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Bootstrapping multiparton loop amplitudes in QCD
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We present a new method for computing complete one-loop amplitudes, including their rational parts,
in nonsupersymmetric gauge theory. This method merges the unitarity method with on-shell recursion
relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to
the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e�e� !
Z; �� ! 4 jets and pp! W � 2 jets. We illustrate the method by reproducing the one-loop color-ordered
five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely
A5;1�1

�; 2�; 3�; 4�; 5�� and A5;1�1
�; 2�; 3�; 4�; 5��. Then we describe the construction of the six- and

seven-gluon amplitudes with two adjacent negative-helicity gluons, A6;1�1
�; 2�; 3�; 4�; 5�; 6�� and

A7;1�1
�; 2�; 3�; 4�; 5�; 6�; 7��, which uses the previously-computed logarithmic parts of the amplitudes

as input. We present a compact expression for the six-gluon amplitude. No loop integrals are required to
obtain the rational parts.
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I. INTRODUCTION

The approaching dawn of the experimental program at
CERN’s Large Hadron Collider calls for theoretical sup-
port in a number of areas. A key ingredient in the quest to
find and understand the new physics at the TeV scale will
be our ability to deliver precise predictions for a variety of
observable processes. Fulfilling this demand will depend in
turn on having versatile tools for calculating multiparticle,
loop-level scattering amplitudes in the component gauge
theories of the standard model. Tree-level amplitudes pro-
vide a first but insufficient step. The size and scale-
variation of the strong coupling constant imply that even
for a basic quantitative understanding, one must also in-
clude the one-loop amplitudes which enter into next-to-
leading order corrections to cross sections [1]. An impor-
tant class of computations are of perturbative QCD and
QCD-associated processes. Extending the set of available
processes to W �multi-jet production, and beyond, will
demand computations of new one-loop amplitudes in per-
turbative QCD.

In this paper we will describe a new approach to com-
puting complete one-loop scattering amplitudes in non-
supersymmetric theories such as QCD. This approach
systematizes a unitarity-factorization bootstrap approach
applied by the authors to the computation of the one-loop
scattering amplitudes needed for Z! 4 jets and pp!
W � 2 jets at next-to-leading order in the QCD coupling
[2]. As in that paper, the cut-containing logarithmic and
polylogarithmic terms are computed using the unitarity
method [3–8] and four-dimensional tree-level amplitudes
as input. The remaining rational-function pieces are com-
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puted via a factorization bootstrap, in the form of an on-
shell recurrence relation [9–12]. (In Ref. [2] the rational
functions were constructed as ansätze with the assistance
of the factorization limits, and verified by numerical com-
parison to a direct Feynman diagram computation.)

The unitarity method has proven to be an effective
means of computing the logarithmic and polylogarithmic
terms in gauge theory amplitudes at one and two loops. In
massless supersymmetric theories the complete one-loop
amplitudes may be determined from the four-dimensional
cuts [4]. This method has been applied in a variety of
amplitude calculations in QCD [2,13–17] and in super-
symmetric gauge theories [3,4,18–20]. A recent improve-
ment to the unitarity method [7] uses complex momenta
within generalized unitarity [2,16,19], and allows a simple
determination of box integral coefficients. (The name
‘‘generalized unitarity,’’ as applied to amplitudes for mas-
sive particles, can be traced back to Ref. [21].) The unitar-
ity method has spawned a number of related techniques,
including the very beautiful application of maximally-he-
licity-violating (MHV) vertices to loop calculations [8,22]
and the use [23,24] of the holomorphic anomaly [25] to
evaluate the cuts. The unitarity method can also be used to
determine complete amplitudes, including all rational
pieces [5,13,14,17] by applying full D-dimensional unitar-
ity, where D � 4� 2� is the parameter of dimensional
regularization [26]. This approach requires the computa-
tion of tree amplitudes where at least two of the momenta
are in D dimensions. For one-loop amplitudes containing
only external gluons, these tree amplitudes can be inter-
preted as four-dimensional amplitudes but with massive
scalars. Recent work has used on-shell recursive tech-
niques [9,10] to extend the number of known massive-
scalar amplitudes [27]. At present, the D-dimensional
unitarity approach has been applied to all n-gluon ampli-
-1 © 2006 The American Physical Society
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tudes with n � 4 [17] and to special helicity configurations
with n up to 6 [13,17].

The somewhat greater complexity of the D-dimensional
cuts suggests that it is worthwhile to explore other methods
of obtaining the rational terms. We have additional infor-
mation about these terms, after all, beyond the knowledge
that their D-dimensional cuts are D-dimensional tree am-
plitudes. Because we know a priori the factorization prop-
erties of the complete one-loop amplitude [3,28], we also
know the factorization properties of the pure rational
terms. It would be good to bring this information to bear
on the problem. This idea was behind the ‘‘bootstrap’’
approach used in Ref. [2]. The idea was used to produce
compact expressions for the Z! q �qgg amplitudes.
However, it was not presented in a systematic form, and
indeed, for sufficiently complicated amplitudes it can be
difficult to find ansätze with the proper factorization prop-
erties. This shortcoming has prevented wider application of
these ideas.

Recent progress in calculations of gauge-theory ampli-
tudes has led us to reexamine the bootstrap approach. This
progress has been stimulated by Witten’s proposal of a
weak-weak duality between N � 4 supersymmetric
gauge theory and the topological open-string B model in
twistor space [29]. (The roots of the duality lie in Nair’s
description [30] of the simplest gauge-theory amplitudes.)
Witten also made the beautiful conjecture that the ampli-
tudes are supported on a set of algebraic curves in twistor
space. The underlying twistor structure of gauge theories,
as revealed by further investigation [23,31–36], has turned
out to be even simpler than originally conjectured. (For a
recent review, see Ref. [37].) The underlying twistor struc-
ture was made manifest by Cachazo, Svrček and Witten
[38], in a new set of diagrammatic rules for computing all
tree-level amplitudes, which use MHV amplitudes as ver-
tices. These MHV rules led to further progress in the
computation of tree-level [9,10,27,38–42] amplitudes.
Brandhuber, Spence, and Travaglini [22] provided the
link between loop computations using MHV vertices and
those done in the unitarity-based method. This develop-
ment in turn opened the way for further computations and
insight at one loop [7,8,19,20,24,43]. The remarkable con-
clusion of all these studies is that gauge-theory amplitudes,
especially in supersymmetric theories, are much simpler
than had been anticipated, even in light of known, simple,
results. Several groups have also studied multiloop ampli-
tudes, and have found evidence for remarkable simplicity,
at least for maximal supersymmetry [18].

Recently, Britto, Cachazo and Feng wrote down [9] a
new set of tree-level recursion relations. Recursion rela-
tions have long been used in QCD [44,45], and are an
elegant and efficient means for computing tree-level am-
plitudes. The new recursion relations differ in that they
employ only on-shell amplitudes (at complex values of the
external momenta). These relations were stimulated by the
065013
compact forms of seven- and higher-point tree amplitudes
[19,20,41] that emerged from studying infrared consis-
tency equations [46] for one-loop amplitudes. A simple
and elegant proof of the relation using special complex
continuations of the external momenta has been given by
Britto, Cachazo, Feng and Witten [10]. Its application
yields compact expressions for tree amplitudes in gravity
as well as gauge theory [42], and extends to massive
theories as well [27].

In principle, recursion relations of this type could pro-
vide a systematic way to carry out the factorization boot-
strap at one loop. One must however confront a number of
subtleties in attempting to extend them from tree to loop
level. The most obvious problem is that the proof of the
tree-level recursion relations relies on the amplitudes hav-
ing only simple poles; loop amplitudes in general have
branch cuts. Moreover, the factorization properties of loop
amplitudes evaluated at complex momenta are not fully
understood; unlike the case of real momenta, there are no
theorems specifying these properties. Indeed, there are
double pole and ‘‘unreal’’ pole contributions that must be
taken into account [11,12].

In a pair of previous papers [11,12] we have applied on-
shell recursion relations to the study of finite one-loop
amplitudes in QCD. These helicity amplitudes vanish at
tree level. Accordingly, the one-loop amplitudes are finite,
and possessing no four-dimensional cuts, are purely ra-
tional functions. Through careful choices of shift variables
and studies of known amplitudes, we found appropriate
double and unreal pole contributions for the recursion
relations, and used them to recompute known gluon am-
plitudes, and to compute fermionic ones for the first time.

While we will not give a derivation of complex factori-
zation in the present paper, it is heartening that no new
subtleties of this sort arise in the amplitudes studied here,
beyond those studied in Refs. [11,12]. The systematization
we shall present suggests that a proper and general deriva-
tion of the complex factorization behavior should indeed
be possible.

In this paper, we focus on the issue of setting up on-shell
recursion relations in the presence of branch cuts. We
describe a new method for merging the unitarity technique
with the on-shell recursion procedure. As mentioned
above, we follow the procedure introduced in Ref. [2],
determining the cut-containing logarithms and polylogar-
ithms via the unitarity method, and then determining the
rational functions via a factorization bootstrap. We derive
on-shell recursion relations for accomplishing the boot-
strap. In general, both the rational functions and cut pieces
have spurious singularities which cancel against each
other. These spurious singularities would interfere with
the recursion because their factorization properties are
not universal. We solve this problem by using functions
which are manifestly free of the spurious singularities, at
the price of adding some rational functions to the cut parts.
-2
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These added rational functions have an overlap with the
on-shell recursion. To handle this situation, we derive a
recursion relation which accounts for these overlap terms.

To illustrate our bootstrap method we recompute the
rational-function parts of the known [47] five-gluon am-
plitudes. We present all the intermediate steps determining
the rational functions of one of the five-gluon amplitudes,
in order to underline the algebraic simplicity of the proce-
dure. As a demonstration of its utility, we also compute two
new results, the six- and seven-gluon amplitudes with two
color-adjacent negative helicities. We present the complete
six-gluon amplitude in a compact form. These results have
all the required factorization properties in real momenta, a
highly nontrivial consistency check. A computation based
purely on the unitarity method, that is to say based on full
D-dimensional unitarity, would provide a further check.

This paper is organized as follows. In the next section,
we review our notation and the elements entering into a
decomposition of QCD amplitudes at tree level and one
loop. In Sec. III, we derive a new on-shell recursion-based
formula for general one-loop amplitudes. In Sec. IV, we
review the relevant known amplitudes, and pieces thereof,
and lay out the vertices that will be used for the recompu-
tation of the five-point amplitude and the computation of
the six- and seven-point amplitudes. In Sec. V, we display
the recomputation of the five-point amplitude in great de-
tail. In Sec. VI, we compute and quote the six-point am-
plitude, and present the diagrams for the seven-point
amplitude. We then give our conclusions.
II. NOTATION

In this section we summarize the notation used in the
remainder of the paper, following the notation of our
previous papers [11,12]. We use the spinor helicity formal-
ism [48,49], in which the amplitudes are expressed in terms
of spinor inner-products,

hjli � hj�jl�i � �u��kj�u��kl�;

�jl� � hj�jl�i � �u��kj�u��kl�;
(2.1)

where u	�k� is a massless Weyl spinor with momentum k
and positive or negative chirality. We follow the conven-
tion that all legs are outgoing. The notation used here
follows the standard QCD literature, with �ij� �
sign�k0

i k
0
j �hjii

� so that,

hiji�ji� � 2ki 
 kj � sij: (2.2)

These spinors are connected to Penrose’s twistors [50] via
a Fourier transform of half the variables, e.g. the u� spinors
[29,50]. (Note that the QCD-literature square bracket �ij�
employed here differs by an overall sign compared to the
notation commonly found in twistor-space studies [29].)
We also define, as in the twistor-string literature,

�i � u��ki�; ~�i � u��ki�: (2.3)
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We denote the sums of cyclicly-consecutive external
momenta by

K�
i


j � k�i � k

�
i�1 � 
 
 
 � k

�
j�1 � k

�
j ; (2.4)

where all indices are mod n for a n-gluon amplitude. The
invariant mass of this vector is si


j � K2

i


j. Special cases
include the two- and three-particle invariant masses, which
are denoted by

sij � K2
i;j � �ki � kj�

2 � 2ki 
 kj;

sijk � �ki � kj � kk�
2:

(2.5)

We also define spinor strings,

hi�j�a� b�jj�i � hiai�aj� � hibi�bj�;

hi�j�a� b��c� d�jj�i � �ia�ha�j�c� d�jj�i

� �ib�hb�j�c� d�jj�i; (2.6)

and gamma matrix traces,

tr��abcd� � �ab�hbci�cd�hdai; (2.7)

tr��abc�d� e�� � �ab�hbci�cd�hdai

� �ab�hbci�ce�heai: (2.8)

We use the trace-based color decomposition of ampli-
tudes [49,51–53]. For tree-level amplitudes with n external
gluons, this decomposition is,

Atree
n �fki; hi; aig� � gn�2

X
�2Sn=Zn

Tr�Ta��1� 
 
 
Ta��n� �

� Atree
n ���1

h1 ; . . . ; nhn��; (2.9)

where g is the QCD coupling, Sn=Zn is the group of non-
cyclic permutations on n symbols, and jhj denotes the jth
gluon, with momentum kj, helicity hj, and adjoint color
index aj. The Ta are SU�Nc� color matrices in the funda-
mental representation, normalized so that Tr�TaTb� � �ab.
The color-ordered amplitude Atree

n is invariant under a
cyclic permutation of its arguments.

When all internal particles transform in the adjoint
representation of SU�Nc�, the color decomposition for
one-loop n-gluon amplitudes is given by [54],

Aadjoint
n �fki; hi; aig�

� gn
X
J

nJ
Xbn=2c�1

c�1

X
�2Sn=Sn;c

Grn;c���A
�J�
n;c���; (2.10)

where bxc is the largest integer less than or equal to x. The
sum J 2 f0; 1=2; 1g runs over all spins of particles and nJ is
the multiplicity of each spin. We assume all particles are
massless. The leading-color structure,

Grn;1�1� � NcTr�Ta1 
 
 
Tan�; (2.11)

is Nc times the tree color structure. The subleading-color
-3
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structures are given by

Grn;c�1� � Tr�Ta1 
 
 
Tac�1�Tr�Tac 
 
 
Tan�: (2.12)

In Eq. (2.10), Sn is the set of all permutations of n objects,
and Sn;c is the subset leaving Grn;c invariant. For adjoint
particles circulating in the loop, the subleading-color par-
tial amplitudes, An;c for c > 1, are given by a sum over
permutations of the leading-color ones [3]. Therefore we
need to compute directly only the leading-color, single-
trace, partial amplitudes An;1�1

h1 ; . . . ; nhn�. The leading-
color amplitude is again invariant under cyclic permutation
of its arguments.

In QCD, of course, there can be fundamental represen-
tation quarks present in the loop. In this case only the
single-trace color structure contributes, but it is smaller
by a factor Nc. In general, scalars or fermions in the Nc �
Nc representation give a contribution,

Afund
n �fki; hi; aig� � gn

X
J�0;1=2

nJ
Nc

X
�2Sn=Zn

Grn;1���A
�J�
n;1���;

(2.13)

to the one-loop amplitude. We use a supersymmetric con-
vention in which the number of states for a single complex
scalar (squark) is 4Nc, in order to match the number of
states of a Dirac fermion (quark).

Helicity amplitudes that do not vanish at tree level
develop infrared and ultraviolet divergences at one loop.
We regulate these dimensionally. Following Ref. [47], for
the divergent one-loop amplitudes we write,

A�0�n;1 � c��VsnAtree
n � iFsn�; (2.14)

A�1=2�
n;1 � �c���V

f
n � Vsn�A

tree
n � i�Ffn � Fsn��; (2.15)

A�1�n;1 � c���V
g
n � 4Vfn � Vsn�A

tree
n � i�4Ffn � Fsn��; (2.16)

where

c� �
1

�4��2��
��1� ���2�1� ��

��1� 2��
: (2.17)

The Vxn parts contain the divergences, while the Fxn are
finite. (Of course, there is some ambiguity in the separation
between divergent and finite terms.) These pieces have a
natural interpretation in terms of supersymmetric and non-
supersymmetric parts [47],

AN�4
n;1 � c�A

tree
n Vgn ; (2.18)

AN�1
n;1 � �c��A

tree
n Vfn � iF

f
n�; (2.19)

AN�0
n;1 � c��Atree

n Vsn � iFsn�: (2.20)

Here AN�4
n;1 sums over the contributions of a N � 4

multiplet consisting of one gluon, four Majorana fermions,
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and three complex scalars, all in the adjoint representation.
The N � 1 amplitude contains the contributions of an
adjoint chiral multiplet, consisting of one complex scalar
and one Weyl fermion. The nonsupersymmetric ampli-
tudes, denoted by N � 0, are just the contributions of a
complex scalar in the loop, AN�0

n;1 � A�0�n;1.
The utility of separating QCD amplitudes into super-

symmetric and nonsupersymmetric pieces follows from
their differing analytic properties. The supersymmetric
pieces can be constructed completely from four-
dimensional unitarity cuts [3,4] and have no remaining
rational contributions (in the limit �! 0). The examples
discussed in this paper, n-gluon amplitudes with two
negative-helicity gluons, have been known for quite some
time [3,4]. (Such amplitudes are often referred to as
‘‘MHV’’ in the supersymmetric cases, because amplitudes
with fewer (zero or one) negative-helicity gluons vanish.)
The logarithmic and polylogarithmic terms in the nonsu-
persymmetric (scalar) pieces can also be obtained from
four-dimensional cuts, or from MHV vertices. These cut-
containing terms are also known for all n-gluon amplitudes
with two negative-helicity gluons. They were computed
first for the case where the two negative-helicity gluons are
color-adjacent [4], and more recently for the general case
[8].

Here we focus on the unsolved problem of computing
the rational-function terms in the N � 0 contributions in
six and higher-point amplitudes, given the knowledge of
the logarithmic and polylogarithmic terms. Finding an
effective computational approach to the rational terms in
AN�0
n;1 is tantamount to solving the problem in QCD.
The leading-color QCD amplitudes are expressible in

terms of the different components in Eqs. (2.18), (2.19),
and (2.20) via

AQCD
n;1 � c�

�
�Vgn � 4Vfn � Vsn�A

tree
n � i�4Ffn � Fsn�

�
nf
Nc
�Atree

n �Vsn � V
f
n � � i�Fsn � F

f
n��

�
; (2.21)

where nf is the number of active quark flavors in QCD. We
will present the formulas for unrenormalized amplitudes.
To carry out a MS subtraction, one should subtract from the
leading-color partial amplitudes An;1 the quantity

c�

�
�n� 2�

2

1

�

�
11

3
�

2

3

nf
Nc
�

1

3

ns
Nc

��
Atree
n ; (2.22)

where we also included a term proportional to the number
of active fundamental representation scalars ns, which
vanishes in QCD.

We will need to consider additional objects (parts of
amplitudes), beyond the Vx and Fx defined here, in order to
construct and apply appropriate on-shell recursion rela-
tions for one-loop amplitudes. The definition of these
-4
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FIG. 1 (color online). A configuration of poles and branch cuts
for a term in a one-loop amplitude. The contour C is a circle at
1.
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objects and derivation of the relations is the subject of the
next section.

III. ON-SHELL RECURSION RELATIONS FOR
LOOP AMPLITUDES

On-shell recursion relations provide an effective means
for obtaining remarkably compact forms for tree-level
amplitudes [9,10,41], and have led to a variety of new
results [27,42]. In previous work [11,12], we have shown
how to use on-shell recursion relations to compute all the
finite loop amplitudes of QCD. These special helicity
amplitudes vanish at tree level. Hence the one-loop ampli-
tudes are free of infrared and ultraviolet divergences, and
they are ‘‘treelike’’ in that they contain no cuts (absorptive
parts) in four dimensions. The derivation of these loop
recursion relations is similar in spirit to the tree-level
case, but it does require the treatment of factorizations
which differ from the ‘‘ordinary’’ factorization in real
momenta.

In this paper, we will extend the analysis of Refs. [11,12]
to cut-containing one-loop amplitudes (for which the cor-
responding tree-level amplitudes do not vanish), deriving
new recursion relations for the rational functions appearing
in such amplitudes. The new recursion relations allow us to
systematize the factorization bootstrap approach of
Ref. [2]. We assume that the cut-containing terms have
already been determined via the unitarity method or some
other means.

A. Analytic behavior of shifted loop amplitudes

The starting point for our analysis, as for the finite loop
amplitudes, is to consider [10] a complex-valued shift of
the momentum of a pair of external particles in a n-point
amplitude, kj ! k̂j�z�, kl ! k̂l�z�. This shift is best de-
scribed in terms of the spinor variables � and ~� defined
in Eq. (2.3),

~� j ! ~�j � z~�l; �l ! �l � z�j: (3.1)

This �j; l� shift maintains overall momentum conservation,
because

6kj � 6kl � �j ~�j � �l ~�l ! ^6kj � ^6kl

� �j�~�j � z~�l� � ��l � z�j�~�l � 6kj � 6kl; (3.2)

as well as the masslessness of the external momenta, k̂2
j �

k̂2
l � 0. Denote the original n-point amplitude by An �
An�0�, and the shifted one by An�z�. We wish to determine
An�0� by making use of the analytic properties of An�z�.

In the case of tree-level or finite one-loop amplitudes,
An�z� is a meromorphic function of z. Here we also en-
counter branch cuts, which may terminate at poles, as
depicted in Fig. 1. Branch cuts arise from logarithms or
polylogarithms in the amplitudes. Consider, for example,
the scalar contributions to the five-gluon amplitude with
065013
color-ordered helicity assignment �� �����, recalled
in Eq. (4.20). It contains a logarithm, ln���s23�=��s51��,
multiplied by a rational coefficient. If we perform a shift
(3.1) with �j; l� � �1; 2�, the logarithm becomes

ln
�
�s23 � zh1�j3j2�i
�s51 � zh1�j5j2�i

�
� ln

�
�23��h23i � zh13i�

h15i��15� � z�25��

�
: (3.3)

This function has two branch cuts in z, one starting at

z �
�15�

�25�
; (3.4)

the other starting at

z � �
h23i

h13i
: (3.5)

Because of the form of the rational coefficient of
ln���s23�=��s51�� in this case, neither branch cut starts at
a pole.

We assume that j and l can be chosen so that An�z� ! 0
as z! 1. We consider the following quantity,

1

2�i

I
C

dz
z
An�z�; (3.6)

where the contour integral is taken around the circle at 1.
A typical configuration for a term in a one-loop amplitude
is shown in Fig. 1. Even though the contour crosses branch
cuts, the integral still vanishes, because An�z� vanishes at
infinity. Unlike the rational cases studied previously, how-
ever, this does not mean that it is given simply by a sum of
residues at its poles. We need to include those contribu-
tions, of course; but we also need to integrate around the
branch cuts, with special handling for poles at the end of
branch cuts.

We start with the ordinary branch cuts, with no pole
touching the branch cut. We can imagine a related contour,
going along the circle at infinity, but avoiding the branch
cuts by integrating inwards along one side, and then out-
wards along the other, as shown in Fig. 2. (We will route the
branch cuts so that no two overlap.) The integral along this
-5
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FIG. 2 (color online). A configuration of poles and branch cuts
for a term in a one-loop amplitude, with a branch-cut-hugging
contour.
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contour is given by the sum of residues. The difference
between the two integrals is given by the branch-cut-
hugging integral,

1

2�i

Z
B"�i�

dz
z
An�z� �

1

2�i

Z
B#�i�

dz
z
An�z�; (3.7)

where B" is directed from an endpoint B0 to infinity, and B#

is directed in the opposite way. Now, An�z� has a branch cut
along B, which means that it has a nonvanishing disconti-
nuity,

2�iDiscBAn�z� � An�z� i�� � An�z� i��; z on B:

(3.8)

Thus our original vanishing integral can be written as
follows,

0 � An�0� �
X

poles �

Res
z�z�

An�z�
z
�
Z 1
B0

dz
z

DiscBAn�z�: (3.9)

The case with a pole at the end of the branch cut—arising,
for example, from terms containing ln��sab�=habi—can
be handled similarly, but care must be taken with the
evaluation of the integral along the branch cut. From a
conceptual point of view, we can also compute this case by
moving the pole away from the end of the branch cut by an
amount �, computing the branch-cut-hugging and residue
terms separately, and taking the limit �! 0 at the end.

B. Cut-containing terms, and their ‘‘completion’’

To proceed further, let us assume that we have already
computed all terms having branch cuts, plus certain closely
related terms that can generally be obtained from the same
computation. That is, we have computed all polylog terms,
all log terms, and all �2 terms. There are also certain
classes of rational terms that are natural to include with
the cut-containing terms.

In particular, there are rational terms whose presence is
required to cancel spurious singularities in the logarithmic
terms. Spurious singularities arise in the course of integral
reductions. They cannot be singularities of the final ampli-
065013
tude, because they are unphysical, and not singularities of
any Feynman diagram. A simple example comes from a
‘‘two-mass’’ triangle integral for which two of the three
external legs are off-shell (massive), with momentum in-
variants s1 and s2, say. When there are sufficiently many
loop momenta inserted in the numerator of this integral, it
gives rise to functions such as,

ln�r�

�1� r�2
; (3.10)

where r is a ratio of momentum invariants (here r �
s1=s2). The limit r! 1 (that is, s1 ! s2) is a spurious
singularity; it does not correspond to any physical factori-
zation. Indeed, this function always shows up in the am-
plitude together with appropriate rational pieces,

ln�r� � 1� r

�1� r�2
; (3.11)

in a combination which is finite as r! 1. From a practical
point of view, it is most convenient to ‘‘complete‘‘ the
unitarity-derived answer for the cuts by replacing functions
like Eq. (3.10) with nonsingular combinations like
Eq. (3.11). Such completions are of course not unique;
one could add additional rational terms free of spurious
singularities.

There are other kinds of spurious singularities connected
with polylogarithms. For example, in the scalar contribu-
tions to the five-gluon �� ����� amplitude, there are
factors of h24i and h25i appearing in the denominators of
certain coefficients. These might appear to give rise to
nonadjacent collinear singularities in complex momenta;
but by expanding the polylogarithms and logarithms in that
limit, one can show that these singularities are in fact
absent.

Let us accordingly define two decompositions of the
amplitude. The first is into ‘‘pure-cut’’ and ‘‘rational’’
pieces. The rational parts are defined by setting all loga-
rithms, polylogarithms, and �2 terms to zero,

Rn�z� �
1

c�
An

��������rat
�

1

c�
An

��������ln;Li;�2!0
: (3.12)

(Note that the normalization constant c�, defined in
Eq. (2.17), plays no essential role in the following argu-
ments, and is just carried along for completeness.) The
‘‘pure-cut’’ terms are the remaining terms, all of which
must contain logarithms, polylogarithms, or �2 terms,

Cn�z� �
1

c�
An

��������pure�cut
�

1

c�
An

��������ln;Li;�2
: (3.13)

In other words,

An�z� � c��Cn�z� � Rn�z��; (3.14)

where we have explicitly taken the ubiquitous one-loop
factor c� outside of Cn�z� and Rn�z�.
-6
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The second decomposition uses the ‘‘completed-cut’’
terms, obtained from Cn�z� by replacing logarithms and
polylogarithms by corresponding functions free of spuri-
ous singularities. We shall call this completion Ĉn. The
decomposition defines the remaining rational pieces R̂n,

An�z� � c��Ĉn�z� � R̂n�z��: (3.15)

We also need to define the rational part of the completed-

cut terms, cCRn�z�. We write,

Ĉn�z� � Cn�z� � cCRn�z�; (3.16)

where

cCRn�z� � Ĉn�z�jrat: (3.17)

Combining Eqs. (3.14), (3.15), and (3.16), we see that the
full rational part is the sum of the rational part of the
completed-cut terms, and the remaining rational pieces,

Rn�z� � cCRn�z� � R̂n�z�: (3.18)

Now, because we know all the terms containing branch
cuts, we could compute the branch-cut-hugging integral,Z 1

B0

dz
z

DiscBĈn�z�: (3.19)

However, there is no need to do the integral explicitly,
because we already know the answer for the integral,
plus the corresponding residues. It is just Ĉn�0�, part of
the final answer. That is, applying the same logic to Ĉn�z�
as was applied to An�z� in Eq. (3.9), we have,

Ĉn�0� � �
X

poles �

Res
z�z�

Ĉn�z�
z
�
Z 1
B0

dz
z

DiscBĈn�z�: (3.20)

In arriving at this result, we need to assume that Ĉn�z�, in
addition to the full amplitude, also vanishes as z! 1.
(This constraint may place some restrictions on the allow-
able rational completions of the cut terms.)

Using Eq. (3.9), the split-up (3.15) and (3.20) to evaluate
the terms involving Ĉn�z�, we can write our desired answer
as follows,

An�0� � �c�

�Z 1
B0

dz
z

DiscBĈn�z� �
X

poles �

Res
z�z�

Ĉn�z�
z

�
X

poles �

Res
z�z�

R̂n�z�
z

�

� c�

�
Ĉn�0� �

X
poles �

Res
z�z�

R̂n�z�
z

�
: (3.21)

Because we have completed the cut terms so that Ĉn�z�
contains no spurious singularities, the sums over the poles
in Eq. (3.21) are only over the genuine, ‘‘physical’’ poles in
the amplitude. (As explained elsewhere, these are the poles
065013
that arise for complex momenta, and not merely those that
arise for real momenta.)

C. Separate factorization of pure-cut and rational
terms

The residues of the completed-cut terms Ĉn�z� at the
genuine poles contain both rational and cut-containing
functions. The residues of cut-containing functions neces-
sarily have cut-containing functions (and the residues of
�2-containing terms will necessarily have factors of �2,
etc.), so that they will arise from cut-containing parts of the
factorized amplitudes. The intuition from collinear facto-
rization of one-loop amplitudes suggests, however, that the
pure-cut terms arise from pure-cut terms, and the rational
terms arise from rational terms. The purpose of this sub-
section is to flesh out this intuition of separate factorization
for pure-cut and rational terms.

More concretely, the arguments of the logarithms or
polylogarithms are ratios of invariants si


j. (In a limited
number of logarithms, the arguments are ratios of invari-
ants to the renormalization scale squared.) When we shift
these ratios by shifting momenta according to Eq. (3.1),
one of three things can happen to any specific argument:
(1) T
-7
he ratio may be invariant under the shift, so that the
residue simply has the original cut-containing func-
tion in it;
(2) th
e ratio may acquire a dependence on z, but neither
vanish nor diverge at any of the poles in z of the
given term;
(3) o
r the ratio may acquire a dependence on z, and
either vanish or diverge at one of the poles in the
given term.
Because the branch cuts in a massless theory start at either
a vanishing ratio or at a vanishing of its inverse, the last
situation corresponds to a pole touching the end of a branch
cut.

In the first of these three cases, the cut-containing func-
tion clearly arises from a cut-containing function in the
residue of the pole; and any associated rational terms arise
from rational terms in the residue. In the second case,
behavior under factorization in real momenta suggests
that we need consider only single poles. In particular, for
multiparticle invariants, even for complex momenta we
have only single poles to consider. For two-particle chan-
nels, double poles can arise (for complex momenta) in the
kinematic invariant of the momenta of two nearest-
neighboring legs in the color ordering, but only at one
loop and only for certain helicity configurations.

In two-particle factorizations, one-loop splitting ampli-
tudes appear in addition to tree-level ones. The remaining
amplitude left behind in the former case, however, is a tree-
level amplitude, which is of course purely rational. In the
latter case, we need consider only single poles.

We are left to consider the separation inside the cut-
containing one-loop splitting amplitudes themselves.
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Because we are only interested in the scalar-loop contri-
butions, the relevant splitting amplitudes we need are
scalar-loop ones [3,4,15,28,55]. For the helicity configura-
tions for which the tree-level splitting amplitude
Splittree

�� �x; a�a; b�b� is nonvanishing (where � is the helicity
of the outgoing off-shell leg, and x is the longitudinal-
momentum fraction carried by leg a), we write the loop
splitting amplitude as,

Split1�loop;�0�
� �x; a�a ; b�b� � r1�loop�a�b;�0�

S �x; sab�

� Splittree
� �x; a�a; b�b�; (3.22)

where

r1�loop��;�0�
S �x; s� � 0; (3.23)

r1�loop��;�0�
S �x; s� � c�

�
�2

�s

�
� 2x�1� x�
�1� 2���2� 2���3� 2��

:

(3.24)

The vertex corresponding to the first splitting amplitude
will indeed vanish, and so it will not affect the separation
between cut-containing and rational pieces. The situation
with the second helicity configuration remains to be
studied. Indeed, it appears in this case that for complex
momenta, there are genuinely nonfactorizing contributions
in addition to pole contributions. The shift choices we will
make in this paper avoid the appearance of this vertex, and
so we postpone the analysis of this case to future work.

Of course, outside of cut-containing terms, double poles
do arise in general, as indicated by the finite one-loop
splitting amplitude (the helicity configuration that vanishes
at tree level),

Split 1�loop;�0�
� �x; a�; b�� � �

1

48�2

������������������
x�1� x�

p �ab�

habi2
:

(3.25)

They would be handled as in Refs. [11,12]; given the shift
choices we will make in the present paper, they will in any
event not arise.

So long as we are indeed considering only single poles,
extracting the residue will not force us to expand Ĉn�z� in a
series around the pole. In this case, the two types of
contributions, pure-cut and rational, will remain separate
in this class of contributions. As explained above, the third
and last case, that of the pole hitting the branch cut, can
effectively be reduced to the second case by artificially
separating the pole from the end of the branch cut, and
removing the separation at the end of the calculation.

As an example of the different kinds of behavior, con-
sider the following expression,

h23i�34�2h41i2h12i�15�

h34ih45i

L1�
�s23

�s51
�

s2
51

(3.26)
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where L1�r� � �ln�r� � 1� r�=�1� r�2, under a �1; 5� and
�3; 4� shift, respectively. Under the first shift, we obtain a
simple pole at z � �h45i=h41i, but the argument of the L1

function is unchanged, and accordingly, the logarithm and
rational parts are left unaltered. In the context of a facto-
rization, we would interpret the logarithm as arising from a
logarithm in the factorized amplitude, and the rational part
inside the L1 from a rational term.

Under the second shift, we obtain a simple pole at z �
�h45i=h35i. The argument of L1 at the pole is now,

�h23i��32� � zpole�42��

�s51
�
h23i�h53i�32� � h54i�42��

�h35is51

�
h23ih15i�12�

�h35is51
; (3.27)

but because the pole is a simple one, the separation be-
tween logarithm and rational part is again left undisturbed.
If instead the original expression had contained not a h45i
in the denominator but rather a h45i2, we would have had to
expand the logarithm inside L1 in order to extract the
residue, and this expansion would have led to rational
terms whose origin was in a ‘‘pure-cut’’ term, rather than
a rational one, mixing up the two types of contributions.
Fortunately, such combinations never arise in the analysis
of the amplitudes discussed in this paper.

D. Residues of the remaining rational pieces R̂n�z�

Thanks to the analysis of the previous subsection, we
can simplify our calculation by separating the two classes
of terms—pure-cut and rational—in the factorized ampli-
tudes. Because we already know the cut-containing pieces,
we need to analyze only the rational terms. (This separa-
tion also avoids the need to treat poles hitting the ends of
branch cuts explicitly.)

We now examine more carefully the residues of the
poles of the purely rational terms, Rn�z�, and related to
that, of the shifted remaining rational terms, R̂n�z�, appear-
ing in Eq. (3.21). Given the �j; l� shift (3.1), we define a
partition P to be a set of two or more cyclicly-consecutive
momentum labels containing j, such that the complemen-
tary set P consists of two or more cyclicly-consecutive
labels containing l:

P � fP1; P2; . . . ; j; . . . ; P�1g;

P � fP1; P2; . . . ; l; . . . ; P�1g;

P [ P � f1; 2; . . . ; ng:

(3.28)

This definition ensures that the sum of momenta in each
partition is z-dependent, so that it can go on shell for a
suitable value of z. At tree level, the sum over residues
becomes,
-8
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�
X

poles �

Res
z�z�

Atree
n �z�
z

� Atree
n �k1; . . . ; kn�

�
X

partitions P

X
h�	

Atree
L �kP1

; . . . ; k̂j; . . . ; kP�1
;�P̂h�

i

P2 �m2
P

Atree
R �kP1

; . . . ; k̂l; . . . ; kP�1
; P̂�h�: (3.29)

The complex on-shell momenta k̂j, k̂l and P̂ are determined by solving the on-shell condition, P̂2 � m2
P, for z. Although

the examples we discuss in this paper are for massless particles, we allow for a mass m2
P to indicate that there is no special

restriction to massless amplitudes, as has already been noted at tree level [27].
At one loop, the sum analogous to Eq. (3.29) will have an additional two-fold sum. In each term in this sum, either AL or

AR will be a tree amplitude, and the other one will be a loop amplitude; in general both terms will appear. Taking the
rational parts of the one-loop amplitudes appearing in this expression, the one-loop physical-pole recursion for the rational
terms is,

�
X

poles �

Res
z�z�

Rn�z�
z
� RDn �k1; . . . ; kn�

�
X

partitions P

X
h�	

�
R�kP1

; . . . ; k̂j; . . . ; kP�1
;�P̂h�

i

P2 A
tree�kP1

; . . . ; k̂l; . . . ; kP�1
; P̂�h�

� Atree�kP1
; . . . ; k̂j; . . . ; kP�1

;�P̂h�
i

P2 R�kP1
; . . . ; k̂l; . . . ; kP�1

; P̂�h�
�
; (3.30)
where we now assume that the intermediate states are
massless. This result follows directly from the general
factorization behavior of one-loop amplitudes, plus the
separate factorization of pure-cut and rational terms that
was established in the previous subsection. Just as in the
case of the tree-level recursion (3.29), it exhibits the re-
quired factorization properties in each channel P (dropping
the terms with logarithms, polylogarithms, and �2).
Although the R functions are not complete amplitudes,
they can be thought of as vertices from a diagrammatic
perspective, and this equation lends itself to the same kind
of diagrammatic interpretation available for Eq. (3.29).

However, the factorization cannot distinguish between
the rational terms we have already included in the
completed-cut terms and the remaining ones. That is, there
would be an overlap or double count if we were simply to
combine the recursive diagrams with the completed-cut
terms. To remove this overlap, we separate the physical-
pole contributions into those already included in the
completed-cut terms and those in the remaining rational
terms. Using Eq. (3.18), we know that

�
X

poles �

Res
z�z�

Rn�z�
z
� RDn

� �
X

poles �

Res
z�z�

cCRn�z�
z

�
X

poles �

Res
z�z�

R̂n�z�
z

: (3.31)

Because we know the completed-cut terms Ĉn�z� and their
065013
rational parts cCRn�z� explicitly, we can compute the first
term on the right-hand side, and solve for the remaining
terms using the determination of RDn via Eq. (3.30).
Inserting the result into Eq. (3.21) then gives us the basic
on-shell recursion relation for complete one-loop ampli-
tudes,

An�0� � c�

�
Ĉn�0� � RDn �

X
poles �

Res
z�z�

cCRn�z�
z

�
: (3.32)

To compute with this equation, we construct RDn via ‘‘direct
recursion’’ diagrams; that is, via Eq. (3.30). We call the
elements of the last term ‘‘overlap’’ terms. Because each
pole is associated with a specific diagram, these can also be
given a diagrammatic interpretation. Although the defini-
tion of the completed-cut terms Ĉn is not unique, the

ambiguity cancels between Ĉn�0� and the sum over cCRn
residues. In the calculations in this paper, an astute choice
of completion terms can simplify the calculation, by sim-
plifying the extraction of the residues in the last term.

The reader may wonder how the calculation would have
proceeded if we had started with ‘‘pure’’ cut terms, not
including any of the rational pieces needed to eliminate the
spurious singularities. In this case, the intermediate stages,
and, in particular, Eq. (3.21), would have included a sum
over the spurious singularities as well. Since these singu-
larities include double and triple poles, we would have
needed to expand the logarithms in extracting the residues
for the overlap terms, and this expansion would have
produced rational terms. In contrast, with our approach,
we never evaluate residues at values of z corresponding to
-9
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unphysical spurious singularities, and we never have to
expand logarithmic functions.

In Sec. II, we separated the one-loop amplitudes into
divergent and finite parts. The amplitude as a whole sat-
isfies the bootstrap relation Eq. (3.32); but it turns out that
for the amplitudes we consider in the present paper, it can
be applied separately to the V and F terms. As the recur-
sion relation for the pure-scalar parts of the former are
basically the same as at tree level, we will focus on the
computation of the F terms. For this purpose, we shall use

quantities analogous toCn, Rn, Ĉn, R̂n, and cCRn, defined as
in Eqs. (3.13), (3.14), (3.15), (3.16), and (3.17), but with
respect to Fsn of Eq. (2.14) instead of An. Note that this shift
of convention generates a relative factor of i in the quan-
tities we use below, due to the relative i in Eq. (2.14).

IV. REVIEW OF KNOWN RESULTS

In this section we summarize the previously-computed
amplitudes, and pieces thereof, that feed into our recursive
construction. In this paper, we consider n-gluon amplitudes
with two color-adjacent negative helicities,
An;1�1

�; 2�; 3�; 4�; . . . ; �n� 1��; n��. As mentioned in
Sec. II, the N � 4 and N � 1 components of these
amplitudes have been known for a while, so the only issue
is the computation of the N � 0 or scalar contribution,

A�0�n;1�1
�; 2�; 3�; 4�; . . . ; �n� 1��; n��: (4.1)

Assigning intermediate helicities to all possible factoriza-
tions of this amplitude, as encountered in Eq. (3.30), allows
us to determine which lower-point amplitudes are required
as input. Besides the Parke-Taylor tree amplitudes with
two (adjacent) negative helicities [52,53,56], we shall need
the one-loop scalar contributions with one negative helicity
[57], for which we recently found a compact form [12].
The one-loop amplitudes with two adjacent negative hel-
icities and smaller values of n are also needed, and are
obtained recursively, given a suitable starting point.

By choosing to shift the two negative-helicity legs we
can avoid some factorizations. For example, for a generic
choice of j and l in the �j; l� shift (3.1), the amplitude could
factorize onto products containing a one-loop amplitude
with all positive external helicities and an internal helicity
of either sign. We avoid these factorizations by choosing to
shift the two negative-helicity legs, �j; l� � �1; 2�. One
external negative helicity then appears in each partition.
In addition to lower-point amplitudes, we also need the
logarithmic parts of the n-point amplitude (4.1), obtained
in Ref. [4]. (The logarithmic parts of the more general set
of amplitudes for two nonadjacent negative helicities were
recently obtained in Ref. [8].)

In Sec. V we recompute the five-gluon helicity ampli-
tude A�0�5;1�1

�; 2�; 3�; 4�; 5��. For that computation, we

take the four-point amplitude A�0�4;1�1
�; 2�; 3�; 4�� as an

input, but here we quote the previous five-gluon result
065013
too, in order to demonstrate that the method works. (We
also outline the recursive construction of
A�0�5;1�1

�; 2�; 3�; 4�; 5��, which uses A�0�4;1�1
�; 2�; 3�; 4��

as an input, and agrees with the known result.) In Sec. VI
we feed the five-point result back into the recursion to
construct the six-point result, and following that, outline
the construction of the seven-point result.

Finally, we also need the three-point amplitudes, which
vanish for real momenta, but are nonvanishing for generic
complex momenta. The one-loop three-vertex that we need
may be deduced from a one-loop splitting amplitude [3].

Let us start with the tree amplitudes. The tree amplitudes
that enter into our calculation are just the Parke-Taylor
amplitudes [52,53,56],

Atree
n �1

	; 2�; 3�; . . . ; n�� � 0; (4.2)

Atree
n �1

�; 2�; 3�; . . . ; n�� � i
h12i4

h12ih23ih34i 
 
 
 hn1i
:

(4.3)

For some complex momenta, the three-point amplitudes

Atree
3 �1

�; 2�; 3�� � i
h12i4

h12ih23ih31i
; (4.4)

Atree
3 �1

�; 2�; 3�� � �i
�12�4

�12��23��31�
; (4.5)

are nonvanishing. (They are vanishing for real momenta.)
The finite one-loop amplitudes that feed into our recur-

sion are also relatively simple. The four-point finite am-
plitude with a single negative-helicity leg is [58–60],

A�0�4;1�1
�; 2�; 3�; 4�� �

ic�

3

h24i�24�3

�12�h23ih34i�41�
: (4.6)

Since the amplitude is entirely composed of rational func-
tions, the vertex is proportional to the amplitude

R4�1
�; 2�; 3�; 4�� �

1

ic�
A�0�4;1�1

�; 2�; 3�; 4��: (4.7)

We have removed an extra i from this vertex (and all others
in the section) compared to the vertices Rn appearing in
Sec. III. As mentioned at the end of that section, we wish to
perform the recursion directly on the finite parts Fsn defined
in Eq. (2.14). For this reason, a factor of i from the vertex is
removed from the vertex, compared with the one that
would be used for constructing the amplitudes An.

The five-point finite amplitudes are also rather simple.
We will need the finite amplitude
-10
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A�0�5;1�1
�; 2�; 3�; 4�; 5�� � i

c�

3

1

h34i2

�
�
�25�3

�12��51�

�
h14i3�45�h35i

h12ih23ih45i2

�
h13i3�32�h42i

h15ih54ih32i2

�
:

This amplitude, along with all the other one-loop five-
gluon helicity amplitudes, was first calculated using
string-based methods [47]. Again because the amplitude
is purely rational, the vertex is proportional to the ampli-
tude,

R5�1
�; 2�; 3�; 4�; 5�� �

1

ic�
A�0�5;1�1

�; 2�; 3�; 4�; 5��:

(4.8)

It is worth noting that compact expressions now exist for
the n-point generalization of this amplitude [11,12],
A�0�n;1�1

�; 2�; 3�; . . . ; n��, which agree numerically with
Mahlon’s [57] original determination.

Using the decompositions (2.14)–(2.21), we express the
divergent four-point amplitudes A�J�4;1�1

�; 2�; 3�; 4�� in
terms of the functions [58–60],

Vg4 � �
2

�2

��
�2

�s12

�
�
�

�
�2

�s23

�
�
�
� ln2

�
�s12

�s23

�

� �2 �
�R
3
; (4.9)

Vf4 � �
1

�

�
�2

�s23

�
�
� 2; (4.10)

Vs4 � �
Vf4
3
�

2

9
: (4.11)

In this case the finite parts are trivial,

Ff4 � 0; Fs4 � 0: (4.12)

The version of dimensional regularization under consid-
eration is determined by the �R parameter; for the ’t Hooft-
Veltman scheme [26] we take �R � 1 while for the four-
dimensional helicity scheme [58,61] we take �R � 0.

Equation (4.12) shows that all the rational terms for the
�� ���� case are constant multiples of the tree ampli-
tude, so they can easily be absorbed into the Vx terms.
Because the tree amplitude obeys its own on-shell recur-
sion relation [9], it does not really matter whether we put
constant terms like the 2=9 term in Vs4 into the V or F
category, but we will be able to drop one recursive diagram
by assigning it to V. In general, then, we define Vsn by,

Vsn � �
Vfn
3
�

2

9
: (4.13)

Because Fs4 vanishes, we take the loop vertex to also
065013
vanish,

R4�1
�; 2�; 3�; 4�� � 0: (4.14)

For the divergent amplitudes with five or more legs, it is
useful to introduce a set of auxiliary functions [47],

L0�r� �
ln�r�
1� r

; L1�r� �
ln�r� � 1� r

�1� r�2
;

L2�r� �
ln�r� � �r� 1=r�=2

�1� r�3
;

(4.15)

in which the pole at r � 1 is removable. As discussed in
Sec. III, we can therefore use the functions to construct the
completed-cut terms, out of logarithms deduced from four-
dimensional cuts.

We shall be quoting the functional form of the cut-
containing pieces in the Euclidean region; a discussion of
analytic continuations to the physical region may be found
in, for example, Ref. [2].

We will also need the five-gluon amplitude
A�J�5;1�1

�; 2�; 3�; 4�; 5��. Reference [47] gives us,

Vg5 � �
1

�2

X5

j�1

�
�2

�sj;j�1

�
�

�
X5

j�1

ln
�
�sj;j�1

�sj�1;j�2

�
ln
�
�sj�2;j�2

�sj�2;j�1

�
�

5

6
�2 �

�R
3
;

(4.16)

Vf5 � �
1

2�

��
�2

�s23

�
�
�

�
�2

�s51

�
�
�
� 2; (4.17)

Vs5 � �
1

3
Vf5 �

2

9
; (4.18)

for the functions appearing in the decompositions (2.14)–
(2.21). [The 1=� singularities differ from those in Ref. [47]
because the amplitudes there were renormalized, whereas
here we are using unrenormalized amplitudes; the differ-
ence is given simply by the renormalization subtraction
(2.22).] The finite parts of this amplitude are,

Ff5 � �
1

2

h12i2�h23i�34�h41i � h24i�45�h51i�

h23ih34ih45ih51i

L0�
�s23

�s51
�

s51
;

(4.19)

Fs5 � �
1

3
Ff5

�
1

3

�34�h41ih24i�45��h23i�34�h41i � h24i�45�h51i�

h34ih45i

�
L2�

�s23

�s51
�

s3
51

� R̂5; (4.20)

where
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R̂5 � �
1

3

h35i�35�3

�12��23�h34ih45i�51�
�

1

3

h12i�35�2

�23�h34ih45i�51�

�
1

6

h12i�34�h41ih24i�45�

s23h34ih45is51
: (4.21)

In Sec. V, we shall recompute the explicit rational terms
R̂5. The other pieces are all either trivial or obtainable from
four-dimensional unitarity.

Following the discussion of the previous section, we
define a recursion vertex (3.12), composed of all the ra-
tional terms in Fs5,

R5�1
�; 2�; 3�; 4�; 5�� � Fs5jrat; (4.22)

including those contained in L2. As in the four-point case
the effect of the 2=9 term in Vs is trivial, so we do not need
to make it part of the recursion vertex.

Now consider the known six-point results for
A�J�6;1�1

�; 2�; 3�; 4�; 5�; 6��. Except for rational terms as-
sociated with the J � 0 scalar loop, these amplitudes were
determined from the unitarity method in Refs. [3,4], where
the calculations were performed for the more general
n-point amplitudes with two adjacent negative helicities.
These results have recently been confirmed in Refs. [8,22].

From the results of Ref. [3], after setting n � 6, we have
the N � 4 contribution,

Vg6 �
X6

i�1

�
�

1

�2

�
�2

�si;i�1

�
�

� ln
�
�si;i�1

�si;i�1;i�2

�
ln
�
�si�1;i�2

�si;i�1;i�2

��
�D6 � L6 � �

2; (4.23)

where all indices are to be taken mod 6 and

D6 � �
X3

i�1

Li2

�
1�

si;i�1si�3;i�4

si;i�1;i�2si�1;i;i�1

�
;

L6 � �
1

4

X6

i�1

ln
�
�si;i�1;i�2

�si�1;i�2;i�3

�
ln
�
�si�1;i�2;i�3

�si;i�1;i�2

�
:

(4.24)

From Ref. [4], the N � 1 components are,

Vf6 � �
1

2�

��
�2

�s23

�
�
�

�
�2

�s61

�
�
�
� 2; (4.25)

Ff6 �
1

2s12

h12i3

h23ih34ih45ih56ih61i

�
1

s16
L0

�
s234

s16

�
�tr��1256�

� tr��12�1� 6�5�� �
1

s234
L0

�
s23

s234

�
�tr��1234�

� tr��124�2� 3���
�
; (4.26)
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while the scalar-loop contributions are,

Vs6 � �
1

3
Vf6 �

2

9
; (4.27)

Fs6 � �
1

3s3
12

h12i3

h23ih34ih45ih56ih61i

�

�
1

s3
16

L2

�
s234

s16

��
�tr��1256��2tr��12�1� 6�5�

� tr��1256��tr��12�1� 6�5��2
�

�
1

s3
234

L2

�
s23

s234

��
tr��124�2� 3���tr��1234��2

� �tr��124�2� 3���2tr��1234�
��
�

1

3
Ff6 � R̂6;

(4.28)

where R̂6 are the rational terms not contained in L2. A key
task of this paper will be to obtain an explicit formula for
the unknown rational function R̂6. We shall do so in
Sec. VI.

Similarly, for the seven-point amplitude
A�0�7;1�1

�; 2�; 3�; 4�; 5�; 6�; 7��, it is not difficult to extract
the functions from the n-point forms given in Refs. [3,4].
Although we shall not discuss the seven-point case in any
detail, these functions enter into the computation of the
rational terms of this amplitude, as outlined in Sec. VI.

We still need a one-loop three-vertex for the recursion.
We determine this vertex by inspecting the one-loop split-
ting amplitudes. Because the loop splitting amplitude with
opposite on-shell helicities and a scalar circulating in the
loop vanishes [see Eq. (3.23)],

Split �0����1
	; 2� � 0; (4.29)

the corresponding three-vertex should also be taken to
vanish,

R3�1̂
�; 2�;�K̂	12� � 0: (4.30)

For the cases where the two external lines have the same
helicity, the situation is much more subtle, with the appear-
ance of ‘‘unreal poles’’ [11,12] and nonfactorizing contri-
butions. However, because we choose to shift the two
negative-helicity legs, we do not encounter such vertices.

Finally, we need the rational functions cCRn contained in
the completed-cut part defined in Eqs. (3.15) and (3.17), for
n � 5, 6, and 7. These functions will be used to obtain the
overlap contributions in Secs. V and VI. We easily obtain
these from the L2 terms by replacing the L2 function with
its rational part, using Eq. (4.15). For the five-point ampli-
tude A�0�n;1�1

�; 2�; 3�; 4�; 5��, the explicit value is,
-12
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cCR 5 � �
1

6

s15 � s23

s23s15�s15 � s23�
2

�34�h41ih24i�45��h23i�34�h41i � h24i�45�h51i�

h34ih45i
: (4.31)

For the six-point amplitude A�0�6;1�1
�; 2�; 3�; 4�; 5�; 6��, the rational function appearing in the completed-cut part is,

cCR6��
1

6

1

h23ih34ih45ih56ih61i

�
1

s16s234

s16�s234

�s16�s234�
2 h25i�56�h61ih51ih2�j�3�4�j5�i

�
h25i�56�h61i�h2�j�3�4�j5�ih51i

�

�
1

s23s234

s234�s23

�s234�s23�
2 h24ih4�j�5�6�j1�ih23i�34�h41i

�
h23i�34�h41i�h24ih4�j�5�6�j1�i

��
: (4.32)
Similarly, for the seven-point amplitude
A�0�7;1�1

�; 2�; 3�; 4�; 5�; 6�; 7�� which we briefly discuss
in Sec. VI, it is not difficult to extract the explicit value ofcCR7 from eq. (7.1) of Ref. [4], although we shall not quote
the result here.
V. RECOMPUTATION OF FIVE-GLUON QCD
AMPLITUDES

In this section we illustrate our method for determining
loop amplitudes, by recomputing the known five-gluon
QCD amplitudes, given the four-dimensional cut-
constructible parts of the amplitudes. There are two inde-
pendent helicity amplitudes, A�0�5;1�1

�; 2�; 3�; 4�; 5�� and

A�0�5;1�1
�; 2�; 3�; 4�; 5��. We will discuss the first of these

in some detail, and merely summarize the calculation of
the latter. In both cases, we correctly reproduce the results
of ref. [47].

Begin with A�0�5;1�1
�; 2�; 3�; 4�; 5��. For this amplitude,

use a �1; 2� shift,

�1 ! �1; ~�1 ! ~�1 � z~�2;

�2 ! �2 � z�1; ~�2 ! ~�2:
(5.1)

It is not difficult to verify that this shift has the required

property that the rational part of the cut term cCR5, given in
Eq. (4.31), vanishes at large z, as required.

This shift yields a version of the rational-recursion
(3.30), where each term is represented by one of the
recursive diagrams depicted in Fig. 3. We have dropped
diagrams with a trivially vanishing tree amplitude.
Consider the first diagram in Fig. 3,

D�a�5 � Atree
3 �2̂

�; 3�;�K̂�23� �
i
s23
� R4�1̂

�; K̂�23; 4
�; 5��:

(5.2)

It vanishes,

D�a�5 � 0; (5.3)

because [9]
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Atree
3 �2̂

�;3�;�K̂�23�/ h2̂K̂23i
3

/

�
h2�j�2�3�j2�i

�
s23

h1�j�2�3�j2�i
h1�j�2�3�j2�i

�
3

�0: (5.4)

Diagram 3(b) also vanishes,

D�b�5 � 0; (5.5)

because the loop three-vertex (4.30) vanishes. Similarly, it
is not difficult to show that diagrams 3(d) and 3(e) vanish,

D�d�5 � D�e�5 � 0: (5.6)

We are left with just two direct-recursion diagrams.
Diagram 3(c) is given by

D�c�5 � Atree
3 �2̂

�; 3�;�K̂�23� �
i
s23
� R4�1̂

�; K̂�23; 4
�; 5��:

(5.7)

As we saw in Eq. (4.14), the loop vertex vanishes, and so

D�c�5 � 0: (5.8)

The last diagram is,

D�f�5 � Atree
3 �5

�; 1̂�;�K̂�51�
i
s51

R4�2̂
�; 3�; 4�; K̂�51�

� �
1

3

h1̂��K̂51�i
3

h51̂ih��K̂51�5i

1

s51

h3K̂51i�3K̂51�
3

�2̂3�h34ih4K̂15i�K̂512̂�

�
1

3

h1�j5j2�i3

h51ih5�j1j2�i

1

h51i�15�h1�j5j2�i2

�
h3�j4j2�ih1�j5j3�i3

�23�h34ih4�j3j2�ih1�j5j2�i

� �
1

3

�24��35�3

h34i�12��15��23�2
: (5.9)

This direct-recursion diagram is the only one that does not
vanish.

Next we must evaluate the overlap contributions from
Eq. (3.32), depicted in Fig. 4. We start from the rational
-13
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FIG. 3. The recursive diagrams for computing the rational parts of A�0�5;1�1
�; 2�; 3�; 4�; 5�� with the shift of legs 1,2 given in

Eq. (5.1). T signifies a tree vertex and L a loop vertex.
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parts of the cut contributions, cCR5 as given in Eq. (4.31). Applying the shift (5.1) to these contributions, we have,

cCR 5�z� � �
1

6

�34�h41i�h24i � zh14i��45�

h34ih45i

�
�h23i � zh13i��34�h41i � �h24i � zh14i��45�h51i

�

�
s51 � s23 � zh1

�j5j2�i � zh1�j3j2�i

�h23i � zh13i��32�h15i��51� � z�52���s15 � s23 � zh1
�j�5� 3�j2�i�2

: (5.10)
The residues of cCR5�z�=z that we need to evaluate are
located at the values of z,

z�a� � �
h23i

h13i
; z�b� �

�15�

�25�
; (5.11)

corresponding to the two overlap diagrams in Fig. 4.
Evaluating the residue corresponding to the first of these
overlap diagrams is very simple and gives,

O�a�5 � �
1

6

h12i2h14i�34�

h15ih23ih34ih45i�23�
: (5.12)

Similarly, the overlap diagram (b) gives

O�b�5 �
1

6

h14i�34��35��h14i�34� � h15i�35��

h15ih34ih45i�15��23�2
: (5.13)

Summing over the nonvanishing diagrammatic contri-
butions, we get the simple result,
^−1

+
5

CR5 CR5

^−2 (b)^ (a)

+

−2

+
5

4

1^−

+3

3
+

+4

FIG. 4. The five-point overlap diagrams using the (1,2) shift
given in Eq. (5.1).
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R̂ 5 � D�f�5 �O
�a�
5 �O

�b�
5

�
1

6

�
�

2�24��35�3

h34i�12��15��23�2
�

h12i2h14i�34�

h15ih23ih34ih45i�23�

�
h14i2�34�2�35�

h15ih34ih45i�15��23�2
�
h14i�34��35�2

h34ih45i�15��23�2

�
:

(5.14)
With a few spinor manipulations this result can be brought
into manifest agreement with the known result (4.21).
Thus, we have correctly reproduced the rational parts of
A�0�5;1�1

�; 2�; 3�; 4�; 5��, without performing any loop
integrals.

We have also verified that our method properly repro-
duces A�0�5;1�1

�; 2�; 3�; 4�; 5��, computed in Ref. [47]. As
for the previous case, we choose the negative-helicity legs
as the shifted ones, i.e. we use a �1; 3� shift,

�1 ! �1; ~�1 ! ~�1 � z~�3;

�3 ! �3 � z�1; ~�3 ! ~�3:
(5.15)
For this computation, we completed the cut terms with the
Ls1 function of Ref. [47], along with the L1 and L2 func-
tions also used there,
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Ĉ5 � �
h12ih23ih34ih41i2�24�2

h45ih51ih24i2
2Ls1�

�s23

�s51
;�s34

�s51
� � L1�

�s23

�s51
� � L1�

�s34

�s51
�

s2
51

�
h32ih21ih15ih53i2�25�2

h54ih43ih25i2
2Ls1�

�s12

�s34
;�s51

�s34
� � L1�

�s12

�s34
� � L1�

�s51

�s34
�

s2
34

�
2

3

h23i2h41i3�24�3

h45ih51ih24i

L2�
�s23

�s51
�

s3
51

�
2

3

h21i2h53i3�25�3

h54ih43ih25i

L2�
�s12

�s34
�

s3
34

�
L2�

�s34

�s51
�

s3
51

�
1

3

h13i�24��25��h15i�52�h23i � h34i�42�h21i�

h45i
�

2

3

h12i2h34i2h41i�24�3

h45ih51ih24i

�
2

3

h32i2h15i2h53i�25�3

h54ih43ih25i

�
�

1

6

h13i3�h15i�52�h23i � h34i�42�h21i�

h12ih23ih34ih45ih51i

L0�
�s34

�s51
�

s51
: (5.16)
This function satisfies Ĉ5�z� ! 0 as z! 1, thanks to
cancellations between the polylogarithmic or logarithmic
functions and the rational terms. The attentive reader will
note that this function has spurious double poles involving
nonadjacent legs in the color ordering, e.g. 1=h24i2. These
poles do not invalidate the calculation with a �1; 3� shift,
because they acquire no z dependence, and hence produce
no poles in z at spurious locations. The spurious singular-
ities cancel in the complete answer for Fs, not only at order
1=h24i2, but also at order 1=h24i, even for complex mo-
menta. (The completed-cut term Ĉ5 given here does con-
tain a 1=h24i pole for complex momenta, but it is canceled
in the full answer by the additional diagrammatic terms in
our construction.)

VI. SIX- AND SEVEN-POINT QCD AMPLITUDES

In this section we describe the computations of the
unknown rational functions for the six- and seven-point
helicity amplitudes A�0�6;1�1

�; 2�; 3�; 4�; 5�; 6�� and

A�0�7;1�1
�; 2�; 3�; 4�; 5�; 6�; 7��. Were one to attempt the

calculation by traditional means, one would encounter
large numbers of Feynman diagrams. The total number
of one-loop diagrams for the six-gluon process in QCD is
10 860 (including gluon, ghost and fermion loops, but
dropping those which vanish trivially in dimensional regu-
larization). For seven and eight external gluons the num-
065013
bers grow to 168 925 and 3 017 490, respectively. But the
number of diagrams only hints at the full complexity of the
calculation, because it does not take into account the ex-
plosion of terms resulting from tensor integral reductions,
which is what renders a brute-force Feynman diagram
computation impractical even on a modern computer.
The approach we take in the present paper avoids this
explosion by focusing on analytic properties that all am-
plitudes must satisfy. We computed the logarithmic terms
in the amplitudes long ago [3,4], using the unitarity-based
method. Here we complete the QCD calculation by com-
puting the rational terms in the scalar contributions,
namely, Eq. (4.1) for n � 6; 7. For the six-point case we
present a compact analytical expression.

First consider the six-point amplitude
A�0�6;1�1

�; 2�; 3�; 4�; 5�; 6��. To obtain the rational terms
of the six-point amplitude, R̂6 in Eq. (4.28), we first evalu-
ate the recursive diagrams shown in Fig. 5, corresponding
to the terms in the recursion (3.30). We again shift the two
negative-helicity legs, using Eq. (5.1). Following a similar
discussion as for the five-point amplitude, it is not difficult
to show that diagrams 5(a), 5(b), 5(d), and 5(e) vanish,

D�a�6 � D�b�6 � D�d�6 � D�e�6 � 0: (6.1)

Four diagrams remain to be evaluated,
D6 � D�c�6 �D
�f�
6 �D

�g�
6 �D

�h�
6

� Atree
3 �2̂

�; 3�;�K̂�23� �
i
s23
� R5�1̂

�; K̂�23; 4
�; 5�; 6�� � R5�2̂

�; 3�; 4�; 5�; K̂�61� �
i
s61
� Atree

3 �6
�; 1̂�;�K̂�61�

� R4�2̂
�; 3�; 4�;�K̂�234� �

i
s234
� Atree

4 �1̂
�; K̂�234; 5

�; 6��

� Atree
4 ��K̂

�
234; 2̂

�; 3�; 4�� �
i
s234
� R4�1̂

�; K̂�234; 5
�; 6��: (6.2)

We do not present a detailed evaluation of these diagrams, because it is similar to the five-point evaluation discussed in the
previous section.

Next consider the overlap contributions of Eq. (3.32) displayed in Fig. 6. These are determined by evaluating the
residues of the rational part of the cut contributions given in Eq. (4.32) after performing the shift (5.1). The residues ofcCR6�z�=z that need to be computed are at the values of z located at,
-15
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FIG. 5. The recursive diagrams for A�0�6;1�1
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z�a� �
�16�

�26�
; z�b� � �

h23i

h13i
; z�c� � �

s234

h1�j�3� 4�j2�i
; (6.3)
corresponding to the three overlap diagrams in Fig. 6. It is straightforward to evaluate the residues since we encounter only
simple poles. For diagram (a) of Fig. 6, for example, we have,
O�a�6 � �
1

6

h15i�56�s612h5
�j�1� 2�j6�i�2h15is612 � h1

�j2�1� 6�j5�i�

h34ih45ih56ih61i�61�h3�j�1� 2�j6�ih5�j�3� 4�j2�i2
; (6.4)
which has been simplified using spinor-product identities.
Similarly, it is not difficult to evaluate the other two
residues, corresponding to diagrams (b) and (c) in Fig. 6.

The sum of the nonvanishing recursive and overlap
diagrams for R̂6 in Eq. (4.28) is given by

R̂ 6 � D�c�6 �D
�f�
6 �D

�g�
6 �D

�h�
6 �O

�a�
6 �O

�b�
6 �O

�c�
6 :

(6.5)

One of the terms in the expression for the overlap diagram
in the h23i channel, O�b�, contains an unusual factor in its
1−^

3+

^2−

CR6CR6

+4

+3
^2−

5+ +6

(a) (b)

FIG. 6. The overlap diagrams for A�0�6;1�1
�;
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denominator, namely, the square of the quantity

h1�j5�1� 2�j3�i � h13is56 � h1
�j�2� 3�4j3�i

� h1�j6�1� 2�j3�i:

(6.6)

However, the recursive diagram in the h23i channel, D�c�,
shown in Fig. 5(c), also contains a term with this behavior,
and the two terms cancel against each other. After simpli-
fying the sum over diagrams we obtain,
5+

6+

^2−

4
+

6+

5+

1−^
1̂−

4+

CR63

(c)

+

2�; 3�; 4�; 5�; 6��, using the (1,2) shift.
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R̂6 �
1

6

�
�2
h35i�35�h4�j�1� 2�j3�ih4�j�1� 2�j6�ih5�j�1� 2�j6�i

�12�h34i2h45i2�61�h5�j�3� 4�j2�ih6�j�1� 2�j3�i
� 2

h35i�36�h4�j�1� 2�j6�i2

�12�h34i2h45i2�61�h5�j�3� 4�j2�i

� 2
h12ih24ih35i�35�2�56�h5�j�1� 2�j6�i

h34i2h45i�61�h2�j�1� 6�j5�ih5�j�3� 4�j2�ih6�j�1� 2�j3�i

� 2
h12i2�35�2�h5�j�3� 4�2j1�i � h5�j35j1�i�

h34ih45ih61ih2�j�1� 6�j5�ih5�j�3� 4�j2�ih6�j�1� 2�j3�i

�
h12i3h35i�46��56�

h23ih34ih45ih56ih1�j�2� 3�j4�ih3�j�1� 2�j6�i
� 2

�36�3

�12��23�h45i2�61�

�
�56�h5�j�1� 2�j6�i2�2h4�j�3� 5��1� 2�j5�i � h12i�12�h45i�

�12�h34ih45i2h56i�61�h3�j�1� 2�j6�ih5�j�3� 4�j2�i

� 2
h15i2�34�2�56��h16i�34�h45i � h1�j�2� 4�j3�ih56i�

�23�h45ih56i2s234h1
�j�2� 3�j4�ih5�j�3� 4�j2�i

�
h12ih15i�34��56�h1�j�5� 6��3� 4�j5�i

h34ih45ih56is234h1
�j�2� 3�j4�ih5�j�3� 4�j2�i

� 2
h35ih1�j�2� 4�j3�i3

�23�h34ih45ih56ih61is234h5
�j�3� 4�j2�i

�
h12ih1�j�2� 4�j3�i�2h1�j�2� 4�j3�i � h1�j4j3�i�

�23�h34ih45ih56ih61is234

� 2
h12i3�46�2h5�j�4� 6�j5�i

h23ih45ih56is123h1
�j�2� 3�j4�ih3�j�1� 2�j6�i

� 2
h12i3�35�2h4�j�3� 5�j4�i

h34ih45ih61is612h2
�j�1� 6�j5�ih6�j�1� 2�j3�i

�
h12i2

h23ih34ih45ih56ih61i

�
h1�j4j3�i

�23�
�
h2�j5j6�i

�61�

��
; (6.7)
determining the previously unknown rational function in
Eq. (4.28).

As in the past, for both theoretical and practical reasons,
it probably will be important to have the simplest repre-
sentations of amplitudes. It is likely that the result in
Eq. (6.7) can be simplified even further. For example,
individual terms contain spurious singularities due to
the following denominator factors: h1�j�2� 3�j4�i,
h2�j�1� 6�j5�i, h3�j�1� 2�j6�i, h5�j�3� 4�j2�i, and
h6�j�1� 2�j3�i. We have checked numerically that these
singularities cancel between different terms, so that the full
expression is nonsingular. Nevertheless, one might expect
a simpler form with fewer such cancellations. Some such
cancellations have already been carried out to arrive at
Eq. (6.7); besides the cancellation involving the unusual
factor (6.6), individual recursive and overlap diagrams also
contained factors of 1=h5�j�3� 4�j2�i2, as in Eq. (6.4).
These squared factors were eliminated using spinor-
product identities to combine and rearrange terms.

Removing all of the factors of the form ha�j�b� c�jd�i
is unlikely to be desirable; after all, the simple forms of tree
amplitudes found in Refs. [9,19,20,41,42] are simpler than
previous forms precisely because of the presence of some
such denominators. However, the denominators present in
Eq. (6.7) occur in a rather asymmetric fashion, preventing
the flip symmetry of the expression—symmetry under

1$ 2; 3$ 6; 4$ 5 (6.8)

—from being manifest. Indeed, the factor h5�j�3� 4�j2�i
occurs in the denominator many times, yet its image under
the flip (6.8), h4�j�5� 6�j1�i never appears.
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We have carried out several numerical checks of
Eq. (4.28), after inserting into it the value of R̂6 from
Eq. (6.7). Besides verifying the absence of any spurious
singularities, we checked that the amplitude satisfies the
nonmanifest flip symmetry (6.8). We checked the multi-
particle factorization in the s123 and s234 channels. (The
s612 channel is related trivially to the s123channel by the flip
symmetry.) We also confirmed the proper collinear behav-
ior, for real momenta, in all the independent channels s12,
s23, s34 and s45. These checks leave little doubt that
Eq. (6.7) is the correct expression.

Using our expression for the six-point amplitude as well
as the seven-point cut terms from ref. [4] as input, it is then
straightforward to evaluate the complete seven-point
scalar-loop amplitude, A�0�7;1�1

�; 2�; 3�; 4�; 5�; 6�; 7��.
The needed recursive diagrams are displayed in Fig. 7,
while the overlap diagrams are given in Fig. 8. We have
evaluated these diagrams and have confirmed that the
resulting expression for the amplitude has all the proper
factorization properties in real momenta, and that all spu-
rious singularities cancel. Combining this result with the
known N � 4 [3] and N � 1 [4] supersymmetric am-
plitudes, yields a complete solution for the seven-gluon
QCD amplitude with the same helicity configuration.
Although its construction is entirely straightforward, and
parallels the six-point case, the seven-point result is rather
lengthy, so we refrain from presenting it here. Since the
original version of this paper appeared, the result has been
presented [62], as a member of the infinite series of n-point
amplitudes AQCD

n;1 �1
�; 2�; 3�; 4�; . . . ; n��, constructed us-

ing the methods of the present paper.
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These examples demonstrate the power of the
factorization-bootstrap approach, systematized here, as a
complement to the unitarity-based method, for evaluating
complete QCD amplitudes, including purely rational parts.
The required diagrams are surprisingly simple to evaluate,
not really more involved than tree-level diagrams. It is
striking that what had previously been the most difficult
part of a one-loop QCD calculation has been reduced to a
simple computation.
VII. CONCLUSIONS

In this paper we presented a new method for computing
the rational functions in nonsupersymmetric gauge theory
loop amplitudes. The unitarity method [3–7] has already
proven itself to be an effective means for obtaining the cut-
containing terms in amplitutes, so we may rely on this
approach for obtaining such terms. To obtain the rational
terms we took a recursive approach, systematizing an ear-
lier unitarity-factorization bootstrap [2].

Our systematic loop-level recursion uses the proof of
tree-level on-shell recursion relations by Britto, Cachazo,
Feng and Witten [10] as a starting point. There are, how-
ever, a number of issues and subtleties that arise, which are
not present at tree level. The most obvious issue is that the
065013
tree-level proof relies on the amplitudes having only sim-
ple poles and no branch cuts; loop amplitudes in general
contain branch cuts. Furthermore, as we have already
discussed in Refs. [11,12], there are subtleties resulting
from the differences of one-loop factorizations in complex
momenta as compared to those in real momenta. These
differences have important effects, unlike the tree-level
case. At loop-level there are also spurious poles present,
which would interfere with a naive recursion on the ra-
tional terms. In this paper we showed how to overcome
these potential difficulties.

As an illustrative example of our approach, we described
in some detail a computation of the rational terms appear-
ing in the five-gluon QCD amplitudes with nearest-
neighboring negative helicities in the color ordering, re-
producing the results [47] of the string-based calculation of
the same amplitudes. Although we did not describe it in
any detail, we also confirmed that our new approach prop-
erly reproduces the other independent color-ordered five-
gluon helicity amplitude.

Next we computed the six- and seven-point QCD am-
plitudes AQCD

6;1 �1
�; 2�; 3�; 4�; 5�; 6�� and

AQCD
7;1 �1

�; 2�; 3�; 4�; 5�; 6�; 7��. The rational terms of
these amplitudes had not been computed previously. Our
computations of these terms use as input lower-point am-
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plitudes [11,47,57–59], and the cut-containing terms of the
amplitudes under consideration, obtained previously via
the unitarity method [4]. For the six-point case we pre-
sented a compact expression for the complete amplitude.

Another possible approach to obtaining complete loop
amplitudes is via D-dimensional unitarity [5,13,14,17]. It
would be worthwhile to corroborate the results of this
paper starting from the known D-dimensional tree ampli-
tudes [5,13,27]. It would be also be desirable to develop a
first-principles understanding of loop-level factorization
with complex momenta, instead of the heuristic one of
Refs. [11,12].

The computation of rational function terms has been a
bottleneck for calculating one-loop amplitudes in nonsu-
persymmetric gauge theories with six or more external
particles. We expect the technique discussed in this paper
to apply to all one-loop multiparton amplitudes in QCD
with massless quarks. It should also work, without modi-
fication, for amplitudes that contain external massive vec-
065013
tor bosons, or Higgs bosons (in the limit of a large top-
quark mass), in addition to massless partons. Finally, we
expect suitable modifications of the method to be appli-
cable to processes with massive particles propagating in
the loop.
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Phys. B420, 550 (1994); S. Catani, Phys. Lett. B 427,
161 (1998).

[47] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys. Rev. Lett.
70, 2677 (1993).

[48] F. A. Berends, R. Kleiss, P. De Causmaecker, R.
Gastmans, and T. T. Wu, Phys. Lett. B 103B, 124
(1981); P. De Causmaecker, R. Gastmans, W. Troost,
and T. T. Wu, Nucl. Phys. B206, 53 (1982); Z. Xu, D. H.
Zhang, and L. Chang, Report No. TUTP-84/3-
TSINGHUA; R. Kleiss and W. J. Stirling, Nucl. Phys.
B262, 235 (1985); J. F. Gunion and Z. Kunszt, Phys.
Lett. 161B, 333 (1985); Z. Xu, D. H. Zhang, and L.
Chang, Nucl. Phys. B291, 392 (1987).

[49] M. L. Mangano and S. J. Parke, Phys. Rep. 200, 301
(1991); L. J. Dixon, in QCD & Beyond: Proceedings of
TASI ’95, edited by D. E. Soper (World Scientific,
Singapore, 1996).

[50] R. Penrose, J. Math. Phys. (N.Y.) 8, 345 (1967).
[51] J. E. Paton and H. M. Chan, Nucl. Phys. B10, 516 (1969);
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