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Radiative effects in the standard model extension
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The possibility of radiative effects induced by the Lorentz and CPT noninvariant interaction term for
fermions in the standard model extension is investigated. In particular, electron-positron photo production
and photon emission by electrons and positrons are studied. The rates of these processes are calculated in
the Furry picture. It is demonstrated that the rates obtained in the framework of the model adopted
strongly depend on the polarization states of the particles involved. As a result, ultrarelativistic particles
produced should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization
opposite to the sign of the effective potential, while charged particles are preferably in the state with the
helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which
may have certain consequences observable at high energy accelerators, and in astrophysical and
cosmological studies.
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I. INTRODUCTION

Physical laws have been confirmed to be Lorentz invari-
ant with high accuracy in numerous experiments [1].
Nevertheless, for the last few years there have been a
number of assumptions made that these symmetries are
only approximate.

The modern quantum field theoretical viewpoint admits
the possibility of Lorentz invariance breaking (and, as a
consequence, possible CPT invariance breaking in the
local field theory) through a spontaneous symmetry break-
ing mechanism. In other words, even though the under-
lying laws of nature have Lorentz and CPT symmetries,
the vacuum solution of the theory could spontaneously
violate these symmetries.

The standard model does not have dynamics necessary
to cause spontaneous Lorentz and CPT violation.
However, the violation mentioned above could occur in
more fundamental theories, such as string theories, non-
commutative geometry, etc., and the resulting theory can
be effectively described in the framework of the standard
model extension (SME) [2].

At present, there are numerous approaches to study
various effects of possible Lorentz violation. However,
the SME is the most consistent of all in describing theo-
retical implications of the Lorentz violation hypothesis (for
a recent review of SME, see, e.g., [3]). It is in the frame-
work of this theory that calculations have been performed
[4], whose results became the basis for experimental veri-
fication of Lorentz invariance in the low energy range [5].

It is surprising though that the high energy consequences
of this theory have not been studied as yet, whereas the
possible effects in this range are expected to be more
substantial than those at low energy. Some estimates of
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the rates of certain electromagnetic processes have been
obtained only at the phenomenological level (see, e.g., [6]
and references therein). In the present publication, we
attempted to partly compensate for this lack of theoretical
estimates.

The SME is fairly complicated even in the electromag-
netic sector, and hence we restricted ourselves to studying
only those consequences of the theory that are due to axial-
vector interaction of fermions with the constant back-
ground field b� with the CPT-odd interaction term in the
fermion Lagrangian � b����5 (notations generally ex-
cepted in the framework of the SME [2]). This kind of
modification of QED in the fermion sector does not influ-
ence the gauge invariance of the action and of the equations
of motion, but it does modify the dispersion relations for
Dirac spinors [2]. The question about the possible dynami-
cal origin of this constant vector b� remains an interesting
task to be solved. One of the possibilities is that the
pseudovector field b� might be related to some constant
background torsion in the large scale universe, b� �
"����T��� [7]. Moreover, such a CPT-odd term could be
generated by chiral fermions [8].

This model has been extensively employed in numerous
publications [9–14], where the Chern-Simons term gener-
ated by the fermion loop in the b� background was studied.
The results of these studies have been controversial, since
they depended on the type of regularization adopted during
calculations. The final conclusion can only be drawn after
certain additional physical assumptions have been made.
New interesting results at finite temperature have also been
obtained—for instance, the Chern-Simons term vanishes
in the very high temperature limit [15]. The applications of
the SME predictions to astrophysics and cosmology are
also of interest [6] (see also [9], where, in particular, energy
splitting between electrons of different helicities and decay
of very high energy electrons into lower energy electrons
and positrons have been considered). It should also be
mentioned that this type of axial-vector interaction arises
-1 © 2006 The American Physical Society
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in the study of the coherent interaction of neutrinos with
dense matter in the framework of the standard model (see,
e.g., [16]).

The parameter b� as a 4-vector may be timelike or
spacelike. In what follows, we shall consider the first
possibility. The experimental bounds for the space compo-
nents of b� are rather stringent, i.e., jbj<
10�18–10�20 eV, or even stronger, depending on the type
of experiment (for more details of the experimental situ-
ation, see [3,5], and references therein). Interesting enough
is the fact that no stringent experimental limitations for the
time component b0 (at least for an electron, and this case is
just of interest for us) have yet been obtained. One may
argue (see, e.g., [9]) that, since the precision for measure-
ments of the electron mass is about 10�8, the upper bound
on the time component may be jb0j< 10�2 eV.

In the present work we investigate the possibility of
electron-positron pair production by a photon and radiation
of a photon by electrons and positrons induced by the
Lorentz breaking background b0. We assume that the
photon dispersion law remains unchanged, and hence we
neglect Cherenkov radiation. Our calculations are made in
the framework of the Furry picture [17], i.e., we consider
the Lorentz breaking axial-vector background as a kind of
external field and take it into consideration exactly, i.e.,
without making any expansion in powers of the parameter
b0. This means that creation and annihilation operators are
exact solutions of the Dirac equation in the external or
condensate field and form the basis for the perturbation
theory description of interaction with the radiation field.
This technique is appropriate when external or condensate
fields are strong and particle energies are high. Moreover,
since the dispersion law for charged particles in the exter-
nal or condensate field changes as compared with the zero
field case, new channels of reactions may become open.
The calculations with this basis are, however, quite com-
plicated. Nevertheless, it is with the use of this technique
that various processes feasible in astrophysics, such as one-
photon electron-positron pair production, photon splitting,
beta-decay in the strong magnetic field of pulsars, and a
number of others, were investigated (see, e.g., [18–23]; for
the recent reviews of such calculations, see [24,25]).
II. THE MODEL

Consider fermions interacting with an electromagnetic
field A��x� and with a constant condensate field b�. The
Lagrangian density of the model [2] is as follows:

L � Lem �LDir; (2.1)

where

L em � �
1
4F��F

�� (2.2)

is the electromagnetic field Lagrangian and
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L Dir � � �i��@� � e�
�A� �m� b��

��5� (2.3)

is the Lagrangian of the Dirac field.
In order to calculate the rate of pair photo production

and the rate of radiative transition of an electron induced
by the Lorentz breaking background in the framework of
the Furry picture, the ‘‘extended’’ Dirac equation that takes
into account interaction with the axial-vector term should
be solved. As it follows from the SME Lagrangian (2.3),
the Dirac equation has the form

�i��@� � �
�b��

5 �m� � 0: (2.4)

The canonical momentum operator i@� commutes with
the operator of Eq. (2.4). It can be shown (see [26]) that the
eigenvalues of the operator i@� are as follows:

P� � q�
�
1�

�b2�����������������������������
�bq�2 � b2m2

p
�

� b�
�
1�

��bq������������������������������
�bq�2 � b2m2

p
�
; (2.5)

where q� is a constant 4-vector, such as q2 � m2, and � �
�1. The dispersion law that follows from Eq. (2.5) has the
form

P2 � m2 � 2�Pb� � 2b2 � 2�
��������������������������������������������
��Pb� � b2�2 � b2m2

q
:

(2.6)

Consider now the most interesting case of a timelike
vector b� and choose it in the form b� � fb; 0; 0; 0g. In this
case the orthonormalized system of solutions of Eq. (2.4)
can be written as follows:

 �x� �
j�q� j��������

2q0
p e�iq

0x0
eiqx�q� ���q� �m�

� �1� ��5��S
�
tp� 

0; (2.7)

where  0 is a constant bispinor, �q� � 1� �b=jqj, and

S�tp �
1

m
fjqj; q0q=jqjg: (2.8)

It is easily seen that the 4-vector q� � fq0;qg plays the
role of the kinetic momentum of the particle with the
energy " � q0 given by the same dispersion relation as
in the case of a free particle in the Lorentz invariant theory

" �
������������������
q2 �m2

q
: (2.9)

It is clear that in this case the relation between the
canonical momentum P and the kinetic momentum q is
determined by the formula

P � q�q� ; (2.10)

and, consequently, the dispersion law can be rewritten in
the form
-2
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" �
����������������������������������������
��jPj � �b�2 �m2

q
; (2.11)

where � � sign��q� � is the sign factor. It is therefore clear
that

v �
@"
@P
�

q
q0 (2.12)

is the particle group velocity.
The relation (2.11) differs from those used in papers [16]

by the sign factor �. This is due to the fact that, in those
papers, the canonical momentum P and not the kinetic
momentum q was used as the particle quantum number,
and � was the projection of the particle spin on the canoni-
cal momentum. It should be emphasized, however, that the
particle kinetic momentum components, related to the
group 4-velocity u� by the relation q� � mu�, q2 � m2,
and not the canonical momentum components, are suitable
to play the role of the particle quantum numbers.
Moreover, we choose the helicity of the particle as the
spin quantum number � . It is well known that for a particle
in an external field, the projection of its spin on the direc-
tion of its kinetic momentum is defined as its helicity [27–
29]. In our problem the directions of canonical and kinetic
momenta are different and, hence, the projection of particle
spin on the canonical momentum does not coincide with its
helicity. Thus, we believe that the particle kinetic momen-
tum, related to its group velocity (2.12), and its helicity are
the particle physical variables that can be considered as its
observables. This justified our decision that they should be
taken as the particle quantum numbers.
III. PAIR PRODUCTION

Consider the electron-positron pair photo-production
process. The probability of pair production by a polarized
photon is defined by the relation

W �
1

2k0

Z
d4xd4y

Z d4pd4q

�2��6
��p2 �m2�

� ��q2 �m2�Spf���x�% �e�x; y;p; �p����y�

� %e�y; x; q; �q�g%
��
ph �y; x; k�: (3.1)

Here, %e�y; x; q; �q�, % �e�x; y;p; �p� are the electron and
positron density matrices, respectively, and %��ph �y; x; k� is
the density matrix of the initial photon with 4-momentum
k�. The density matrices of a longitudinally polarized
electron with the 4-momentum q� and helicity �q and a
positron with 4-momentum p� and helicity �p in the
Lorentz breaking background constructed with the use of
065016
solutions (2.7) have the form

% �e�x; y;p; �p� �
1
2�

2
p�p
���p� �m��1� �p�5��S�tp�p��

� ei�x
0�y0�p0�i�x�y�p�p�p ;

%e�y; x; q; �q� �
1
2�

2
q�q
���q� �m��1� �q�5��S�tp�q��

� ei�x
0�y0�q0�i�x�y�q�q�q : (3.2)

Upon integrating with respect to coordinates, we obtain
the following expression for the transition rate under in-
vestigation:

W �
e2

k0

Z d4pd4q
2�

��p2�m2���q2�m2���k0�p0� q0�

� �3�k� p�p�p � q�q�q�T�p;q�: (3.3)

Here

T�p; q� � 1
4Spf��e����p� �m��1� �p�5��S�tp�p��

� �	e		��

q
 �m��1� �q�5��S�tp�q��g; (3.4)

where e� � f0; a1 � iga2g=
���
2
p

, with g � �1, are unit
vectors of circular polarization.

Instead of the electron, positron, and photon energies
"e 
 q0, " �e 
 p0, "� 
 k0, respectively, and polarizations
�q, �p, g, and the effective potential b, it is convenient to
introduce the dimensionless quantities

� � k0=2m; �� y � p0=m; �� y � q0=m;

�g � g sign�b�; �� �e � �p sign�b�;

��e � �q sign�b�; d � jbj=m:

(3.5)

Then the results of integration in (3.3) can be expressed in
the form

W �g �� �e
��e �

e2m

32�2

Z dy���������������������������
��� y�2 � 1

p ���������������������������
��� y�2 � 1

p
�

�
�� �e

���������������������������
��� y�2 � 1

q
� ��e

���������������������������
��� y�2 � 1

q

� 2d� 2 �g�
�

2
: (3.6)

The integration limits in the above formula depend on the
values of parameter d. In the realistic limit of small d� 1,
for the case �� �e � 1, ��e � 1 we have [30]

y 2 [; � 2 �1; �1�;
y 2 ��y0; y0; � 2 ��1;1�;

(3.7)

and for other values of �� �e and ��e,

y 2 [; � 2 �1;1�; (3.8)

where

�1 �
1� d2

2d
; y0 �

j�� dj
����������������
�� �1
p

������������������
�� d=2

p : (3.9)
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FIG. 1. The rate of electron-positron pair production.
W0 � e2m=2�1 � 1013�jbj=1 eV� sec�1; t � �1=� � 2:5�
1011�1 eV�2=jbj"�.
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In other words, there exists a threshold �1, depending on
the parameter b, such that only for � � �1 the process can
take place. This is natural for the e�e� pair production
process in the background field. Moreover, as it is seen
from (3.5), (3.7), and (3.8), only those electrons and posi-
trons can be produced whose helicities are equal and whose
sign coincides with the sign of the effective potential b.

Then, upon integrating over y, one obtains the transition
rate

W �g �� �e
��e �

e2m

32�2 �1�
�� �e��1� ��e����� �1�J: (3.10)

Here ���� �1� is the Heaviside step function and

J � �2��� �gd� � d2=�F��; s� � �E��; s�

� y0

�
1�

���������������������������������
���� y0�

2 � 1�
p ���������������������������������

���� y0�
2 � 1�

p
y2

0 � �
2 � 1

�

� 2�d� �g�� ln

���������������������������������
���� y0�

2 � 1�
p

� �� y0���������������������������������
���� y0�

2 � 1�
p

� �� y0

; (3.11)

where F��; s�, E��; s� are the elliptic integrals [31] of the
arguments

� � arcsin
2y0�

y2
0 � �

2 � 1
; s �

������������������
1� ��2

q
: (3.12)

In the limit of small d� 1, the following expression can
be obtained from (3.10),

W �g �� �e
��e�

e2m
16�

ln
1�

��������������������
1��1=�

p
1�

��������������������
1��1=�

p �1� �� �e��1� ��e��1� �g�:

(3.13)

Near the reaction threshold � � �1 � �2d�
�1, the transi-

tion rate is described by the formula

W �g �� �e
��e �

e2m
8�

���������������������
1� �1=�

q
�1� �� �e��1� ��e��1� �g�;

(3.14)

and high above the threshold, with d�� 1, by the formula

W �g �� �e
��e �

e2m
16�

ln�8d���1� �� �e��1� ��e��1� �g�: (3.15)

It follows from the last formulas (3.14) and (3.15) that, in
the realistic case of small d� 1, only the photons with the
helicity g, whose sign coincides with the sign of the
effective potential, i.e., �g � 1, can effectively produce
pairs. This is why the threshold singularity in the transition
rate is of the square root form, which is characteristic for
the processes allowed by the angular momentum selection
rule. For photons with the opposite helicity sign, the pair
production is suppressed. The rate of the process as a
function of the inverse photon energy is depicted in Fig. 1.
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IV. PHOTON EMISSION

Consider now the cross channel, i.e., photon emission by
a charged particle in the Lorentz violating background. The
authors of [32] proposed to call this process ‘‘helicity
decay.’’ In fact, this is an example of the more general
sort of radiation previously called ‘‘spin light’’ [33], which
is just radiation of an intrinsic magnetic moment of an
electron associated with its spin. This sort of radiation has
been studied over the last years in a number of papers. In
the case of the ‘‘synchrotron radiation,’’ i.e., radiation of a
relativistic charged particle in an external magnetic field,
its dependence on the electron spin orientation was studied
both theoretically [34] and experimentally [35]. As a result
of these studies, it has become clear that the synchrotron
radiation can be considered as consisting of two parts: one
is radiation of the electron charge itself and the other is just
the radiation of an intrinsic magnetic moment of an elec-
tron, and it is just what they called the ‘‘spin light.’’ This
term was also used in [36] for the description of photon
radiation by a neutrino in dense media. It should be em-
phasized that the mechanism of this last process (see [26])
is similar to that of the process under investigation in the
present article. As it will be seen from the formulas to
follow, radiative transitions can take place both with and
without the spin flip. This is why we prefer to use the term
‘‘spin light,’’ and not ‘‘helicity decay,’’ in our paper.

First of all we point out that the formulas we obtain in
what follows are valid for both an electron and a positron.
This is due to the fact that the sign in front of the �5 matrix
in Eq. (2.4) remains invariant under the charge conjugation
operation.
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The rate of transition of an electron from the initial state
with 4-momentum p� and helicity �p to the final state q�,
�q with emission of a photon with circular polarization g
can be written in the form

W �g ��i ��f �
e2m

8���2 � 1�

Z dx��������������
x2 � 1
p

�
��i

���������������
�2 � 1

q

� ��f
��������������
x2 � 1

p
� 2d� �g��� x�

�
2
; (4.1)

where instead of the initial and final electron energies "i 

p0, "f 
 q0, respectively, and particle polarizations �p, �q
we introduce, in addition to (3.5), the following dimen-
sionless variables:

� � p0=m; x � q0=m;

��i � �p sign�b�; ��f � �q sign�b�:
(4.2)

The integration limits in the formula (4.1) are

x 2 [; � 2 �1;1�; (4.3)

if ��i � 1, and

x 2 [; � 2 �1; �0�;
x 2 �!1; !2; � 2 ��0; �1�;
x 2 �1; !2; � 2 ��1; �2�;
x 2 [; � 2 ��2;1�;

(4.4)

if ��i � �1, ��f � �1, and

x 2 [; � 2 �1; �1�;
x 2 �1; !1; � 2 ��1; �2�;
x 2 �!2; !1; � 2 ��2;1�;

(4.5)

if ��i � �1, ��f � 1.
Here

!1 �
1
2�z�1 � z�1

�1�; !2 �
1
2�z�1 � z�1

�1�; (4.6)

where

z�1 � ��
� ���������������
�2 � 1

p
� 2d

�
; (4.7)

and

�0 �
��������������
1� d2

p
; �1 �

1
2f�1� 2d� � �1� 2d��1g;

�2 �
1
2f�1� 2d� � �1� 2d��1g: (4.8)

As it is seen from the above formulas, radiative transitions
can take place both with and without the spin flip.
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The integration is carried out elementarily and we obtain

W �g ��i ��f �
e2m
16
f�1� ��f��Z�z�1; 1����� �1�

� Z�z�1;�1����� �2�

� �1� ��f��Z�z�1; 1����1 � ��

� Z�z�1;�1����2 � ������ �0�g�1� ��i�:

(4.9)

Here

Z�z; ��f� �
1

8���2 � 1�
f4z2
� �g lnz� ��z2 � z�2�

� �g ��f�z� z�1�2 � 4z� �g��z� z�1�

� �g ��f�z� z�1 � 2�g: (4.10)

After summation over polarizations of the final particle, the
transition rate becomes

W ��f�1 �W ��f��1 �
e2m

8
�1� ��i�fZ�z�1; 1�

� Z�z�1;�1�g���� �0�: (4.11)

If d�� 1, expression (4.9) leads to the formula

W �g ��i ��f�
2e2md3

3
���2�1�1=2�1� �g	�2�1� ��i��1� ��f�;

(4.12)

where 	 �
���������������
�2 � 1

p
=� is the initial particle velocity.

In the relativistic limit (�� 1), the transition rate is
transformed to the expression

W �g ��i ��f �
e2m
16�

�
ln�1� 4d�� �

4d��1� 6d��

�1� 4d��2

�

� �1� ��i��1� ��f��1� �g�; (4.13)

which is valid for d� 1.
Thus, we see that at high energies �� 1 charged par-

ticles radiate primarily photons with the helicity sign op-
posite to the sign of the effective potential b ( �g � �1).
Moreover, the radiation process is accompanied by the
particle helicity flip. The rate of the process as a function
of the electron inverse energy is depicted in Fig. 2.

Let us consider now the radiation power of spin light. If
we introduce the function

~Z�z; ��f� � �Z�z; ��f� � Y�z; ��f�; (4.14)

where
-5



FIG. 2. The rate of the radiative transition. W0 � 2e2md �
2 � 1013�jbj=1 eV� sec�1; t��4d���1�0:6 �1011�1 eV�2=jbj"i.
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Y�z; ��f� �
1

24���2� 1�
f�12z� �g lnz� 3z� �g��z2� z�2�

� �g ��f�z� z�1�2 � ��z� z�1�3

� �g ��f��z� z�1�3� 8� � 6�z� z�1��z2
� �g� 1�g;

(4.15)

then the formula for the total radiation power can be
obtained from (4.9) and (4.11) by substitution of
Z�z; ��f� ! ~Z�z; ��f�. It can be verified that if d�� 1, the
radiation power becomes

I �g ��i ��f �
2e2m2d4

3
��2 � 1��1� 	 �g��3�2�1� 	 �g� � 1�

� �1� ��i��1� ��f�: (4.16)

In the relativistic limit, the radiation power is equal to

I �g ��i ��f �
e2m2

16

�
ln�1� 4d��

�
2d��6� 15�4d�� � 11�4d��2�

3�1� 4d��3

�

� �1� ��i��1� ��f��1� �g�: (4.17)

It should be, first of all, emphasized that as follows from
our result for the radiation power (4.17), photons emitted
by relativistic particles (�� 1) are completely circularly
polarized, �g � �1, and the helicity sign in this case is
opposite to the sign of the effective potential b. Moreover,
the total radiation power increases logarithmically. It can
be seen from Eqs. (4.13) and (4.17) that in the ultrarelativ-
istic limit (d�� 1) the average energy of emitted photons
h"�i is almost equal to the electron initial energy "i,
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h"�i � "i

�
1�

1

3�ln�1� 4d�� � 3=2�

�
: (4.18)

It is therefore evident that the particle loses a rather sig-
nificant amount of its initial energy through radiation.
V. DISCUSSION AND CONCLUSIONS

The results obtained demonstrate the strong dependence
of the rates on the polarization properties of the particles
that participate and are produced in the reactions we
studied. In general, this amounts to the conclusion that,
in the framework of the present model, in the ultrarelativ-
istic limit, the particles produced in the reactions consid-
ered are preferably in the state with determined
polarization, i.e., photons have the sign of polarization
opposite to the sign of the effective potential, while
charged particles are preferably in the state with the helic-
ity coinciding with the sign of the effective potential. This
certainly is the consequence of the particular choice of the
model with the Lorentz symmetry violating term in the
Dirac Lagrangian we adopted. Indeed, the model assumes
axial-vector interaction with the background field, and this
appears to be essential to the helicity selection rules. The
question arises as to what may happen for other Lorentz
structures such as vector, tensor, and chiral structures like
�V � A� in the Lagrangian that also occur in a reasonable
standard model extension. In the standard model extension
[2] (we restricted ourselves to its electrodynamic sector
only), interactions of particles with various condensate
fields of the vector, tensor, and axial-vector nature are
included in the Lagrangian, and the resulting theory is
renormalizable. As is known, rates of the processes in
such theories should decrease with growing energy in the
very high energy limit. Hence, the system in the final state
should have a zero orbital moment. The results of the
present paper confirmed this conclusion for the particular
choice of the axial-vector interaction with the background
field. One may expect that with other forms of the Lorentz
violating background, only those transitions that are al-
lowed by this general selection rule would dominate. At the
same time, for different types of interaction, this selection
rule may lead to different correlations between the spin
quantum numbers of participating particles. In the case in
question, there is no specified direction in space and these
correlations are quite simple. On the other hand, e.g., with
the tensor type condensate determined by the parameter
H�� in the SME Lagrangian, the fermion spin states are
described by the transversal polarization rather than helic-
ity. Therefore, for this case, any conclusions concerning
spin correlation can only be made upon detailed consid-
eration of the problem.

Because of the above-mentioned polarization properties
of particles produced in the reactions considered, the pho-
ton radiation process together with the pair production
cannot form a cascade process. Let the sign of the effective
-6
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potential be positive (in the opposite case, the arguments
are evident). Then, as a result of the radiative transition, a
photon with left polarization and an electron with arbitrary
polarization are produced. However, the right-handed elec-
tron cannot radiate at all, while the left-handed recoil
electron, as is easily verified, will have energy lower than
the threshold value � �

��������������
1� d2
p

. Moreover, the rate of the
pair production by the radiated photon is practically equal
to zero, as the rate of pair production by the left-handed
photon is strongly (� ��2

1 ) suppressed as compared to the
rate of pair production by the right-handed photon. Hence,
the cascade process of the form

e! e� �! 2e� �e;

predicted in [9], proves to be impossible in our model, at
least in the resonance channel. Emission of radiation by
charged particles produced in the process

�! e� �e

is also impossible in our model.
It should be mentioned that the results of the present

work are different from corresponding estimates of
Refs. [6]. This is due to the fact that our results were
obtained with the use of exact Dirac wave functions and
the corresponding dispersion law for the particle energy in
the Lorentz violating background. The authors of [6],
however, without specifying any mechanism, postulated a
modified dispersion law for an electron such that it became
different from the vacuum one by an additional term cubic
in the electron momentum. As a result, the threshold
singularity of the pair creation process in [6] had the
form �1� �1=��3=2 (in the notations of our paper), and
this is characteristic for the processes forbidden by the
angular momentum selection rules. At the same time, the
probability of photon emission by an electron in [6] in-
creases with growing energy as �8.

As it was already mentioned in the Introduction, at
present there are no serious experimental limitations for
the value of parameter b in the case of an electron obtained
in the low energy region. Assuming, for instance, that the
limitations are the same as for the neutron [5], we may
come to the conclusion that the effects considered above
may become significant only at energies comparable to the
Planck energyMP � 1028 eV. This means that they may be
important only in the study of processes that take place in
the early universe. In our calculations this corresponds to
putting d�m=MP. The actual limitations for the value of
parameter b can, however, be given only by experiment.
The results of the present paper can provide some possible
065016
guides for obtaining the limitations on the value of b in the
high energy region. The threshold for the process of pair
production is fairly high and hence it can be observed only
in the astrophysical conditions, while the spin light can
already be observed in laboratory experiments with mod-
ern accelerators.

In particular, let us consider the following illustrative
example. With consideration for the above-mentioned re-
striction b < 10�2 eV, we have for the modern machines
d�� 1. Therefore, with the use of Eqs. (4.12) and (4.16),
we obtain, up to a coefficient of order unity, for the
transition probability and spin light power, respectively,

WSL �
�
@
mc2d�4d��2; ISL �

�
@
"i

2d2�4d��2; (5.1)

where � is the fine structure constant, and the Gaussian
units were used.

Moreover, the average energy of emitted photons is
defined by the formula

h"�iSL � "id�: (5.2)

Now, for the same quantities in the case of synchrotron
radiation, we have the following:

WSR �
�
@
mc2�H=H0�; ISR �

�
@
"i

2�H=H0�
2; (5.3)

where H is the magnetic field strength, and H0 �
m2c3=e@ � 4:41� 1013 G is the so called ‘‘critical,’’ or
‘‘Schwinger,’’ field (see, e.g., [27]). The average energy of
the synchrotron radiation photon is estimated as

h"�iSR � "i�H=H0��: (5.4)

It is clear that, in our problem, the parameter b plays the
same role as the parameter H=H0 in the synchrotron ra-
diation case. The presence of an extra small parameter
�4d��2 is due to the different mechanism of radiation in
our case: a photon is emitted not by the electron charge but
by its magnetic moment. Therefore, we conclude that, in
experiments with relativistic electrons from modern accel-
erators, one may find certain limitations on the value of the
parameter b by searching for possible hard radiation from
electrons in the straight parts of their trajectories, where no
synchrotron radiation should be expected.
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