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We investigate models described by real scalar fields, searching for defect structures in the presence of
interactions which explicitly violate Lorentz and CPT symmetries. We first deal with a single field, and
we investigate a class of models which supports traveling waves that violate Lorentz invariance. This
scenario is then generalized to the case of two (or more) real scalar fields. In the case of two fields, in
particular, we introduce another class of models, which supports topological structures that attain a
Bogomol’nyi bound, although violating both Lorentz and CPT symmetries. An example is considered, for
which we construct the Bogomol’nyi bound and find some explicit solutions. We show that violation of
both Lorentz and CPT symmetries induces the appearance of an asymmetry between defects and
antidefects, including the presence of linearly stable solutions with negative energy density in their outer
side.
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I. INTRODUCTION

The possibility of breaking Lorentz and CPT symme-
tries has been considered in several different contexts; see,
e.g., Refs. [1–3]. In [1] the authors modify the usual
Maxwell dynamics with the inclusion of a Chern-
Simons–like term that violates both Lorentz and CPT
symmetries. Other investigations with the addition of con-
tributions that violate Lorentz and CPT symmetries have
been done both at low energies, in the standard model [2],
and at higher energies, in stringlike models [3]. For models
dealing with CPT and Lorentz-violating extensions of the
standard model, sometimes one modifies the scalar Higgs
sector, and this gives room for defect structures of more
general profile, which may play important role to describe
phase transitions in the earlier universe, due to spontaneous
symmetry breaking.

Defects like domain walls, cosmic strings, monopoles
and others have been studied in several different aspects
[4], with applications to cosmology [5] and condensed
matter [6]. In particular, kinks are topological defects
which in general connect distinct isolated minima in mod-
els that develop spontaneous breaking of some discrete
symmetry. They appear in two-dimensional space-time,
and can be embedded in the four-dimensional space-
time, to generate bidimensional structures named domain
walls. The role of such defects as seeds for the formation of
nontopological structures is interesting [7] and has led to
several investigations, with the change of the discrete
symmetry to an approximate symmetry [8], and also
when the symmetry is biased to make domains of distinct
but degenerate vacua spring unequally [9]. In two-field
models, topological defects may generate other interesting
structures, such as defect inside defect [10], and junctions
of defects [11], and may be of interest in applications
concerning conformational structure of polymers and pol-
ymerlike chains [12]. They may also induce interesting
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effects on other fields; for instance, the behavior of fermi-
ons in the background of kinklike structures is known to
have very significant results [13], and could perhaps be
reexamined within the Lorentz-violating scenario.

In this work we study models which combine the two
issues, that is, we investigate kinklike structures in scenar-
ios where Lorentz and CPT symmetries may be broken.
Our main motivation is related to braneworld, specifically
to the Randall-Sundrum scenario [14], because we may
follow the lines of [15] and use the Lorentz-violating
model described in Sec. III in the context of warped
geometry with a single extra dimension. Another motiva-
tion is to bring some very well-known results for defect
structures in models described by real scalar fields to this
new scenario, where Lorentz and CPT symmetries do not
play the standard role. In a recent work [16], kinks were
investigated in a model which breaks Lorentz symmetry
with the explicit inclusion into the Lagrange density of
Lorentz noninvariant higher-order derivative contribution.
Our route is different, since we will study Lorentz andCPT
breaking without introducing higher derivatives.

To do this, we follow Ref. [2], in which the new terms
arise as modifications in the Higgs sector of the standard
model. In the light of the recent understanding of equiva-
lence between noncommutative field theory and Lorentz-
violating extensions involving ordinary fields [17], the
present work is also of interest to noncommutative solitons
[18], which has been investigated for a variety of reasons,
including self-consistent deformation of the highly con-
strained structure of local quantum field theory, and the
breaking of locality at short distances, which is of direct
interest to quantum gravity. Also, the appearing of non-
commutativity in field theory in a limit of string theory [19]
provides fresh interest to the subject, in particular, on
D-branes, specially as noncommutative solitons of tachyon
fields of open string theory [20].
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Our investigations consider static solutions in one spatial
dimension. Thus, the static solutions that we consider
cannot see effects of noncommutativity. However, we can
use the point of view of Ref. [21] to investigate how
stability modifies the bound states of the model for non-
commutative space-time. Moreover, our investigations is
also of interest to the noncommutative aspects introduced
in Ref. [22], which investigates kinks and domain walls for
noncommutative field theory, directly connected to the
tachyon action for unstable brane in open strings; see the
recent revision of Ref. [23] for a variety of motivations on
tachyon dynamics.

We organize our work as follows: in the next Sec. II we
consider models described by one and by two real scalar
fields. There we realize that two-field models lead to richer
possibilities, and we show how to extend the Bogomol’nyi
bound to the Lorentz and CPT breaking scenario. In
Sec. III we investigate an explicit model of two real scalar
fields, which can be seen as an extension of a former
model, first investigated in [24], which has been used in
several other contexts, for instance in Refs. [10–12,25],
engendering broader interest. As we will show, the break-
ing of both Lorentz and CPT symmetries gives rise to an
asymmetry between defects and antidefects, including the
presence of linearly stable solutions that support regions of
negative energy density.

We end this work in Sec. IV, where we include our
comments and conclusions, pointing some possible exten-
sions of this work.

II. SCALAR FIELD MODELS

In this work we investigate defect structures described
by scalar fields in models which break Lorentz and CPT
symmetries explicitly.

We start with the simplest case, which describes a single
real scalar field. In this case, we study models where only
the Lorentz symmetry is broken. Next, we deal with two
scalar fields, and there we investigate models which break
both Lorentz and CPT symmetries.

A. One field

We start with the model

L �
1

2
@��@

���
1

2
���@��@��� V; (1)

where V � V��� is the potential, which controls the way
the field self-interacts. We are working in �1; 1� space-time
dimensions, and the metric is diag�g��� � �1;�1�, with
��� being a constant tensor, given by

��� �
� �
� �

� �
; (2)

where � and � are real parameters. See Ref. [26] for other
details. For simplicity, we take � � 0 for the explicit
calculations that follow.
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The equation of motion is

����00 � 2� _�0 �
dV
d�
� 0; (3)

where _� � @�=@t and �0 � @�=@x, etc. For static field
we get

�00 �
dV
d�

: (4)

This is the same equation one gets in the standard situation.
Thus, static solutions violate neither Lorentz nor CPT
symmetries. However, for time-dependent field, we search
for traveling waves and now the equation of motion may
have solutions which violate Lorentz and CPT
symmetries.

Although our model violates Lorentz symmetry, we can
still search for traveling waves in the form � � ��u�,
where u � ��x� vt�, but now � � ��v; �� may not
have the usual form. We use this into Eq. (3) to get to

d2�

du2
�
dV
d�

; (5)

if one sets � � 1=
������������������������������
1� v2 � 2�v
p

. This is a general result:
it shows that for any static field �s�x� [topological (kink-
like) or nontopological (lumplike)] which solves Eq. (4),
there is a traveling wave of the form

��u� � �s�u�; (6)

which solves Eq. (5). The traveling wave has the form of a
static solution, and it travels with constant velocity v, with
width w � w0=�, for w0 being the width of the static
solution. The velocity is restricted to the interval v 2
��

���������������
1� �2
p

� �;
���������������
1� �2
p

� ��. We notice that the limit
�! 0 leads to the standard situation, with � � ��v; 0� �
1=

��������������
1� v2
p

, and v 2 ��1; 1�. We also notice that for �
very small we get v 2 ��1� �; 1� ��, which shifts by �
the standard velocity interval.

We consider the model (1) in the absence of potential;
this case was recently considered in Ref. [27], with other
motivations. The massless excitations now give w2 � k2 �
2�wk � 0, which implies that the velocities should obey
v� � �

���������������
1� �2
p

� �. They travel with different veloc-
ities in the forward and backward directions, showing that
the model engenders birefringence. The inclusion of the
potential will make the excitations massive, with velocity
bounded by the two massless values. This gives an alter-
native way to understand the bounds in the velocity of the
traveling waves that we have just obtained.

The parameter � induces an asymmetry for traveling
waves with positive and negative velocities, breaking
Lorentz invariance. We also see that the time-dependent
solutions violate both parity and time reversal, although
they are symmetric under PT. Thus, they do not violate
-2
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CPT, because the scalar field is even under charge
conjugation.

We calculate ��� to get the four entries: they are den-
sities which represent energy �00, energy flux �10, momen-
tum �01, and pressure �11. They are given by

�00 �
1

2
_�2 �

1

2
�02 � V; (7a)

�01 � � _��0 � ��02; (7b)

�10 � � _��0 � � _�2; (7c)

�11 �
1

2
_�2 �

1

2
�02 � V: (7d)

We notice that both equations @0�
00 � @1�

10 � 0 and
@0�01 � @1�11 � 0 work on shell. The fact that �01 �

�10 indicates violation of Lorentz symmetry.
The energy for traveling waves can be written in the

form

Ev
E0
� ��1� �v�; (8)

where E0 stands for the energy of the static solutions. We
calculate the energy ratio for solutions with opposite ve-
locities to get

Ev
E�v

�
1� �v
1� �v

������������������������������
1� v2 � 2�v

1� v2 � 2�v

s
; (9)

which is asymmetric, thus violating Lorentz symmetry. We
notice that Ev < E�v for �v > 0.

This is the general scenario for kinks and lumps in
models of the form given by Eq. (1). The traveling waves
are even under CPT, but they violate Lorentz symmetry.

We illustrate this case with the �4 model. It is described
by the potential V��� � �1=2��1��2�2, where we are
using dimensionless field and coordinates. The static kink
has the form�s�x� � tanhx. It has unit width, and we have
chosen x � 0 as the center of the solution. The correspond-
ing traveling wave is given by ��u� � tanh��x� vt�,
which has width 1=�.

We can widen the above investigations using some
recent results on deformed defects [28]. For the model
(1), if one modifies the potential according to

V��� ! U�’� � V��! f�’��=f02�’�; (10)

where f � f�’� is the deformation function, we can obtain
static solution for the modified model in terms of static
solution of the starting model. That is, if �s�x� is solution
for the potential V���, then

’s�x� � f�1��s�x��; (11)

is solution for the modified model with potential U�’�.
Evidently, the presence of the Lorentz breaking term in the
model (1) does not modify this result, which shows that the
deformation prescriptions introduced in Refs. [28] are very
065015
naturally extended to traveling waves in the above Lorentz-
violating scenario.

Before going deeper into Lorentz-violating investiga-
tions, some words of caution seem to be necessary. It is
important to notice that for the model (1) with ��� given by
(2), we can redefine field and coordinates in order to
eliminate Lorentz violation [29]. This shows that this
model is fake Lorentz-violating theory, but we have de-
cided to make the above investigations because it illus-
trates with simple terms how Lorentz-violating ingredients
enter the game for kinks and lumps in �1; 1� space-time
dimensions. Evidently, the procedure suggested to elimi-
nate Lorentz violation indicates that we can extend the
energy-momentum tensor (7) in order to make it symmet-
ric and conserved, thus eliminating the presence of Lorentz
violation. However, this procedure to eliminate Lorentz
violation may not work when we couple the model with
more sophisticated fields.

Another issue concerns the need to make the classical
solutions time dependent to make them feel the presence of
Lorentz violation. This fact reminds us very much of the
investigations done in Ref. [21], in which noncommutativ-
ity is only seen by the fluctuations around classical static
kinks in �1; 1� noncommutative space-time. This point will
be further explored in a forthcoming investigation, in
which we deal with stability of the Lorentz-violating solu-
tions that appear in this work.

B. Two fields

We now turn attention to two-field models. Firstly, we
consider the class of models

L � 1
2@��@

��� 1
2�

��@��@���
1
2@�	@

�	

� 1
2�

��@�	@�	� V��;	�: (12)

This class of models can be seen as an extension for two
fields of the class introduced in the former Sec. II A. Thus,
it also suffers from the same problem of being fake
Lorentz-violating theory [29], but we explore some pecu-
liarities before introducing a genuine Lorentz-violation
family of models. Our point is that these models may be
seen as effective portions of some more sophisticated
models, involving coupling with other more complex
fields.

The equations of motion are given by

����00 � 2� _�0 �
@V
@�
� 0; (13a)

�	� 	00 � 2� _	0 �
@V
@	
� 0: (13b)

Thus, for static solutions we get
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�00 �
@V
@�

; (14a)

	00 �
@V
@	

; (14b)

which do not depend on �, and so they correspond to
standard models. The case

V��;	� �
1

2
W2
� �

1

2
W2
	; (15)

where W� � @W=@� and W	 � @W=@	, leads to models
of the form considered in Refs. [24,25] and in other works.

We consider traveling waves in the form � � ��u� and
	 � 	�u� with u � ��x� vt�, as before. The equations of
motion change to

d2�

du2 �
@V
@�

; (16a)

d2	

du2 �
@V
@	

; (16b)

where we have set � � 1=
������������������������������
1� v2 � 2�v
p

. For this reason,
if the model supports static solutions �s�x� and 	s�x�, it
also supports traveling waves in the form

� � �s�u�; 	 � 	s�u�; (17)

which travels with constant velocity v, and with widthw �
w0=�, as before.

This class of models is similar to the former one, and it
may support traveling waves which preserve CPT,
although they violate Lorentz symmetry. We notice that
extensions to a set of N real scalar fields works
straightforwardly.

Another class of models can be considered. In this case
the Lagrange density has the form

L � 1
2@��@

��� 1
2@�	@

�	� ���@�	� V��;	�:

(18)

The presence of the vector �� � �a; b�, a and b being real
parameters, leads to both Lorentz and CPT violation; see
Ref. [2] for other details. The model may support kinks and
lumps, if the potential V � V��;	� is chosen properly.
This class of models may support defect structures which
violate both Lorentz and CPT symmetries, leading to
richer scenarios. In particular, we are now dealing with a
genuine Lorentz-violating family of models, since it is not
possible to remove the Lorentz-violating �-dependent term
from the theory anymore; see [2] and, in particular [30], in
connection with a varying coupling.

For the model at hand, the equations of motion have the
form
065015
@�@��� ��@�	�
@V
@�
� 0; (19a)

@�@
�	� ��@���

@V
@	
� 0: (19b)

The energy-momentum tensor has the four entries:

�00 �
1

2
� _�2 � _	2 ��02 � 	02� � b�	0 � V; (20a)

�10 � ��0 _�� 	0 _	� b� _	; (20b)

�01 � ��0 _�� 	0 _	� a�	0; (20c)

�11 �
1

2
� _�2 � _	2 ��02 � 	02� � a� _	� V: (20d)

We notice that the equations @���� � 0 work on shell.
Also, �01 � �10 shows that the model violates Lorentz
symmetry. In this case, it is not possible to improve the
energy-momentum tensor to make it symmetric and con-
served; this is a true manifestation of Lorentz violation for
this family of models [2,30].

For static fields, that is, for field configurations that only
depend on the space coordinate x, the equations of motion
become

�00 � b	0 �
@V
@�

; (21a)

	00 � b�0 �
@V
@	

: (21b)

These equations do not depend on a; thus, if one chooses b
equal to zero, the static solutions are not affected by
Lorentz and CPT symmetries. However, they may be
affected by the motion of traveling waves, as we have
already shown in the former case.

For nonzero b, we see that the above equations violate
both Lorentz and CPT symmetries. They do not respect
parity transformation, although they are even under T and
C. The absence of parity symmetry breaks the kink $
antikink exchange scenario, which in general appears in
models that do not violate parity. However, we notice that
the substitutions x! �x and b! �b do not change the
equations of motion (21) for static fields, if the potential is
even under b! �b In this case, kinks for the model with b
positive would become antikinks for the model with b
negative.

The presence of b in the equations of motion and energy
density changes the standard scenario. To attain a
Bogomol’nyi bound [31] we modify the potential in
Eq. (15). We consider a new class of models, identified by

Vs��;	� �
1
2�W� � s1	�2 �

1
2�W	 � s2��2; (22)

whereW � W��;	� is a smooth function of the two fields,
with s1 and s2 being real constants, which obey s2 � s1 �
b. This potential is an extension of the potential considered
in [24]; it gets to its original form in the limit b! 0. This
-4
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modification is introduced to attain a Bogomol’nyi bound
[31], but it changes the way the fields interact, since the
potential now depends explicitly on b, the parameter which
breaks Lorentz and CPT symmetries.

This class of models can be further investigated for the
presence of topological solutions. We consider static fields,
� � ��x� and 	 � 	�x�. We write the energy density for
static solutions in the form

�00 �
dW
dx
�

1

2
��0 �W� � s1	�2 �

1

2
�	0 �W	 � s2��2:

(23)

The energy is minimized to the value Eij � �Wij, with
�Wij � Wi �Wj, for Wi � W� ��i; �	i�, and vi � � ��i; �	i�
being a minimum of the potential, obeying V� ��i; �	i� � 0
This bound is attained for field configurations which obey
the first-order equations

�0 � W� � s1	; (24a)

	0 � W	 � s2�; (24b)

with the boundary conditions: the pair ��;	� goes to
� ��i; �	i� for x! 1, and to � ��j; �	j� for x! �1. This is
the Bogomol’nyi bound [31], now extended to the above
class of models, which violate Lorentz and CPT
symmetries.

We can see that solutions of the above first-order equa-
tions solve the equations of motion. Also, despite the
modification in the model, the static solutions satisfy

1
2�
02 � 1

2	
02 � V; (25)

which shows that the gradient and potential portions of the
energy contribute equally.

We remark that since b changes the energy density in
Eq. (20a), the form (23) is only obtained when we consider
the potential in the specific form (22), with s2 � s1 � b.
We compare this with the case which preserves Lorentz
and CPT symmetries to see that the Bogomol’nyi bound
requires the inclusions of new terms into the potential.

The asymmetry that appears for b � 0 may contribute to
destabilize the defect solutions. However, we can show that
solutions to the above first-order equations are linearly
stable. The calculation follows the standard route [32].
The full investigation will be done in another work, and
here we show the main steps of the calculation. This
investigation is important, because we will show below
that there are models which support kinks of unusual
profile. We introduce general fluctuations for the two fields
in the form:��x; t� � ��x� � 
�x; t� and 	�x; t� � 	�x� �
��x; t�. We use these fields in the equations of motion to get
to the Schrödinger-like equation, H�n�x� � !2

n�n�x�,
where �n�x� is a two-component wave function and the
Hamiltonian has the form

H � �
d2

dx2 � ib�2
d
dx
�U; (26)
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where �2 is a Pauli matrix and

U �
@2Vs=@�

2 @2Vs=@�@	
@2Vs=@	@� @2Vs=@	2

� �
: (27)

We use Vs as in Eq. (22) to write H � SyS, where S is the
first-order operator

S � �
d
dx
�

W�� W�	 � s1

W	� � s2 W		

� �
: (28)

This shows that H is non-negative, and so the correspond-
ing eigenvalues must obeyw2

n � 0. This result is general; it
extends the result of Ref. [32] to the above model, and it
shows that the solutions of the first-order Eqs. (24) are
linearly stable.
III. EXAMPLE

The last class of models deserves further attention. We
illustrate this case with an example. We consider s1 � 0
and s2 � b, and the following function [24]

W��;	� � �� 1
3�

3 � r�	2; (29)

where r is a real parameter. This gives the potential

V��;	� � 1
2�1��

2 � r	2�2 � 1
2�2r�	� b��

2: (30)

The model may support several minima, depending on the
values of r and b. We consider r and b positive, and
b2=4r 2 �0; 1� to write

vh� � ��Q; b=2r�; vv� � �0;�
��������
1=r

p
�; (31)

where Q �
����������������������
1� b2=4r

p
. There are four minima, two hor-

izontally aligned, and two vertically aligned, as the sub-
scripts indicate. The limit b! 0 implies Q! 1, bringing
the minima vh� back to ��1; 0�, to the � axis, as expected
[24].

There are five topological sectors, for solutions that
solve the first-order equations, one with energy or tension
t1 � �4=3�Q3, and four with tensions degenerate to the
value t2 � �2=3�Q3. As one knows, in the absence of
Lorentz and CPT violation, the standard situation engen-
ders BPS and anti-BPS solutions, which connect the min-
ima in the two possible senses. However, parity violation
breaks this symmetry, excluding one of the two possibil-
ities. In the model under investigation, for instance, in the
more energetic sector, there is only one solution, connect-
ing vh� ! vh�. The same for the other sectors, where
there are solutions connecting vh� ! vv�, vv� ! vh�,
vh� ! vv�, and vv� ! vh�. In Fig. 1 we illustrate how
the orbits appear connecting the minima of the potential.

The model may admit another sector, connecting the
minima vv�. This sector cannot have solutions that obey
the first-order equations. Although in this case we have
been unable to find any explicit solution connecting the
two minima asymptotically, we could verify that the
-5
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FIG. 1. The four minima, and some possible orbits for r � 1=4
and b � 1=3. The arrows illustrate how the minima are con-
nected for x varying from�1 to1. Parity noninvariance forbids
the presence on antidefects in this case.
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straight line orbit which solves the model for b � 0 does
not exist in the present case, for b � 0.

It is interesting to notice that in a string theory scenario
with the above realization of Lorentz and CPT violations,
the asymmetry between defects and antidefects prevent the
presence of antidefects. If this persists in the string theory,
it would certainly prevent the presence of open strings
ending on a pair brane–antibrane, and this would certainly
change the way tachyon condensation could appear.

For the model under investigation, the first-order equa-
tions are

�0 � 1��2 � r	2; (32a)

	0 � b�� 2r	�: (32b)

It is not hard to see that these equations admit the integrat-
ing factor f�	� � 1=�	� b=2r�1�1=r. Thus, we use ~	 �
	� b=2r to write the orbits, for r � 1=2 and r � 1,

�2 �
r

2r� 1
~	2 �

b
r� 1

~	� C~	1=r �Q2; (33)

where C is an integration constant. The limit b! 0
changes this result to the orbits first obtained in Ref. [33].

The specific cases r � 1 and r � 1=2 need particular
attention. They have orbits given by, respectively,
065015
�2 � ~	2 �
b
r

~	 ln ~	� C~	�Q2; (34a)

�2 � C~	2 � ~	2 ln ~	�
b
r

~	�Q2: (34b)

We have been unable to solve the first-order equations
analytically for r and C arbitrary. For this reason, we have
used some specific values for C: first, we take the limit
C! 1, to see that in this case the orbit is a straight line
segment joining vh� and vh� with 	 � b=2r. This limit
reduces the first-order Eqs. (32) to the single equation
�0 � Q2 ��2, which is solved by

��x� � Q tanh�Qx�; (35)

where we are using x � 0 as the center of the solution. The
corresponding energy density is given by  �
Q4 sech4�Qx�.

Another interesting value for the integration constant is
C � 0. This choice leads to the solutions

���x� �
Q sinh�2rQx�

�B� cosh�2rQx�
; (36a)

	��x� �
b
2r
�

A
�B� cosh�2rQx�

; (36b)

where we have used A � �1� r�Q2K and B � bK=4,
where

K �

������������������������������������
1� 2r

r�1� 2r� r2Q2�

s
; (37)

with r 2 �0; 1=2�.
We notice that the limit b! 0 changes the solutions

(36) to the simpler form

�0�x� � tanh�2rx�; (38a)

	0
��x� � �

������������������
1

r
� 2

�s
sech�2rx�; (38b)

which are solutions of the model first investigated in
Ref. [24]. We recall that the above solutions were found
with the elliptic orbits

�2 �
r

1� 2r
	2 � 1; (39)

which are good orbits for r 2 �0; 1=2�. We notice that these
orbits are exactly the orbits obtained in Eq. (33) in the limit
b! 0 for the value C � 0.

The energy density corresponding to the above solutions
can be written as

�00 � �02 � 	02 � b�	0; (40)

and for the nontrivial solutions with C � 0 we use
-6



FIG. 2. Orbits for defect solutions in the sector connecting the
minima vh� � ��Q; s� for C � 0. The upper and lower orbits
are depicted with dashed and dot-dashed lines, using r � 1=4
and b � 1=3.

FIG. 4. Energy density in the case C � 0 with r � 1=4 and
b � 1=3 The dashed and dot-dashed lines correspond to solu-
tions for the upper and lower orbits, respectively, as they appear
in Fig. 2.
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Eqs. (36) and (37) to obtain

�00
� �x� �

4r2Q4

�B� cosh�2rQx�	4

�
1� B2 � cosh�2rQx�




�
2B�

bA

2rQ2 sinh2�2rQx�
�

�

�
A2

Q2 �
bAB

2rQ2 � B
2

�
sinh2�2rQx�

�
: (41)
The orbits and solutions for C � 0 are shown in Figs. 2
and 3, respectively, and in Fig. 4 we plot the corresponding
energy densities. These figures are shown for r � 1=4 and
b � 1=3. We see that the upper orbit gives standard defect
structures. However, the lower orbit gives unusual defects,
making the topological solution non monotonic, a fact due
to the breaking of Lorentz invariance, which also responds
for the presence of regions of negative energy density, as
shown in Fig. 4.

To introduce specific results, we notice that in the defect
solution for lower orbit, the behavior of the � field, which
ensures the topological profile of the solution, shows two
critical points, at the values x�c � ��1=2rQ� arcsech�B�,
for which ��x�c � � �Q=

���������������
1� B2
p

. For these values, the
energy density is given by
FIG. 3. Field profile for defect solutions corresponding to upper an
respectively. We distinguish the two fields with thicker ��� and thin

065015
�00
� �xc� � �rb

2 �1� 2r��1� 2r� r2Q2�

�1� r�4
; (42)

and it is always negative, for the range of values that we are
considering. For r � 1=4 and b � 1=3 we get x�c �
�3:8575. Although the energy is positive, the energy
density is negative in the two regions jxj � 3:0625, which
include the critical points of�; see Fig. 4. These regions of
negative energy densities form the outer side of the defect,
and they disappear in the limit b! 0, in the absence of
Lorentz and CPT breaking. The core of the defect changes
insignificantly for b small, and so it may entrap another
defect in the same way it used to do in the standard
situation [10]. The appearance of negative energy density
is an unusual behavior, which leads us to think that such
solutions are unstable, but we have already show that they
are linearly stable in general. We will further investigate
stability in another work, to examine how to find stable
solutions for specific models which violate both Lorentz
and CPT symmetries.

The value b � 1=3 is not small. Since b measures how
the model deviates from the standard situation, it should be
very small. Former studies on bounds in the Higgs sector
for extensions of the standard model suggest the order of
magnitude of b. The constraint is very tight in more real-
istic situations [34]. In our toy model, however, we have
used b � 1=3 to highlight the effects the breaking of Lor-
entz and CPT symmetries may induce in the defect struc-
d lower orbits shown in Fig. 2, plotted in the left and right panels,
ner �	� lines, and we use r � 1=4 and b � 1=3.
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tures that appear in the model under consideration. More-
over, the present investigations may be of some use in ap-
plications to condensed matter—see, e.g., Refs. [6,12]—
and there violation of Lorentz invariance should have
another interpretation. Indeed, in condensed matter we
have found interesting investigations [35] in which one
deals with very similar solutions, engendering profiles of
almost the same type of the kinklike solutions that appear
for a nonvanishing b, not that much small. We can also
mimic Lorentz-violating models in condensed matter with
materials which naturally select preferable directions in
space, which can be described with continuum version of
the Dzyaloshinkii-Moriya model [36].
IV. COMMENTS AND CONCLUSIONS

In this work we have investigated models described by
real scalar fields, in scenarios which violate both the
Lorentz and CPT symmetries. We first dealt with models
described by a single real field, and there we have shown
that the addition of the Lorentz breaking term changes no
static sector of the model. However, traveling waves see
the Lorentz breaking, and we have constructed the way the
traveling waves appear. Moreover, we have extended this
result to deformed defects, and to models described by two
or more real scalar fields.

In the case of two fields, we have invented another class
of models, and we have investigated an explicit example,
which generalizes former results to the Lorentz and CPT
breaking scenario. These models do not support the usual
defect and antidefect structures simultaneously, and there
are solutions that engender unusual profile, making the
energy density negative in the outer side of the defect.
The asymmetry for defect and antidefect that we have
found may perhaps be of some use to build string theory
scenarios where open strings ending on a brane-antibrane
system are suppressed by CPT violation.

The present investigations will continue in another
work, where we study linear stability of the solutions that
we have just found in this paper. There we will show
explicitly how to construct stable defect structures which
violate Lorentz and CPT symmetries. We will also inves-
tigate supersymmetric extensions [37–39] of the above
models, to see how the solutions of the first-order equations
behave as BPS states.
065015
We believe that the idea that the geodesic motion in
moduli space can be used to describe the low energy
dynamics of defect structures [40] may be extended to
the present context. Eventually, it may change the scenario
constructed in [41] for the standard model, which preserves
both Lorentz and CPT symmetries.

The suggestion that the models here studied may mimic
features of more realistic systems, can also be extended to
the case of heterotic M theory, following the recent work
[42], which has investigated the effects of collision of
scalar field kinks with boundaries, motivated from its
cousin, the five dimensional heterotic M theory. The in-
vestigation shows that kink-boundary effects appears as
direct application of the moduli space evolution.

Other lines of investigations concern the presence of
junctions of defects, in Lorentz and CPT violating scenar-
ios. Work on this is now in progress, in models which
follow the lines of Ref. [11]. We are also exploring similar
models, with focus on tachyon kinks, motivated by ideas
present in Refs. [20,22,23,43]. Furthermore, the inclusion
of fermions is important not only for supersymmetry, but
also to allow investigations concerning the behavior of
fermions [13] in the background of these Lorentz-violating
kinklike structures. Another issue concerns the use of
defect structures in scalar field theory to generate brane
in warped geometry with a single extra dimension, as
motivated by Ref. [14]. Practical possibilities have already
been examined in Ref. [15], and we are now searching for
brane within the present Lorentz-violating scenario.
Evidently, the presence of Lorentz violation requires that
we somehow modify the standard scenario, with the addi-
tion of extra terms to compensate the asymmetry of the
energy-momentum tensor. Similar recent investigation was
done in [44], where a Chern-Simons modification of gen-
eral relativity has been considered, which may help us
enlighten the issue.
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