyper-
cylinders. As boundaries, they are oriented. Concretely, the
smaller hypercylinder of radius R is oriented ‘‘inside’’ and
the larger hypercylinder of radius R̂ is oriented ‘‘outside.’’
065017
Given an inside one-particle state at radius R and an out-
side one-particle state at radius R̂ yields

�
R;R̂�� 
I;a
R;E;l;m;  

O;a0

R̂;E0;l0;m0
� � 	
R;R̂�;p;l8�

2��E� E0�

� �l;l0�m;m0�a;a0 : (44)

Here,

	
R;R̂�;p;l :�
hl�pR̂�
hl�pR�

jhl�pR�j

jhl�pR̂�j
�
hl�pR�

hl�pR̂�

jhl�pR̂�j
jhl�pR�j

:

As an example of an amplitude for the solid hypercy-
linder using (37) we evaluate the two-particle state shown
above,

�R� 
O;a;a0

R;�E;l;m�;�E0;l0;m0�� �
hl�pR�

hl�pR�
8�2��E

� E0��l;l0�m;m0�a;�a0 : (45)

Note that this type of amplitude is defined exclusively for
outside states.
VI. INTERPRETATION

So far we have dealt with the formal side of the general
boundary formulation showing that a consistent picture of
states, vacua, amplitudes, etc. emerges for the hypersurfa-
ces and regions considered. In terms of the companion
paper [2], all the core axioms as well as the vacuum axioms
are satisfied. We now turn to the physical interpretation of
those structures.

A. Particles on timelike hypersurfaces

An initial discussion of particle states on timelike hyper-
surfaces was already given in [1] (in the hyperplane case).
We review parts of this discussion here and add the novel
aspects arising from the hypercylinder case.

A crucial difference between states on spacelike and
timelike hypersurfaces arises as follows. In the spacelike
case causality implies that a state is purely an incoming
state or an outgoing state depending on whether it forms
the beginning or the end of a time-evolution process. This
distinction is encoded in the standard formulation by
whether the state is a ket-state (in-state) or a bra-state
(out-state). We have linked this distinction in Sec. III to
the orientation (past or future) of the carrying hypersur-
face. In contrast, in the timelike case, a state on a given
oriented hypersurface is neither necessarily an incoming
state nor an outgoing one. Rather, each particle within the
state may be independently incoming or outgoing. This
choice is precisely given by the sign of the energy in (26)
and (41), encoded by the index
. We set the negative sign
to represent in-particles and the positive sign to represent
out-particles. (This makes momenta on spacelike and time-
like hyperplanes mutually consistent [1].)
-10
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In the case of particles on hypercylinders the parametri-
zation of particle states we have chosen makes immediate
sense, thinking in terms of classical waves expanded
spherically. In particular, away from the center, it is natural
to think in terms of incoming or outgoing waves. In the
hyperplane case we are more accustomed to thinking in
terms of a plane wave expansion parametrized by 3-
momenta p. However, the parametrization in terms of
energy E, incoming versus outgoing 
 and 2-momentum
~p is easily related. Indeed, the equation E2 � p2

1 � ~p2 �
m2 determines the missing momentum component p1 al-
ready up to a sign. This sign is now determined indirectly
by
. Namely, the momentum of an in-particle has to point
into the propagation region while that of an out-particle has
to point out of the propagation region. Hence, for an in-
particle on an oriented hyperplane, p1 is directed to the
opposite side of the hyperplane, while for an out-particle it
is directed to the same side.

Note also that the relation to orientation change via
complex conjugation (2) is consistent. Namely, an in-
particle considered on a hyperplane with opposite orienta-
tion must become an out-particle since the propagation
region is now on the other side, correspondingly for out-
particles. As we have seen in (29) and (43), this is precisely
what happens.

The amplitudes we have calculated are also consistent
with the in/out interpretation of particle states we have
given. Recall that in the noninteracting theory we are
considering, amplitudes simply express all the possibilities
in which particles on the boundary could be identical. In
the hyperplane case, this means that an in-particle on one
hyperplane can only pair with an out-particle on the other
one and vice versa. This is exactly what we see in (31). The
situation is similar for two nested hypercylinders, namely,
an in-particle on one hypercylinder can only pair with an
out-particle on the other one and vice versa; see (44). A
different situation arises for the solid hypercylinder.
Classically, an incoming spherical wave produces an out-
going one and vice versa. Indeed, we see in this case that
in-particles only pair with out-particles and vice versa; see
(45).

B. Probability interpretation

In the standard formulation the modulus square of a
transition amplitude from a state  to a state � is the
probability of observing the final state � (rather than its
orthogonal complement) given that the state  was pre-
pared initially. Obviously, this interpretation is not appli-
cable to generic situations arising in the proposed
formulation, where an amplitude may be evaluated on a
single state space.

In cases where we have a region bounded by two disjoint
hyperplanes we can still use the standard interpretation
with minimal change. For example, consider the case of
two parallel timelike hyperplanes. The modulus square of
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an amplitude of the type (31) provides the probability of
‘‘observing’’ a state on one hyperplane given that another
one was ‘‘prepared’’ on the other hyperplane. (In the case
at hand one state is  aE;~p and the other one is  a

0

E0;~p0 .)
Nevertheless, a crucial difference from the standard for-
mulation is that the definite temporal character of the
procedure is lost. That is, ‘‘preparation’’ no longer neces-
sarily precedes ‘‘observation.’’ Rather, we are dealing with
a more general conditional probability. The amplitudes for
regions between nested hypercylinders might be inter-
preted similarly, namely, as transition amplitudes from
one hypercylinder to the other one. Correspondingly, the
associated probability may be interpreted as that of one
state being measured on one hypercylinder conditional on
another state being present on the other hypercylinder.

A probability interpretation for the general case is pro-
posed in the companion paper [2]. We briefly recall it in its
general form. Let M be a region with boundary �, the
associated state space being H �. We denote the amplitude
by �M: H � ! C. We specify part of a measurement
process through a closed subspace S �H �. This may
be thought of as representing certain knowledge about the
process (compare to preparation). Furthermore, we specify
a second closed subspace A � S. This may be thought of
as representing a question posed in the process, namely,
whether the state corresponding to the measurement is in
the subspace A (rather than in its orthogonal complement)
given that it is in S (compare to observation). Let f
igi2I be
an orthonormal basis of S, which reduces to an orthonor-
mal basis of A given by f
igi2J�I. The probability
P�AjS� associated with the process is given by the quo-
tient

P�AjS� �

P
i2J
j�M�
i�j2P

i2I
j�M�
i�j

2 : (46)

It is shown in [2] that this interpretation can be reduced
to the standard one in the standard circumstances (time
evolution between spacelike hyperplanes). Furthermore, it
covers some less standard conditional probabilities that can
be inferred from the standard ones. Here, however, we shall
be interested in a genuinely nonstandard application where
the boundary of the region associated with the measure-
ment is connected.

Consider a hypercylinder of radius R. Call the associated
outside state space H . Given a function fl;m�E� satisfying

8�2
Z

dE
X
l;m

jfl;m�E�j
2 � 1; (47)

the one-particle states defined by the wave functions

 O;
f �’� :�
Z

dE
X
l;m

fl;m�E� 
O;

R;E;l;m�’�

are normalized due to (42). Similarly, taking another func-
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tion f0l;m�E� satisfying (47), the two-particle states given by

 O;a;a
0

f;f0 �’� :�
Z

dE dE0
X

l;m;l0;m0
fl;m�E�f0l0;m0 �E

0�

�  O;a;a
0

R;�E;l;m�;�E0;l0;m0��’�

are normalized.
Now remember that H is a Fock space and may be

decomposed into a direct sum of components H n with
given particle number n, i.e., H �

L
1
n�0 H n. Now de-

fine a closed subspace Sf �H as follows,

S f :� f� 2H 2j9� 2 C; f0; a0: � � � O;�;a
0

f;f0 g:

Here f0 is supposed to be a function satisfying (47). In
words, this means the following: Sf is the subspace of the
space of two-particle states where one particle is an in-
particle that can be described by the function f in the sense
given above. For example, f might be peaked around a
particular energy and particular angular momentum quan-
tum numbers, thus describing a particle wave packet with
approximately these properties.

Let the subset Af;g � Sf be spanned by the single state
 O;�;�f;g for a function g satisfying (47). As we will explain
later, it turns out that the denominator of (46) is equal to 1
in the present case. This implies

P�Af;gjSf� � j�R� 
O;�;�
f;g �j2

�

��������8�2
Z

dE
X
l;m

hl�pR�

hl�pR�
fl;m�E�gl;m�E�

��������2
:

(48)

Note that, due to the normalization (47) and the fact that
hl�pR�=hl�pR� has modulus 1, this quantity is less than or
equal to 1 as required.

Physically, P�Af;gjSf� is the probability that we ‘‘ob-
serve’’ an outgoing particle characterized by a wave packet
determined by g, given that an incoming particle with a
wave packet determined by f was ‘‘prepared.’’ Note that
we could also reverse the role of the incoming and the
outgoing particles. However, the meaning of ‘‘preparing’’
and ‘‘observing’’ would be less intuitive then. It is clear
that we can extend this example to multiparticle states.
That is, we can define a subspace S such that the total
number of particles is fixed and some of them have deter-
mined wave packets. We can then ‘‘test’’ via A for specific
wave packets for the remaining particles.

Considering certain outgoing particles conditional on
certain incoming ones is of course what one usually does
in perturbative quantum field theory. The difference is that
in the standard formulation these particles live in different
state spaces. However, we can artificially produce a similar
situation here. It turns out that the Fock space H may be
decomposed into a product of a Fock space of incoming
particles H� and one of outgoing particles H�, i.e.,
065017
H �H� �H�. Indeed, we may construct H� and
H� in terms of the respective subspaces of H . Note that
these inherit inner products in this way and are isomorphic.
Also, since incoming and outgoing particles are mutually
orthogonal, the inner product of H is identical to that
reconstructed from those of H� and H�.

What is more, defining �H
� to be the dual Hilbert space

of H� it turns out that the map ~�R: H� ! �H
� induced

by the amplitude is not only well defined, but preserves the
inner product. Thus, the decomposition H �H� �H�

behaves exactly as if it was induced by a decomposition of
the carrying hypersurface. [This is also the reason why the
denominator of the probability expression (48) is equal to
1.] We recover a description which shows resemblance to
the standard formulation. However, the map ~�R is of course
not simply a ‘‘time evolution.’’

VII. CONCLUSIONS AND OUTLOOK

We hope to have presented in this work a compelling
example of a general boundary quantum field theory in the
shape of the Klein-Gordon theory. The regions and hyper-
surfaces considered are still much less general than what
one would like to allow (see also the discussion in [2] on
this topic). However, the hypercylinder case, in particular,
exhibits many of the novel and nonstandard features of the
general boundary formulation. This also included the first
concrete application of the generalized probability inter-
pretation proposed in [2] in a context beyond the reach of
standard quantum mechanics.

Note that the Fock space structure of the state space was
instrumental in the probability interpretation of the solid
hypercylinder example. It allowed us to construct subsets
of the state space with a clear physical meaning in a simple
way. It might be expected that this will be a much more
difficult problem in genuinely nonperturbative theories,
where no convenient grading of the state space is available.
For example, in the case of gravity, it is a priori highly
unclear which properties of the (quantum) geometry of a
hypersurface we may set fixed and for which subproperties
we may then meaningfully ‘‘ask’’ in a measurement
process.

The Klein-Gordon theory is obviously only a starting
point and more complicated quantum field theories should
be considered. However, we expect that for free theories
this should be relatively straightforward. See, e.g., the
discussion of spinor and gauge fields in the Schrödinger
representation in [6]. For interacting theories, we expect
that the usual perturbative approach can be carried over. In
particular, it should be possible to derive the S matrix
through an infinite radius limit of the solid hypercylinder
amplitude. Indeed, one might argue that this would be
conceptually more satisfactory than the usual derivation
from equal-time hyperplanes at large negative and positive
times. Namely, considering the interaction to be negligible
at large distances in space (from the experiment) appears
-12
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more natural than considering it negligible at very early or
late times. In particular, this would be compatible with
genuinely static processes. Note that such a derivation
would make the crossing symmetry of the S matrix mani-
065017
fest, since incoming and outgoing particles are part of a
single state. Indeed, precisely for this reason, crossing
symmetry was taken in [3] as a strong indication for the
validity of the general boundary formulation.
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