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Thermal operator representation of finite temperature graphs. II.
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Using the mixed space representation, we extend our earlier analysis to the case of Dirac and gauge
fields and show that in the absence of a chemical potential, the finite temperature Feynman diagrams can
be related to the corresponding zero temperature graphs through a thermal operator. At nonzero chemical
potential we show explicitly in the case of the fermion self-energy that such a factorization is violated
because of the presence of a singular contact term. Such a temperature dependent term which arises only
at finite density and has a quadratic mass singularity cannot be related, through a regular thermal operator,
to the fermion self-energy at zero temperature which is infrared finite. Furthermore, we show that the
thermal radiative corrections at finite density have a screening effect for the chemical potential leading to
a finite renormalization of the potential.

DOI: 10.1103/PhysRevD.73.065010 PACS numbers: 11.10.Wx
I. INTRODUCTION

In an earlier paper [1] (referred to as Paper I), we gave a
simple derivation of an interesting relation [2–4] between
finite temperature Feynman graphs and the corresponding
zero temperature graphs within the context of a scalar field
theory in real as well as in imaginary time formalisms. We
showed that the derivation is particularly simple if one uses
a mixed space representation of the graphs in the �t; ~p�
space [5–7] and the proof of the correspondence is par-
ticularly simple in the closed time path formalism [5,8,9].
Explicitly, for any N-point graph (at any loop) in a scalar
field theory at finite temperature, the relation can be written
as

��T�N �
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p��
�T�
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
�0�
N ; (1)

where

O �T� �
YI
i�1

�1� ni�1� Si��; (2)

with Ei �
�����������������
~k2
�m2

p
, ni � n�Ei� denoting the Bose-

Einstein distribution function associated with the internal
propagators and Si � S�Ei� represents a reflection operator
that changes Ei !�Ei. In (1), I characterizes the number
of internal propagators, V the total number of vertices in
the graph (with the usual relation for the number of loops
L � I � V � 1) and ��3�v �k; p� enforces the conservation of
momentum at the vertex v. We denote the internal and the
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external three momenta of a graph generically by ~k, ~p
respectively. Furthermore, ��T�N represents the integrand
of the finite temperature graph (after the internal time
coordinates have been integrated in the mixed space) so
that it has the dependence

��T�N � ��T�N �T; ~ki; t��; (3)

where t�, � � 1; 2; . . . ; N denote the external time coor-
dinates of the graph while ��0�N is the integrand of the same
graph at zero temperature (with the internal time coordi-
nates integrated). The operator (2) relating the integrands
of the two graphs was termed the thermal operator and the
most important property of this operator is that it is inde-
pendent of time coordinates and carries the entire tempera-
ture dependence of the (finite temperature) graph. This
interesting result is calculationally quite useful and allows
us to study directly many questions of interest at finite
temperature such as Ward identities and analyticity [10–
12]. In Paper I, we had shown that this simple relation
arises as a consequence of the factorization of the finite
temperature propagator in the scalar field theory into a
basic thermal operator acting on the zero temperature
propagator and had studied various properties associated
with this thermal operator. In particular, we had shown that
the basic thermal operator for the propagator corresponds
to a projection operator that projects onto the space of
periodic functions. (We recall that while the finite tem-
perature propagator for the scalar field satisfies periodic
conditions following from the Kubo-Martin-Schwinger
condition [13], the zero temperature propagator does
not.) For a complex scalar field with a chemical potential,
on the other hand, we showed that the basic thermal
operator is much more complex involving time derivative
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terms. In this case, we could not give a general proof of a
thermal operator representation such as (1) although we
showed, for specific complicated graphs, that a nontrivial
factorization nonetheless arises.

In this paper, we extend our analysis in Paper I to
theories involving fermions as well as gauge theories.
The analysis for gauge theories is particularly of interest
since the interaction terms (non-Abelian three point inter-
action as well as the interaction of the ghost fields) involve
derivative terms. We find in all cases that if there is no
chemical potential present, a thermal operator representa-
tion for finite temperature graphs naturally follows. On the
other hand, for a fermion with a chemical potential, as in
the case of the complex scalar field discussed in Paper I, the
basic thermal operator is complicated involving time de-
rivatives and we find that a thermal operator representation
for graphs fails. This failure is traced to the fact that in such
theories, the self-energy develops a quadratic mass singu-
larity because of radiative corrections at finite density. The
paper is organized as follows. In Sec. II, we discuss fer-
mion theories at finite temperature (without a chemical
potential) and show that the basic factorization of the
thermal propagator arises much as in the scalar field theory.
The proof of the thermal operator representation for an
interacting theory involving scalar and fermion fields is
direct in the closed time path formalism which we discuss.
In Sec. III, this analysis is extended to gauge theories
where we show that the basic factorization of the thermal
propagator leads to a thermal operator representation for
any graph at finite temperature in spite of interaction terms
involving derivatives. The thermal operator representation
is explicitly worked out for the contribution of the ghost
loop to the self-energy of the gauge field. In Sec. IV, we
study an interacting theory of gauge fields and fermions
with a chemical potential (for example, QED at finite
density) and show that in this case the basic factorization
of the thermal propagator for the fermion involves a de-
pendence on time derivatives. In this case, the basic ther-
mal operator can also be written equivalently as one
without a time derivative but with a matrix structure. We
work out the fermion self-energy in this theory explicitly
and show that a thermal operator representation fails. We
trace this failure in Sec. V to the fact that the quantum
corrections in this theory lead to a quadratic mass singu-
larity at finite density. By analyzing the pole of the fermion
propagator in this theory, we show that the chemical po-
tential has a finite renormalization due to radiative correc-
tions and we discuss some interesting aspects of this
phenomenon (see, for example, Ref. [14] for a discussion
from the point of view of the renormalization group evo-
lution). We conclude with a brief summary in Sec. VI. In
Appendix A, we study the 0� 1 dimensional Chern-
Simons QED to bring out some interesting features of the
thermal operator representation in lower dimensions while
Appendix B describes briefly the derivation of some of the
formulas used in the text.
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II. FERMIONS (WITHOUT CHEMICAL
POTENTIAL)

In this section, we will study an interacting theory of
scalar and fermion fields at finite temperature (without
chemical potential). As we have shown in Paper I, the
proof of the thermal operator representation for any graph
is direct in the closed time path formalism [5,8,9].
Therefore, for simplicity, we will discuss the theory in
this formalism although everything we say also holds in
the imaginary time formalism. Indeed, in Ref. [3] the
validity of the thermal operator representation has been
shown to hold when there is no chemical potential. Let us
consider the theory described by the Lagrangian density

L � � �i@6 �m� �
1

2
@��@

���
M2

2
�2 � g �  �

�
�
4!
�4: (4)

The factorization of the scalar propagator has already been
discussed in Paper I and we simply recapitulate here the
essential results. In the closed time path formalism, the
propagator has a 2� 2 structure which can be written as

��T��t; E� � O�T�B ��0��t; E�; (5)

where the 2� 2 matrix structure of the propagator is
labeled at any temperature as

��T��t; E� � ��T����t; E� ��T����t; E�
��T����t; E� ��T����t; E�

 !
; (6)

and the basic thermal operator is the scalar operator

O �T�
B �E� � 1� nB�E��1� S�E��; (7)

where

nB�E� �
1

eE=T � 1
; E � E�M� �

�������������������
~p2 �M2

q
: (8)

The components of the propagator at zero temperature
have the following explicit forms in the mixed space:

��0����t; E� � L���
1

2E
�	�t�e�i�E�i��t � 	��t�ei�E�i��t�;

��0����t; E� �
1

2E
eiEt; ��0����t; E� �

1

2E
e�iEt;

��0����t; E� � L���
1

2E
�	�t�ei�E�i��t � 	��t�e�i�E�i��t�;

(9)

where the operator L��� takes the limit �! 0.
For fermions, on the other hand, we know that the

components of the 2� 2 matrix propagator (in the closed
time path formalism) at finite temperature have the mo-
mentum space representation
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FIG. 1. A typical one-loop diagram involving fermions (solid
lines) and scalar fields (dashed lines). For simplicity, the vertices
are all assumed to be of ‘‘�’’ type.
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S�T��p� � S�T����p� S�T����p�
S�T����p� S�T����p�

 !
; (10)

with [L��� is the operator taking the limit �! 0 introduced
earlier]

S�T����p� � �p6 �m�
�
L���

i

p2 �m2 � i�

� 2�nF�jp0j���p2 �m2�

�
;

S�T����p� � 2��p6 �m��	��p0� � nF�jp0j����p
2 �m2�;

S�T����p� � 2��p6 �m��	�p0� � nF�jp0j����p2 �m2�;

S�T����p� � �p6 �m�
�
�L���

i

p2 �m2 � i�

� 2�nF�jp0j���p2 �m2�

�
: (11)

Here nF�jp0j� represents the Fermi-Dirac distribution func-
tion

nF�jp0j� �
1

ejp0j=T � 1
; (12)

and the temperature dependent terms reflect the antiperio-
dicity condition satisfied by the fermion propagator.

The components of the fermion propagator in (11) can
be Fourier transformed in the energy variable to give

S�T��t; ~p� �
Z 1
�1

dp0

2�
e�ip0tS�T��p� � O�T�F �E�S

�0��t; ~p�;

(13)

where E � E�m� �
������������������
~p2 �m2

p
and

O �T�
F �E� � 1� nF�E��1� S�E��: (14)

The components of the zero temperature propagator have
the explicit forms

S�0����t; ~p� � L���
1

2E
�	�t�A�E�e�i�E�i��t

� 	��t�B�E�ei�E�i��t�;

S�0����t; ~p� �
1

2E
B�E�eiEt; S�0����t; ~p� �

1

2E
A�E�e�iEt;

S�0����t; ~p� � L���
1

2E
�	�t�B�E�ei�E�i��t

� 	��t�A�E�e�i�E�i��t�; (15)

where

A�E� � �0E� ~� 	 ~p�m;

B�E� � ��0E� ~� 	 ~p�m:
(16)

It is worth remarking here that, as in the case of the scalar
065010
propagator, it is easy to verify that the basic thermal
operator in (14) is a projection operator, namely,

�O�T�F �E��
2 � O�T�F �E�; (17)

and in the present case projects onto functions satisfying
antiperiodicity properties.

Thus, we see that in spite of a matrix structure (from the
Dirac gamma matrices) of the fermion propagator, the
thermal propagator factorizes in terms of a basic thermal
operator (14) which is a scalar quantity much like in the
case of the scalar field theory. Furthermore, it is indepen-
dent of the time coordinates and as a result, the thermal
operator representation for any graph can be obtained as
follows. First, let us suppose that we have a graph with only
external vertices (that is, a one-loop graph). A typical
N-vertices graph involving fermion propagators will have
the general form shown in Fig. 1. [The external vertices can
be of ‘‘
’’ type, but we choose all of them to be of ‘‘�’’ for
illustrative purposes only. The same derivation will go
through for vertices of any type since the basic thermal
operators in (7) and (14) are scalar quantities and have the
same form for any component of the propagator.] In this
case, at finite temperature, the value of the graph can be
written as (we set g � 1 � � and ignore all the multi-
plicative factors coming from the vertices for simplicity.
The external momenta are all assumed to be flowing into a
vertex, and the internal momentum ki flows from vertex i
to vertex i� 1 and we identify tN�1 � t1, kN�1 � k1,
pN�1 � p1.)

��T�N �
Z YN

i�1

d3ki
�2��3

�2��3��3��ki � ki�1 � pi�1��
�T�
N ;

(18)

with
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��T�N �
YIF
i�1

S�T����ti � ti�1; ki�
YN

i�IF�1

��T����ti � ti�1; Ei�

�
YIF
i�1

O�T�F �Ei�S
�0�
���ti � ti�1; ki�

�
YN

i�IF�1

O�T�B �Ei��
�0�
���ti � ti�1; Ei�

� O�T�
YIF
i�1

S�0����ti � ti�1; ki� (19)

�
YN

i�IF�1

��0����ti � ti�1; Ei� � O�T���0�N ; (20)

where we have identified the thermal operator for the graph
as

O �T� �
YIF
i�1

O�T�F �Ei�
YN

i�IF�1

O�T�B �Ei�: (21)

The basic thermal operators O�T�B �E�, O
�T�
F �E� are defined in

Eqs. (7) and (14) respectively and we have to remember
that in (21)

Ei �

8><
>:

�����������������
~k2
i �m2

q
for i � 1; 2; . . . ; IF;������������������

~k2
i �M2

q
for i � IF � 1; . . . ; N:

(22)

As a result, we can write

��T�N �
Z YN

i�1

d3ki
�2��3

�2��3��3��ki � ki�1 � pi�1�O
�T���0�N ;

(23)

showing that in this case, the finite temperature graph can
be given a thermal operator representation. Furthermore,
since in the closed time path formalism the range of time
integration at finite temperature continues to be the same as
at zero temperature and since the basic thermal operators
(7) and (14) are independent of time coordinates (so that
they can be taken outside the integral), such a factorization
of any graph with internal time coordinate (that needs to be
integrated over) continues to hold and in general, for any
N-point graph (at any loop) at finite temperature, we have
the thermal operator representation

��T�N �
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
�0�
N ; (24)

where the thermal operator follows from (21) to be

O �T� �
YIF
i�1

O�T�F �Ei�
YI

i�IF�1

O�T�B �Ei�; (25)

with IF, I representing, respectively, the number of internal
065010
fermion propagators and the total number of internal
propagators.
III. GAUGE THEORIES

We have seen thus far that the thermal operator repre-
sentation for any Feynman graph at finite temperature
holds for theories involving scalar and fermion fields
(without a chemical potential). However, physically gauge
theories are more interesting and in this section we will
discuss a non-Abelian gauge theory at finite temperature.
Let us consider a Yang-Mills theory [where the gauge
fields belong to SU�n�] in the Feynman gauge described
by the Lagrangian density

L � �1
4F

a
�
F�
;a �

1
2�@ 	 A

a�2 � @� �caD�ca; (26)

where a � 1; 2; . . . ; n2 � 1 and (we set the coupling to
unity for simplicity)

D�c
a � @�c

a � fabcAb�c
c;

Fa�
 � @�A
a

 � @
A

a
� � f

abcAb�A
c

:

(27)

In this case, in the closed time path formalism, the gauge
and the ghost propagators at finite temperature have the
momentum space representation

Dab�T�
�
;���p� � ���
�

ab��T����p�;

Dab�T�
�� �p� � �ab��T����p�; �; � � 
;

(28)

where ��T����p� represent the components of a massless
scalar propagator at finite temperature and have the explicit
forms

��T����p� �
�
L���

i

p2 � i�
� 2�nB�jp0j���p2�

�
;

��T����p� � 2��	��p0� � nB�jp0j����p
2�;

��T����p� � 2��	�p0� � nB�jp0j����p
2�;

��T����p� �
�
�L���

i

p2 � i�
� 2�nB�jp0j���p2�

�
;

(29)

where L��� is the limiting operator introduced earlier.
By taking the Fourier transform of (29) with respect to

p0, we can obtain the components of the gauge and the
ghost propagators in the mixed space. We already know
from (6) and (9) that at finite temperature the components
of the scalar propagator factorize in the mixed space
representation. It follows, therefore, that the components
of the gauge and the ghost propagators also factorize in the
mixed space representation as

Dab�T�
�
;���t; ~p� � O�T�B �E�D

�0�
�
;���t; ~p�;

Dab�T�
�� �t; ~p� � O�T�B �E�D

�0�
���t; ~p�;

(30)

where the same basic thermal operator O�T�B �E� leading to a
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FIG. 2. The ghost loop contribution to the self-energy of the
gauge boson. The ‘‘dots’’ represent the action of the time
derivatives.
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factorization of the gauge and the ghost propagators co-
incides with that for a scalar propagator defined in (7) (with
E � j ~pj for a massless field). Furthermore, all the compo-
nents of the propagator factorize in the same manner and
the basic thermal operator is independent of the time
coordinate. It is worth remarking at this point that we
have chosen to work in the Feynman gauge for simplicity.
In any other covariant gauge fixing, only the Lorentz
structure of the gauge propagator generalizes, but the basic
factorization of the thermal propagator continues to hold.
Furthermore, we consider the case of a vanishing chemical
potential here for simplicity.

Since the gauge and the ghost propagators factorize in
the same way as in a scalar field theory, the thermal
operator representation of any graph at finite temperature
would seem obvious. However, unlike in a scalar field
theory, the interactions in a non-Abelian gauge theory
involve time derivatives in the mixed space (for example,
the three gluon vertex or the ghost interaction vertex) and,
in principle, may complicate the general proof of the
thermal operator representation of an arbitrary graph. On
the other hand, we note that the basic thermal operator (7)
in the factorization of the propagators (30) is independent
of time coordinates. As a result, it follows trivially that

@tO
�T�
B �E� � O�T�B �E�@t; (31)

so that the basic thermal operators in a propagator can be
065010
trivially commuted past the derivatives in the vertices
leading to a thermal operator representation of any arbi-
trary graph. Let us illustrate this with the example of the
one-loop graph (see Fig. 2) depicting the ghost contribu-
tion to the gauge self-energy. In this case, the graph can be
written as (we suppress all multiplicative factors associated
with the diagram for simplicity, identify k3 � k1 and look
only at the contributions coming from a time derivative in
the vertex which may present a challenge to a thermal
operator representation)
�ab�T�2 �
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1��
ab�T�
2

�
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�f
apcfbqr@t1D

qc�T�
�� �t2 � t1; E1�@t2D

pr�T�
�� �t1 � t2; E2�

�
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�fapcfbqr�@t1O
�T�
B �E1�D

qc�0�
�� �t2 � t1; E1���@t2O

�T�
B �E2�D

pr�0�
�� �t1 � t2; E2��

�
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�O
�T�
B �E1�O

�T�
B �E2�fapcfbqr@t1D

qc�0�
�� �t2 � t1; E1�@t2D

pr�0�
�� �t1 � t2; E2�

�
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�O
�T�
B �E1�O

�T�
B �E2��

ab�0�
2

�
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�O
�T��ab�0�2 ; (32)
where in the last step we have identified the thermal
operator for the graph to be

O �T� � O�T�B �E1�O
�T�
B �E2�: (33)

Thus, we see that in spite of the presence of time deriva-
tives in the vertices in the mixed space representation, the
thermal operator representation holds simply because the
basic thermal operator commutes with the time derivative
operator. With this observation, it is clear that for an
interacting non-Abelian gauge theory, we can write the
thermal operator representation for any arbitrary N-point
graph at finite temperature (involving gauge and ghost
vertices of 
 type) at any loop as
-5
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�a1			aN�T�
N �

Z YI
i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p��
a1			aN�T�
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
a1			aN�0�
N ;

(34)

where we have suppressed the Lorentz indices associated
with the graph and the thermal operator for the graph has
the form

O �T� �
YI
i�1

O�T�B �Ei�: (35)

In a similar manner, it can be shown that in the absence of
chemical potentials any diagram in an interacting theory
involving gauge fields, fermions and scalar fields at finite
temperature will have a thermal operator representation.
The interesting and challenging case, however, seems to be
in the presence of a chemical potential which we discuss in
the next section.
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IV. FERMIONS WITH A CHEMICAL POTENTIAL

Let us next consider QED at finite temperature and
density. In the Feynman gauge, the theory is described by
the Lagrangian density

L � �1
4F�
F

�
 � � �i 6D�m� � 1
2�@ 	 A�

2 �� � �0 ;

(36)

where � represents the chemical potential associated with
the fermion and the covariant derivative is defined to be

D� � @� � ieA� : (37)

In (36) we have neglected the free Lagrangian density for
the ghosts which is not relevant for our discussions.

As we have argued before, there is no chemical potential
associated with the photon. As a result, the propagator for
the gauge boson in the Feynman gauge will continue to be
what we have discussed in the last section (without any
internal indices). On the other hand, in momentum space in
the closed time path formalism, the components of the
fermion propagator in the presence of a chemical potential
take the forms
S�T;���� �p� � �p6 �m���
0�

�
L���

i

�p0 ���2 � E2 � i�
� 2�nF�sgn�p0 ���p0����p0 ���

2 � E2�

�
;

S�T;���� �p� � 2��p6 �m���0��	��p0 ��� � nF�sgn�p0 ���p0�����p0 ���2 � E2�;

S�T;���� �p� � 2��p6 �m���0��	�p0 ��� � nF�sgn�p0 ���p0�����p0 ���2 � E2�;

S�T;���� �p� � �p6 �m���
0�

�
�L���

i

�p0 ���2 � E2 � i�
� 2�nF�sgn�p0 ���p0����p0 ���

2 � E2�

�
;

(38)

������������������p

where E � ~p2 �m2. Equation (38) clearly reduces to
(11) when � � 0. The Fourier transform of (38) in the
p0 variable leads to the propagator in the mixed space
which can be seen to have a nontrivial factorization (as is
the case with the complex scalar field discussed in Ref. [1])

S�T;���� �t; ~p� � ei�tO�T;��F �E�S�0;0��� �t; ~p�; (39)

where, as before, �;� � 
 and the basic thermal operator
in (39) has the form

O�T;��F �E� � 1�
n�F � n

�
F

2
�1� S�E��

�
n�F � n

�
F

2
�1� S�E��

i@t
E
; (40)

where we have defined

n
F � nF�E
��; (41)

and S�0;0��� �t; ~p� represent the components of the fermion
propagator at zero temperature and zero chemical potential
given in (15).

We note that the structure of the basic thermal operator
in (40) is quite analogous to the case of the complex scalar
field with a chemical potential discussed in Ref. [1]. This is
a scalar operator which involves a time derivative operator
(it does not depend on the time coordinate). Unlike in the
case of the scalar field, however, in this case, we can
equivalently define a basic thermal operator which is in-
dependent of the time derivative, but instead is a matrix (in
the Dirac space), namely, in this case we can also write

S�T;���� �t; ~p� � ei�t ~O�T;��F S�0;0��� �t; ~p�; (42)

where

~O
�T;��
F � 1� �n�F A�E� � n

�
F B�E��

�0

2E
�1� S�E��; (43)

where A�E�, B�E� are matrices defined in (16). The two
forms of the basic thermal operator are related through the
first order equation satisfied by the fermion propagator in
the mixed space. However, the scalar form of the basic
thermal operator (in spite of the time derivative operator) is
easier to use than the matrix one and we will carry out our
discussions in terms of the factorization (39). We note that
both forms of the basic thermal operator in (40) and (43)
can be checked to be projection operators, namely,
-6
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�O�T;��F �2 � O�T;��F ; � ~O�T;��F �2 � ~O�T;��F ; (44)

and enforce the necessary antiperiodicity in the present
case.

As in the case of the complex scalar field with a chemi-
cal potential (in Ref. [1]), here we note that the presence of
the time derivative term in the basic thermal operator (40)
makes it difficult to give a general proof of a thermal
operator representation for any arbitrary graph, particularly
in cases involving internal time coordinates which are
integrated over. In the scalar theory, we had shown in a
specific complicated graph that a (nontrivial) thermal op-
erator representation results in spite of the presence of the
time derivative operator and this led to the hope that a
thermal operator representation may result in general. In
the fermionic theory, we will show through an explicit
calculation that the thermal operator representation fails
in the presence of a chemical potential and we will trace
this failure (in the next section) to a renormalization of the
chemical potential because of radiative corrections. For the
purpose of explicit calculations, we will use the imaginary
time formalism [5,15,16] where there is no doubling of
fields. In this case, the factorization of the thermal propa-
gator (39) can be written as

S�T;���; ~p� � e�O�T;��F �E�S�0;0��; ~p�; (45)

where O�T;��F �E� is the rotation of the operator in (40) to
imaginary time

O�T;��F �E� � 1�
n�F � n

�
F

2
�1� S�E��

�
n�F � n

�
F

2
�1� S�E��

@
E
; (46)

and the propagator at zero temperature in the absence of a
chemical potential has the form

S�0;0��; ~p� �
1

2E
�	��A�E�e�E � 	���B�E�eE�: (47)

Here A�E�, B�E� denote the Euclidean rotation of the

THERMAL OPERATOR REPRESENTATION OF . . . II.
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matrices in (16), namely,

A�E� � i�0E� ~� 	 ~p�m;

B�E� � �i�0E� ~� 	 ~p�m:
(48)

Let us next analyze the one-loop fermion self-energy
graph at finite temperature and density in QED [see
Lagrangian density (36)] at one loop in the imaginary
time formalism. The two point function in Fig. 3 can be
explicitly evaluated and leads to (we note that the fermion
self-energy is simply the two point function with momen-
tum conserving delta functions factored out and we iden-
tify k3 � k1 in the derivation below)

��T;��2 �
Z Y2

i�1

d3ki
�2��3

�2��3�3�ki � pi � ki�1�~�
�T;��
2

� �2��3�3�p1 � p2�
Z d3k

�2��3
~��T;��2 ; (49)

where we have identified the integrand with ~��T;��2 (to avoid
confusion with the Dirac gamma matrices) and have car-
ried out the integration over ~k2 using one of the delta
functions (and have identified ~k1 � ~k). The integrand has
the explicit form
~��T;��2 � �e2��S�T;���� 0; ~k2���D�T��� 0; E1�

� �e2

�
e���

0�O�T�B �E1�
�O�T;��F �E2����S

�0;0��� 0; ~k2���D
�0��� 0; E1�� �

2i�n�F �E2� � n�F �E2���0

E2
1 � E

2
2

��� 0�
�

� e���
0�O�T�B �E1�

�O�T;��F �E1; E2�~�
�0;0�
2 �

2ie2�n�F �E2� � n
�
F �E2���0

E2
1 � E

2
2

��� 0�; (50)
where the modified fermion operator �O�T;��F is similar to
the one in (46) except that it involves @=�E1 � E2� and

E1 � j ~kj; E2 �

������������������������������
� ~k� ~p�2 �m2

q
;

~p1 � ~p; ~k2 � ~k� ~p:
(51)
Thus, we see explicitly from (50) that, unlike the case of
the complex scalar field discussed in Ref. [1], here a
thermal operator representation for the fermion two point
function at one loop breaks down in the presence of a
chemical potential. The additional term leading to the
breakdown of the thermal operator representation is a
-7
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contact term which vanishes for �! 0 since

lim
�!0
�n�F �E2� � n�F �E2�� ! 0: (52)

V. RENORMALIZATION OF CHEMICAL
POTENTIAL

Let us note that the chemical potential can be thought of
as a constant background electrostatic potential. This is
particularly clear if we note that the free part of the fermion
065010
Lagrangian density in (36) can be written in the Euclidean
space as

L f;free � � ��0�@ ��� � ~� 	 ~r� �m �  : (53)

As a result of this structure of the theory, one can derive
certain identities as follows. Adding the sources for the
fields, we can write the generating functional for the theory
in (36) (in imaginary time) as (we set @ � 1)
Z��; J�; �; ��� � e�W��;J�;�; ��� �
Z

DA�D � D e�
R

1=T

0
d
R
d3x�L�J�A��i� �� � � ���: (54)
This, in turn, leads to the identity

@W
@�
�
Z 1=T

0
d

Z
d3x

�
i
�W
���x�

�0
�W
� ���x�

� iTr�0
�2W

���x�� ���x�

�
: (55)

By taking the second order derivative with respect to �; ��
and setting all sources to zero, this leads to the identity
(when we Fourier transform the spatial coordinates)

@S�T;���1 � 2; ~p�
@�

� i
Z 1=T

0
dS�T;���1 � ; ~p�

� �0S
�T;���� 2; ~p�: (56)

Such an identity has already proved quite useful in the
solution of the 0� 1 dimensional Chern-Simons QED [7]
and with the explicit form of the fermion propagator in (45)
it can be checked that this is true. It also follows from (56)
that

1

n!

@nS�T;��

@�n � �i�nS�T;���0 	 	 	 S
�T;���0S

�T;��; (57)

where there are n insertions of �0 on the right-hand side
and we have used a compact notation suppressing the
internal time integrations.

Using the above result, we can see that a correction to
the chemical potential may arise from successive insertions
of the operator ���0 in the fermion propagator S�T;��. The
resulting corrected propagator S�T;����� is then obtained
by summing the geometric series

X1
n�0

�i�nS�T;������0� 	 	 	 S�T;������0�S�T;��

�
X1
n�0

�i�n
����n

n!

@nS�T;��

@�n � S�T;�����: (58)

Thus, the effect of such insertions is to shift the chemical
potential to an effective value given by�� ��. In order to
evaluate this shift (finite renormalization) we have to per-
form a more systematic analysis of the fermion self-energy.
To this end, let us calculate the complete self-energy in
momentum space [5] [namely, Fourier transform (49) in
the time variable and factor out overall energy-momentum
conserving delta functions]

��T;���p� �
1

2

Z 1=T

�1=T
deip0��T;���; ~p�: (59)

A direct evaluation yields

��T;���p� � �
1

2

Z d3k

�2��3
e2

4E1E2

�

�
�A
�
�1� nB�E1� � n

�
F �E2��

E1 � E2 � �ip0 ���

�
�nB�E1� � n

�
F �E2��

E1 � E2 � �ip0 ���

�

� �B
�
�1� nB�E1� � n�F �E2��

E1 � E2 � �ip0 ���

�
�nB�E1� � n

�
F �E2��

E1 � E2 � �ip0 ���

��
; (60)

where we have identified

�A � 2�i�0E2 � ~� 	 ~k2 � 2m�;

�B � 2��i�0E2 � ~� 	 ~k2 � 2m�:
(61)

It is clear from the explicit form of (60) that the self-energy
(in fact, any thermodynamic function) is a function of
�ip0 ��;�� where the extra � dependence comes from
the explicit dependence of the fermion distribution func-
tions on the chemical potential. The analytic continuation
of the self-energy can be carried out appropriately [17]
through

iP0 � ip0 ��! P0 � �p0 ����1� i��; (62)

say for the time ordered amplitude. We recognize from
(60) that the real part of the coefficient of the �0 term in
(60) coincides exactly with the coefficient of the contact
term in the mixed space in (50) when p0 �� � 0.
-8
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In fact, let us note that after analytic continuation, we can write the coefficient of the �0 term in (60) as

1

4
Tr�0��T;���p� � �

e2

2

Z d3k

�2��3
1

E1

��
1

E1 � E2 � P0
�

1

E1 � E2 � P0
� nB�E1�

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

�
�
n�F �E2� � n�F �E2�

2

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

��
�
n�F �E2� � n�F �E2�

2

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

�
1

E1 � E2 � P0
�

1

E1 � E2 � P0

��
: (63)
Let us denote the terms involving the braces as �1 and the
terms in the last parenthesis as �2 (after integration) so that
we can write

1
4 Tr�0��T;���p� � �1�P0; ~p;�� ��2�P0; ~p;��: (64)

From the explicit form of the terms in (63), we note that
under P0 ! �P0, �! ��, both �1;�2 change sign.
However, since �1 is manifestly symmetric under �!
��, it is antisymmetric under P0 ! �P0 and, conse-
quently, vanishes when P0 � 0. On the other hand, �2 is
antisymmetric under �! �� and, consequently, is sym-
metric under P0 ! �P0 and does not vanish when P0 � 0
and, in fact, yields the contact term in (50). Using the
results in Appendix B, we can evaluate �2 explicitly in
the high T limit and when ~p � 0, it has the form (for T �
m)

�2�P0 � 0; ~p � 0� ’ �
e2���2T2 ��2�

6�2m2 : (65)

This has a quadratic mass singularity that arises only when
� � 0 (and, therefore, at finite charge density). The self-
energy at zero temperature and chemical potential on the
other hand, is infrared finite [18] (logarithmic infrared
divergences only appear if one expands around the singular
point p2 � m2). Consequently, the singular term (65) can-
not be related to the zero temperature fermion self-energy
through a regular thermal operator. We believe that the
presence of this strongly divergent infrared behavior is
responsible for the failure of the thermal operator repre-
sentation in the case of a nonvanishing chemical potential.

To understand the renormalization of the chemical po-
tential, we have to analyze the poles of the fermion propa-
gator. We note that with the self-energy corrections, the
complete two point function at one loop (in Minkowski
space) can be written as

i�S�T;����1�p� � p6 �m���0 � ��p; T;��; (66)

where � can only be calculated in some limit such as the
high T limit. The analysis of the poles of the propagator in
this limit, even in the absence of a chemical potential, is
highly nontrivial. It is known in the absence of a chemical
potential [16] that in the leading order at high temperature
065010
(T � m), the fermion propagator has an absolute pole at
~p � 0, p0 � 
mf where mf � eT=2

���
2
p

represents the
thermal mass of the fermion. For nonzero ~p, the fermion
propagator has only partial poles corresponding to two
quasiparticle modes. Here we will follow the same analysis
restricting ourselves to only the absolute pole in the leading
order at high temperature. Also, we will disregard those
thermal corrections which yield a finite renormalization of
the vacuum fermion mass, because such nonleading terms
are not relevant for the analysis of the renormalization of
the chemical potential. In the leading order at high tem-
perature (T � m), the terms in (60) which are even under
�! �� lead to

�even �
m2
f�

0

2p
ln
P0 � p
P0 � p

�
m2
f ~� 	 p̂

p

�
1�

P0

2p
ln
P0 � p
P0 � p

�
;

(67)

where we have defined p � j ~pj and p̂ denotes the unit
vector along ~p. In the presence of a chemical potential we
have

m2
f �

e2

8

�
T2 �

�2

�2

�
; (68)

which is well known (see, for example, [16]). The non-
analytic behavior of �even at P0 � 0, p � 0 is obvious
from (67). We also note that all the ~� 	 p̂ terms in (67)
vanish in the limit p � 0 (basically because in this case,
there is no direction available to contract the gamma
matrix) so that we can write

�even� ~p � 0� ’
m2
f

P0
�0 � �0�1�P0; ~p � 0�: (69)

The absolute pole in the fermion propagator continues to
be at ~p � 0 and at this point, the terms proportional to �0

in (60) which are odd under �!�� yield

�odd � �
e2�P2

0 �m
2��0

2�2

Z 1
0
dkk2 �n�F �k� � n

�
F �k��

4k2P2
0 � �P

2
0 �m

2�2

� �0�2�P0; ~p � 0�: (70)

Using the results in Appendix B, this can be evaluated in
-9
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the high temperature limit and shows that at jP0j � jMj �
eT � m it is well behaved and has the value

�odd�P0 � M; ~p � 0� � �0�2�P0 � M; ~p � 0�

’
e2��0

8�2 : (71)

With these results, the analysis of the pole when ~p � 0
becomes quite straightforward. We note from (66) that
when ~p � 0, the propagator will have a pole provided

�0P0 �m� �even� ~p � 0� ��odd� ~p � 0� � 0: (72)

We note from (68) and (69) that at very high temperature
mf � m so that the fermion mass may be neglected in the
above equation. All the other terms are proportional to �0.
If we expand �odd around P0 � M, the equation (72) takes
the form

�0

�
P0�

m2
f

P0
�
e2�

8�2

�
��P0�M��0odd�P0 �M�� 	 	 	 � 0:

(73)

Here we have used (71) and �0odd denotes the derivative of
�odd with respect to P0. The root of this equation and,
therefore, the location of the pole is given by

P0 � M �
e2�

16�2 
mf

�
1�

e2�2

32�2��2T2 ��2�

�
1=2
;

(74)

which can be equivalently written as

P0 �
e2�

16�2 � 
mf

�
1�

e2�2

32�2��2T2 ��2�

�
1=2
: (75)

To the order that we are working, this can be simplified to
give the location of the pole at

p0 ��
�
1�

e2

16�2

�
� 
mf; (76)

or

p0 ��R � 

e

2
���
2
p

�
T2 �

�2

�2

�
1=2
:

Here we have identified

�R � �
�
1�

e2

16�2

�
; (77)

which can be interpreted as the renormalized chemical
potential due to the radiative corrections of the theory.
Since it is associated with a physical pole of the propaga-
tor, we expect this result to be gauge independent which we
have explicitly checked. Such a finite renormalization of
the chemical potential has the effect of screening the
chemical potential because of thermal interactions at a
finite density. This is consistent with our earlier observa-
065010
tion that the chemical potential can be thought of as a
constant Abelian electrostatic potential and Abelian gauge
fields lead to a screening effect.

VI. SUMMARY

In this paper, we have extended our analysis of the
thermal operator representation for Feynman graphs at
finite temperature to theories involving fermions as well
as gauge fields. We have shown that as long as there is no
chemical potential, the thermal operator representation
holds. We have also discussed in an appendix how a
thermal operator representation naturally arises in 0� 1
dimensional Chern-Simons QED. However, in QED at
finite temperature and density (nonzero chemical poten-
tial), we have shown that such a factorization is violated
because of the appearance of singular contact terms. This is
explicitly worked out in the case of the fermion self-energy
at one loop. The reason for this failure of the thermal
operator representation is traced to the presence of a quad-
ratically divergent thermal infrared singularity in the self-
energy for a nonzero chemical potential (finite density). In
this case, we find that the chemical potential undergoes a
finite renormalization due to radiative corrections. The
renormalized chemical potential is determined from an
analysis of the pole of the fermion propagator at high
temperature and shows that the radiative corrections lead
to a screening of the chemical potential. This is argued to
be consistent with the observation that a chemical potential
can be thought of as a constant electrostatic potential and
screening is a phenomenon associated with Abelian gauge
fields.

In conclusion, we would like to point out that the lack of
a complete factorization in the presence of a chemical
potential may be related to our choice of generalizing the
basic thermal operator in terms of the simple reflection
operator S�E�. Finding an alternate basic thermal operator
possibly dependent on other nontrivial operators and de-
termining its consequences on factorization is an interest-
ing issue which is presently under study.
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APPENDIX A: 0� 1 DIMENSIONAL
CHERN-SIMONS QED

As we have shown in Ref. [1] as well as in this paper, a
thermal operator representation for any finite temperature
graph holds in any theory in the absence of chemical
potential. The reflection operator S�E� in the thermal op-
erator simply changes E! �E and in this way incorpo-
rates the negative energy contributions into the graph.
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FIG. 4. A typical N-point graph in 0� 1 dimensional Chern-
Simons QED.
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Furthermore, the thermal operator is independent of the
time coordinate which plays a significant role in the gen-
eral proof of the thermal operator representation. All of this
is true in higher dimensional field theories. However, in a
0� 1 dimensional field theory (quantum mechanics), the
situation is different because the energy is positive and the
question arises as to whether a thermal operator represen-
tation holds for such a theory as well. Furthermore, as is
well known, in Chern-Simons QED in 0� 1 dimensions
amplitudes beyond the one point function vanish at zero
temperature while all the higher point functions are non-
zero at finite temperature [7]. Therefore, it is interesting to
analyze how the nonzero finite temperature amplitudes in
such a theory can arise from a thermal operator acting on
trivial amplitudes.

Let us recall that the Lagrangian for the 0� 1 dimen-
sional Chern-Simons QED in the Euclidean space is given
by

L � � �@ � iA�m� � i�A; (A1)

where � represents the Chern-Simons coefficient and we
have set the coupling for the gauge field to unity for
simplicity. In this case, the fermion propagator (in the
imaginary time formalism) has the form

S�T;m��� � e�m�	�� � nF�m�� � e�mO�T;m�F ��S�0;0���;

(A2)

where we have identified the basic thermal operator of the
theory with

O �T;m�
F �� � 1� nF�m��1� S���: (A3)

There are two things to note here. First, in the 0� 1
dimensional case, the mass term corresponds to a chemical
potential and second, the basic thermal operator contains a
reflection operator that reflects the time coordinate and,
therefore, is manifestly time dependent. This is quite dif-
ferent from the higher dimensional cases we have studied
where the basic thermal operator is independent of the time
coordinate. In the 0� 1 dimensional theory, on the other
hand, we do not have higher loop diagrams (the photon is
nondynamical) and, consequently, the time dependence of
the basic thermal operator does not pose a problem in
deriving a thermal operator representation for any graph.

For any graph of the form in Fig. 4, we can immediately
write down the thermal operator representation as (using
the identification N�1 � 1 and the fact that the exponen-
tial term around a closed loop vanishes)

��T;m�N � �
�i�N

N!

YN
i�1

S�T;m��i � i�1�

�
YN
i�1

O�T;m�F �i � i�1�

�
�
�i�N

N!

YN
i�1

S�0;0��i � i�1�

�

� O�T;m�F ��0;0�N ; (A4)
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where we have identified

O �T;m�
F �

YN
i�1

O�T;m�F �i � i�1�: (A5)

Indeed we see that formally there is a thermal operator
representation for any graph in the 0� 1 dimensional
Chern-Simons QED.

In practice, on the other hand, we know that in this
theory

��0;0�N � 0; for N  2: (A6)

The way (A4) works in practice is as follows. Let us
identify

i;i�1 � i � i�1; (A7)

and define the amplitude in (A4) in the limiting manner

��T;m�N � lim
N�1!1

O�T;m�F ��0;0�N : (A8)

The limit N�1 ! 1 is assumed to be taken only at the end
of the calculation (after the action of the thermal operator).
With this, let us show explicitly how the correct finite
temperature two point function arises from a trivial zero
temperature amplitude.

We note that the two point amplitude at zero temperature
is given by

��0;0�2 � �
�i�2

2!
S�0;0��t1;2�S

�0;0��t2;3� �
1

2
	�12�	�2;3�:

(A9)

This, of course, vanishes if we identify 3 � 1 (or 2;3 �
2;1). However, we are not supposed to take the limit until
-11
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the thermal operator has acted on the zero temperature
amplitude. Letting the thermal operator act on (A9), we
obtain

��T;m�2 � lim
3!1

O�T;m�F �12�O
�T;m�
F �23�

1
2	�12�	�23�

� lim
3!1

1
2�	�12� � nF�m���	�23� � nF�m��

� �1
2nF�m��1� nF�m��: (A10)

This is indeed the correct finite temperature result (for a
single fermion flavor) [7] and this shows how the thermal
operator correctly reproduces the nonzero finite tempera-
ture amplitudes from trivial zero temperature ones if the
operation is carried out in a limiting manner.
APPENDIX B: DERIVATION OF THE HIGH T
LIMIT

In this Appendix, we evaluate some integrals which are
used in the text. Let us first consider

��0�odd��;m; T� �
Z 1

0
dk�nF�E��� � nF�E����;

(B1)

which is essential for obtaining the high temperature limit

in (71). Here E �
�����������������
~k2
�m2

p
and in the high temperature

limit T � m, it is possible to obtain a closed form ex-
pression for ��0�odd for an arbitrary � in the following way.
Let us expand the integrand in a power series in � and
integrate term by term. Every term in this series is well
behaved and leads to

��0�odd

�
�;
m
T
! 0

�
� 2�

X1
‘�0

�2‘

�2‘� 1�!

@2‘nF�t�

@t2‘

��������t�0

�O
�
m
T

�
: (B2)

Since the distribution function for the fermion can be
expanded as [19]

nF�t� �
1

et � 1
�

1

2

X1
n�0

En�0�
tn

n!
; (B3)

where E�x� represents the Euler polynomials, the expres-
sion (B2) can be evaluated in terms of the Euler functions.
A further simplification results from the fact that

E0�0� � 1; E2‘�0� � 0 for ‘ > 0: (B4)

Consequently, in this limit, (B2) has the form

��0�odd

�
�;
m
T
! 0

�
� ��O

�
m
T

�
: (B5)

This result is true for any value of �.
However, when �

T is also small, one can determine the

next order correction to ��0�odd as follows. We recall an
065010
alternative expansion of the fermion distribution function
as

1

ez � 1
�

1

2
� 2

X1
n�0

z

�2n� 1�2�2 � z2 : (B6)

If we substitute this expansion into (B1) and regularize the
integral by multiplying p�� with �! 0 taken at the end
[20,21], the integrand can be expanded in a power series in
m
T , �T . In this case, each term in the series can be integrated
and the series can be summed to give Riemann’s zeta
function ��2n� 1; 1

2� [19]. A straightforward calculation
leads to

��0�odd

�
�
T
� 1;

m
T
� 1

�
� ���

X1
n�1

��1�n�
�
2n� 1;

1

2

�

�Hn�1�r2�

�
m

2�T

�
2n
; (B7)

where r2 � �2=m2 and Hn�r2� are polynomials of order n
in r2. For example, for the first few we have

H0�r2� � 1; H1�r2� � 1
2�3� 4r2�; . . . : (B8)

In the limit, mT ! 0, we recover (B5).
Using similar techniques, we can furthermore show that

��2�odd��;m; T� �
Z 1

0
dkk2�nF�E��� � nF�E����

�
�
3
��2T2 ��2� �O

�
m
T

�
; (B9)

��1�even��;m; T� �
Z 1

0
dkk�nF�E��� � nF�E����

�
1

2

�
�2T2

3
��2

�
�O

�
m
T

�
: (B10)

One may extend the set of formulas (B5), (B9), and
(B10) with the help of the basic integral:

I�p; u� �
Z 1

0

xp

ex�u � 1
dx � ���p� 1�Lip�1��e

u�;

(B11)

which can be obtained by expanding the integrand in
powers of eu and then integrating term by term. Lin�z� is
the polylogarithm function, which is the analytic continu-
ation to the whole complex z plane of the series (valid for
n  1 and jzj< 1)

Lin�z� �
X1
k�1

zk

kn
:

Using a generalization of the method employed by Haber
and Weldon in Appendix A of Ref. [21], one can find a
power series expansion of the function Lip�1��eu�, lead-
ing to
-12
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I�p; u� � ��p� 1�
X1
n�0

�1� 2n�p���p� 1� n�
n!

un;

(B12)

where ��z� is the Riemann zeta function, and where the
singular numerator corresponding to n � p must be inter-
065010
preted as its limiting value, ln2. The formula is valid for all
real values of p >�1. Notice that for integer p the series
in (B12), starting from the power up�2, contains powers of
the same parity only, because the zeta function vanishes at
all negative even integers.
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