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Probing the center-vortex area law in d = 3: The role of inert vortices
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In center-vortex theory, beyond the simplest picture of confinement several conceptual problems arise
that are the subject of this paper. Recall that confinement arises through configuration averaging of phase
factors associated with the gauge center group, raised to powers depending on the total Gauss link number
of a vortex ensemble with a given Wilson loop. The simplest approach to confinement counts this link
number by counting the number of vortices, considered in d = 3 as infinitely long closed self-avoiding
random walks of fixed step length, piercing any surface spanning the Wilson loop. Problems arise because
a given vortex may pierce a given spanning surface several times without being linked or without
contributing a nontrivial phase factor, or it may contribute a nontrivial phase factor appropriate to a
smaller number of pierce points. We estimate the dilution factor «, due to these inert or partially inert
vortices, that reduces the ratio of fundamental string tension K to the areal density p of vortices from the
ratio given by elementary approaches and find @ = 0.6 = 0.1. Then we show how inert vortices resolve
the problem that the link number of a given vortex-Wilson-loop configuration is the same for any spanning
surface of whatever area, yet a unique area (of a minimal surface) appears in the area law. Third, we
discuss semiquantitatively a configuration of two distinct Wilson loops separated by a variable distance,
and show how inert vortices govern the transition between two possible forms of the area law (one at small
loop separation, the other at large), and point out the different behaviors in SU(2) and higher groups,
notably SU(3). The result is a finite-range van der Waals force between the two loops. Finally, in a
problem related to the double-loop problem, we argue that the analogs of inert vortices do not affect the

fact that, in the SU(3) baryonic area law, the mesonic string tension appears.

DOI: 10.1103/PhysRevD.73.065004

L. INTRODUCTION

To some extent, our understanding of area laws in con-
fining gauge theories is based on intuition and plausibility.
Certainly, there can be no doubt that, in the fundamental
representation of SU(N), the expectation value (W) of the
trace of a simple flat Wilson loop I' involves the area A of
the flat surface spanning it and not the area of any other
spanning surface:

wT) = % Trp exp[fr dzMA“(Z):|;

(W) = exp[—KrA]

ey

(Here K is the fundamental string tension, and we use
imaginary anti-Hermitian gauge potentials, incorporating
the gauge coupling g in them.) But, at least in the center-
vortex picture of confinement, it is not always easy to see
how some of these plausible results follow from the basi-
cally simple mechanism of confinement, based on linkages
of vortices with Wilson loops. In this paper we discuss
several confinement puzzles, all of them connected by the
theme of inert vortices. By this we mean vortices that do
not link to Wilson loops in the usual way, but occupy space
that could have been occupied by truly linked vortices. For
brevity we also use this term to refer to partially inert
vortices that are linked, but with a smaller link number
than would naively be expected.
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We seek the effects of inert vortices only for large
Wilson loops, those whose length scales are all large
compared to the fundamental gauge-theory length A. As
the loop scales approach A the effects of inert vortices
either disappear or are substantially modified.

In the center-vortex picture, the area law arises through
group-center phase factors raised to powers depending on
the Gauss link number of the vortex condensate with the
Wilson loop. This link number can be calculated from the
intersections of a vortex with any surface spanning the
Wilson loop. (When we wish to be specific that the surface
in question is the one that appears in the area law, we call it
the Wilson surface; for a flat loop, this is the obvious flat
spanning surface.) To characterize the condensate we will
stick for simplicity to d = 3, although there is no real
qualitative difference between three and four dimensions.
In d = 3, vortices are closed stringlike tubes of chromo-
magnetic flux, a finite fraction of which have infinite
length, and in d = 4 they are closed 2-surfaces, whose
description raises complications. The existence of a vortex
condensate is signaled (in both d = 3 and d = 4) by an
areal density p of vortex pierce points through any large
flat surface. In d = 3 we model the vortices as closed self-
avoiding infinite-length random walks on a cubical lattice
of lattice length A. This model is similar in spirit, if not in
implementation, to the d = 4 models for SU(2) and SU(3)
center vortices given by others [1], for use in lattice com-
putations. However, our random-walk lattice spacing A is
not the same as the lattice spacing of the models of [1],
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which is not fine enough to resolve the nearby reentrant
piercings that are the subject of Sec. II. Our random-walk
lattice is also similar in spirit to the commonly used lattice
picture of center vortices as infinitesimally thick objects,
called P-vortices [2], that live on a lattice dual to the lattice
where Wilson loops live. For P-vortices one interprets A as
essentially the lattice spacing, while for us (see below) A is
a physical quantity, like the areal density p itself. Because
we necessarily make approximations when we attempt to
describe the vortex condensate analytically, it is not ele-
mentary to say precisely what the distance A is. Roughly, it
is the avoidance distance: The distance scale on which a
vortex must avoid a gross incursion on space occupied by
another portion of itself or of another vortex. This is not to
say that vortices cannot overlap to some extent, but overlap
carries an action penalty that, on the average, is changing
exponentially with the distance between the centers of the
vortices. We will see that, in the dilute gas approximation
(DGA) of low density, A drops out of the formula for the
string tension, but this is not so beyond the DGA.

The question of overlap brings up the closely related
question of reconnection ambiguity. Suppose that the
gauge group is SU(2) and that two apparently distinct
vortices each pierce a horizontal Wilson surface once,
and above this surface they completely overlap at an X-
shaped intersection. Because the orientation of the mag-
netic flux in an SU(2) vortex is irrelevant for confinement
via linkages, we can consider the vortices to be unoriented.
Then it is not possible to say whether that X should be
resolved, so to speak, horizontally or vertically into two
vortex lines. If one thinks of them as resolved into two
essentially vertical vortices, one assigns a link number of
one to each of them; but if they are thought of as resolved
into two hairpin-shaped vortices, one of the hairpins does
not pierce the Wilson surface and the other one pierces
twice, but is not linked. In either case, the effect on the
group-center phase factor is the same, because a link
number of two contributes trivially to the Wilson-loop
expectation value. For all other SU(N) the orientation
does matter, and reconnection is subject to the law that
the total oriented chromomagnetic flux of the vortices
entering the reconnection point must be 277 times an
integer. [So for SU(3) two elementary vortices each of
flux +277/3 pointing into the reconnection point can re-
combine into a third, with the same flux pointing in.] But it
is easy to see that in all such cases these reconnection
ambiguities do not affect the total group-center phase
factor of all the vortices involved, except possibly for
edge effects not contributing to the area law. However,
the number of A-squares occupied by reconnected vortices
may differ from the number occupied by the original
vortices, and this can affect certain results. For simplicity,
we will assume in this paper that overlap is strictly forbid-
den and do not discuss reconnection ambiguities any
further.
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For further discussion of the ways vortices can reconnect
in SU(N), and the action penalties thereby arising, see [3].

Even for the archetypical example of a flat Wilson loop
for SU(2), inert vortices are important. In this simple case,
there are many types of inert vortices, including those that
pierce the surface twice within a few characteristic lengths
A, or that pierce it an odd number of times but have link
number less than the number of pierce points. The net
effect of inert vortices for a simple flat Wilson loop is
that the density of linkage differs from the density of
piercing by a factor a, which we call the dilution factor,
lying between zero and one. This factor is a rough but
useful estimate of the various ways in which vortices can
be inert. In Sec. III we estimate that « lies in the range
0.6 = 0.1. In the DGA, the usual result for the SU(2)
fundamental string tension Kp is Kr = 2p; dilution by
inert vortices modifies this to

Kr = 2ap. 2

[For SU(3), the standard DGA gives K = 3p/2; the
diluted DGA is Kr = 3a3p/2, as for SU(2). It may be
that the SU(3) dilution factor a; is not precisely the same
numerically as it is for SU(2), but our estimates are not
accurate enough to see much of a difference. For general
SU(N) there are in principle as many dilution factors as
vortex densities. ]

It would, of course, be good to compare our estimates
with lattice data. Unfortunately, it has turned out [4-6] to
be rather difficult to calculate the density p on the lattice,
for a number of reasons. Among these are the dependence
on gauge of the center-vortex location procedures; effects
of Gribov copies; and finite-size effects. Reference [5]
states that lattice artifacts are so important that these
authors cannot really find a reliable value for p.
However, [6] claims a value of Kx/p of 1.4, which taken
literally might indicate a dilution factor around 0.7, at least
if the DGA is more or less correct. The best way to attack
the numerical estimation of dilution might be to simulate
directly a model of self-avoiding random walks, in the
spirit of [1], rather than to work with QCD itself.

A second major issue arises because link numbers can be
calculated (through Stokes’ theorem) by counting intersec-
tions of vortices with a surface spanning the Wilson loop,
but any spanning surface can be used for the link-number
calculation, not just the surface that ultimately appears in
the area law. So it is not clear what area is to be used in the
area law, nor even why there is a unique area. We discuss
these issues in Sec. IV, showing how unlinked vortices
resolve the paradox of two or more possible areas for a
simple Wilson loop.

The third issue, elaborated in Sec. V, is an interesting
variant on the question of when vortices are linked or not.
This issue was raised before at a qualitative level [7]. We
consider two identical Wilson loops separated by a certain
distance, and ask how the overall VEV of these two loops
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depends on separation. For SU(2) this is a problem some-
what like the corresponding soap-bubble problem, where
there are (at least) two minimal soap films that can appear
for two wire frames close to 1 another. We can think of
each loop as a ¢g meson, and our results indicate a van der
Waals potential between the two loops, which breaks (as
also happens for soap bubbles) at a critical separation
between the loops. Similar but more elaborate results
hold for SU(3).

Finally, in Sec. VI we consider the baryonic area law for
SU(3). This has been explored in center-vortex theory [8],
where it is shown that the area law comes from three
surfaces with quark world lines and a central line as
boundaries. To some extent the baryonic area law seems
to have issues like those of the double Wilson loop in
Sec. V; in particular, there might appear to be correlations
like the van der Waals potential of the two-loop problem
that could modify the accepted baryonic area law.
However, we show that analogs of the inert vortices in
the two-loop problem, which are in fact not inert even
though they are in the same geometry except for orienta-
tion effects, do not affect the fact that the linearly rising
potential for the three quarks has precisely the mesonic
string tension for each of its three sheets. Section VII
contains a summary.

Except for Secs. II and III we use the DGA approxima-
tion to describe our results. But it turns out to be conve-
nient, for these two other sections, to use a standard form
[2] of the area law that contains the DGA as a limiting low-
density case.

I1. BASIC PRINCIPLES FOR THE CENTER-
VORTEX AREA LAW

The center-vortex picture for gauge group SU(N) in-
vokes a vortex condensate. If N > 3 there are N — 1 types
of vortices labeled by an integer k, 1 = k = N — 1 that
gives the vortex magnetic flux in units of 277/N. A vortex
labeled k is the antivortex of the vortex labeled N — k.
These vortices are characterized by an areal density p; =
pn—i for each vortex type. By this areal density we mean
(in all dimensions, not just d = 3) that the average number
of k-vortices that pierce any flat surface of area A is p;A.
There is not much theoretical insight into the values of
these different densities for SU(N) with N = 3. However,
for SU(2) and SU(3) there is only one density, which we
term p, that sets the scale for the string tension [in SU(3)
there are two types of vortices, but one is the antivortex of
the other and they have the same densities]. In this paper
we will only consider gauge groups SU(2) and SU(3).

A condensate of vortices can form only if a finite frac-
tion of them has essentially unbounded length (or an un-
bounded number of steps in the random walks describing
the vortices). Only such vortices, long compared to any
Wilson-loop scale, can contribute to the area law. These
can be linked or not, depending on the circumstances we
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encounter. Finite-length vortices are therefore inert, in our
terminology, and will be accounted for by a renormaliza-
tion factor that we will not attempt to calculate here.

Consider now a simple flat Wilson loop and the flat
surface spanning it. This surface is taken to lie in a plan
of the lattice dual to the vortex lattice and is divided into
squares of this dual lattice; we call these A-squares. Any
such square is pierced by a single vortex with probability
p. This probability is related to the areal density of the
vortex condensate by

p=pA% 3)

the probability that a square is unoccupied is p = 1 — p.
As on the lattice, p can be extracted [2,4—6] from the VEV
of a square Wilson-loop one lattice unit on a side. Denote
this VEV as (W(1 X 1)); then for SU(2)

WAX1))y=p—p; p=41-WAX1)] &

The only difference from the lattice definition is that in
lattice computations the length scale for the Wilson loop is
not a physical quantity A but a lattice spacing, and the
lattice version of p must be scaled via the renormalization
group to find a physical probability, such as used in the
present model [Eq. (3)]. Note that p is bounded by 1/2,
since (W(1 X 1)) lies between 0 and 1. Moreover, note that
the probability p as derived from Eq. (4) is not subject to
dilution, which applies only to large Wilson loops.

The assumption that piercings in different A-squares are
statistically independent leads to the standard argument for
center-vortex confinement, which ignores inert vortices. In
fact, certain mechanisms for inert vortices are fully equiva-
lent to correlation effects between pierce points, as dis-
cussed below. The confining area law (discarding
perimeter effects) for a Wilson loop follows from an en-
semble average of center-group elements. Each of these is

of the form ]_[lZl-L ki , where Z; is an element of the center of
the gauge group as specified by the properties of the ith
vortex (and the group representation of the loop itself). For
example, for the fundamental Wilson loop in SU(2) the
only nontrivial element of the center has Z; = —1. In the
above product, Lk; is the Gauss linking number of this
vortex with the Wilson loop. The Gauss linking number, a
topological quantity, can be written as an intersection
number of the vortex and any surface spanning the
Wilson loop; its (integral) value is independent of the
choice of surface. In the SU(2) case the necessary average
is

<exp[i7rZLk,}>. )

Aside from the assumption of independent A-squares,
the critical assumption for expressing confinement in the
center-vortex picture is that p is the probability that a
vortex is actually linked once to a flat Wilson loop.
When an odd number of vortices is linked once, the
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Wilson loop has value —1 and when an even number is
linked, the value is +1. If the assumption is true, the area
law follows from multiplying the probabilities p — p of
Eq. (4) for all the A-squares of the spanning surface.

Another useful way of expressing this area law is to
write out the combinatorics for vortex occupancy of Ny
sites of a surface spanning a Wilson loop I':

+ M 2 1) e

=[p— pI¥s =[1 —2p/*. (6)

Here the number Ng >> 1 of sites on a given spanning
surface S is Ny = Ag/A%, where the surface has area Ay,
and each term represents the number of ways of arranging
empty and once-filled A-squares.

Next we need to modify the area law for dilution, which
arises from several factors: If a vortex penetrates an even
number 2N, of times, there are N, sites that lead to the unit
phase factor in the Wilson-loop VEV, although these sites
are occupied. In effect, the vortices filling such sites are
inert (although they may, strictly speaking, be linked to the
Wilson-loop topologically). Similarly, if a vortex pene-
trates an odd number (greater than 1) of times it is linked
and gives a nontrivial phase factor, but three or more sites
are occupied, rather than the single site assumed when we
related the string tension and the piercing probability as in
Eq. (6). We will argue in Sec. III B that the diluted form of
the standard equation (6) is

(Wr) = pMs = Ngp™~'p P

(Wry = [1 — 2aps/¥, (7)

yielding a string tension
1
Kr = —pln(l - 2ap). (8)

The DGA approximation is the small-p limit of either
Eq. (6) (undiluted) or of Eq. (8) [diluted; see Eq. (2)].
Note that, while the effect of dilution on the probability
p is simply to renormalize it, the effect of dilution on a
dimensionless quantity such as Kz/p cannot be character-
ized as a renormalization of a dimensionful quantity such
as the density p or the A-square area A”:

KF -
7 = 7 ln(l - 2x)|x:apA2' (9)

Note that in the DGA the string tension depends on only
one of two variables, the physical areal density p, and not
on the length A. Is it possible, then, that A is an unphysical
variable, akin to a lattice spacing? While it might be
possible so to choose A for the P-vortices of lattice simu-
lations [2], whose effective thickness is no more than one
lattice spacing, we will insist on a physical meaning for A.
Evidently beyond the DGA the string tension does depend
on A, as in Eq. (9).

It seems very difficult to resolve dilution problems
completely by analytic methods; the best we can do is to
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give a semiquantitative discussion of how these factors
renormalize downward the linkage probability from p.

III. THE DILUTION FACTOR FOR A FLAT
SURFACE

In this section, dealing with the gauge group SU(2), we
distinguish between the previously introduced probability
p that a vortex pierces a A-square, thus contributing unit
link number, and the density of link number per A-square,
which is what we really need. This density is reduced by
inert-vortex effects. We attempt to capture, in some mean-
field sense, these effects approximately by introducing a
dilution factor « that effectively reduces the pierce proba-
bility p to ap.

We begin by classifying various ways in which vortices
can pierce a spanning surface yet not be linked (in the sense
that they are associated with a trivial phase factor), or are
linked but are to be associated with a reduced density of
linkage numbers. For brevity we refer to all these as inert
vortices.

A. Types of inert vortices

It is useful to distinguish three types of inert vortices;
only types II and III need detailed discussion. Type I
vortices have finite length, and correspond in some sense
to localized particles. The vortex condensate may have
some of these, but they cannot explain confinement, since
for large Wilson loops those that are linked contribute only
to subarea effects such as perimeter terms in the VEV.
Presumably the effect of such vortices is essentially to
renormalize the areal density of vortices of unbounded
length. We will not discuss such finite-length vortices
any further, so from now on we are only concerned with
the issue of vortices much longer than any Wilson-loop
scale, and the extent to which these are or are not inert.

The distinction between the remaining two types of long
vortices is this. Type II vortices exhibit what we will call
local return, by which we mean that a vortex, however
long, penetrating a localized flat surface has its highest
probability of returning to that surface after only a few
more steps of the random walk. This probability is not to be
confused with the probability that a random walk will be
near to where it has been after a large number N, of steps;

this probability decreases like Ny d/ 2, where d is the di-
mension of space-time (see the Appendix). For the present
section, dealing with a flat spanning surface, this type is
important, but once the renormalization of p has been
made, they are not very important in the further applica-
tions of Secs. IV and V.

The essence of the type II vortices is that they lead to
relatively short-range correlations between vortex pierc-
ings: Once a vortex has pierced a surface for the first time,
it is more likely that there will be a nearby piercing,
coming from the same vortex. In this sense, the statistics
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of pierce points in the Wilson surface show correlations
consistent with an attraction between pierce points,
although this need not be associated with any physical
attraction mechanism between vortices. Such short-range
attractive correlations are indeed observed on the lattice
[9].

A type III vortex is one which, having penetrated a
surface, penetrates it a second time with high probability
after a large number of steps. This can only be true, in view
of the above remarks, if the surface is of a special type,
including those used in Secs. IV, V, and VI such as a closed
surface or one that has curvature radii comparable to its
length scales. An infinite-length vortex must penetrate a
closed surface an even number of times, therefore at least
twice.

Finally, there is a category of vortices that we will
ignore: Those that are inert because their link number is
a nonzero multiple of N for gauge group SU(N) due to
walks with a large number of steps that wind around the
Wilson loop N times. These can occur for a simple flat
Wilson loop and have their analog in a baryonic Wilson
loop; in any case, they are less probable than the walks we
do consider, and we will ignore them.

A qualitative model of type III effects might be to
assume that, after renormalization for the effects of
types I and II vortices, the remaining effects are seen for
vortices composed of infinitely long straight lines inter-
secting surfaces compounded of flat segments. The ration-
ale for the straight-line vortices is that the local returns
have been accounted for by renormalization for type II
vortices. In this model no vortex can return locally to a
single surface element and so explicit type II vortices are
missing; more than one flat surface segment must be
involved, and these must form a nonplanar surface. We
will not use this model in the present paper.

Among the type II vortices, the only ones to be consid-
ered in this section, there is essentially an infinite number
of subtypes. Several of them are shown in Fig. 1.

The first, Fig. 1(a), shows the standard penetration as-
sumed in the usual area-law formula of Eq. (6): Unit link
number associated with a single piercing. Figure 1(b)
shows an inert vortex (zero link number) produced by
two additional steps from the first piercing. Figure 1(c)
shows another inert vortex, using three additional steps,
that makes the square labeled X inaccessible for piercing
by another vortex, because of the mutual-avoidance re-
quirement. Figure 1(d) shows a vortex with four extra steps
that is linked, but has pierced three A-squares, thereby
again reducing the A-squares available for more vortices.
Note that in every case shown in the figure except for
Fig. 1(a) the link number is reduced relative to the piercing
number.

There are other ways for vortices to be inert, for ex-
ample, a vortex may have a link number that is a multiple
of N for SU(N) with N > 2. Related effects take place in
the baryonic area law for SU(3) (Sec. VI).
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FIG. 1. In these figures, the surface being pierced lies in a

plane on a lattice (shown) dual to the vortex lattice (not shown).
(a) Simple piercing by a vortex (thick line). (b) An inert vortex,
penetrating the surface with two more steps after the first
piercing. (c) An inert vortex that has rendered the square labeled
X inaccessible to another vortex. (d) A partially inert vortex,
using up three A-squares for a single linking.

B. Definition of «

The flat surface is divided, as before, into Ng A-squares.
Of these, on the average pNy are pierced once by a vortex,
and of the pierced squares, a fraction a on the average
contribute to the area-law formula with a minus sign [in
SU(2)].

We use a simple statistical model, ignoring shape effects
and describing the correlation between piercings via a
dilution factor. It is easy to see that the coefficient of

pap/ll - apl S K =Ns | (10
in the formal expansion of
I1=[p+ap+(1-apl™ (11

is the statistical weight for a configuration with K, + K3
pierced A-squares, of which K, are going to give a minus
sign in the Wilson-loop VEV. We then have

W)=1[p—ap+(1—-a)pl™ =[1-2apl", (12

showing that, as previously specified, @ simply renormal-
izes p. For the DGA formula for the Wilson-loop VEV we
find

(Wr) = exp[—2apAg], (13)

in which the string tension is renormalized by the factor «
from its previous value. The DGA is perhaps made more
plausible by dilution.
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Not all the effects of inert vortices can be captured by the
simple dilution factor defined above. Vortices are corre-
lated with each other through self-avoidance, as in
Fig. 1(c), and the specific geometry of the portion of a
random vortex walk that penetrates the spanning surface
more than once can matter. Unfortunately, even simpler
problems cannot be solved analytically. For example, the
statistics of coexisting but mutually and self-avoiding
monomers and dimers (see [10] for a mean-field approach
and earlier references) has no exact solution (except in the
limit of close-packed dimers [11]). This is because dimers
and higher multimers do not obey simple (e.g., multino-
mial) statistics. One can appreciate this from the observa-
tion that on an empty lattice of Ny sites a dimer can be laid
down in 2Ng ways, but only N/2 self-avoiding dimers can
be put down in total. (For monomers, of course, these two
numbers are the same, namely Ng.)

In the inert-vortex problem there are, in principle, a huge
number of multimers, of various shapes and sizes, that
should be accounted for. Rather than attempting some
elaborate generalization of the monomer-dimer problem,
we proceed as follows.

II1. Estimating the dilution factor

The problem is to estimate the probability that a self-
avoiding random walk of infinite length, having pierced the
Wilson surface (which we call W) once, pierces it again
one or more times. We need two different types of proba-
bilities for this problem. The first is the standard probabil-
ity density p;(N;m) that a random walk on the d = 3
lattice is at the lattice point m after exactly N steps. If
the difficult restriction of self-avoidance is dropped, this is
given by (see, e.g., [12])

N 1 3 2
p3(N;m) = W{ ]0 dﬁj}[cosﬁl + cosb,
=1

+ cos3 ]V exp[if - m]. (14)
This is normalized so that
p3(N = 0;m) = 6,5 (15)

and the sum over all /m of this density yields unity. In the
limit of large N and components of 7 (which is an integer-
valued vector) p;(N; m) has the usual Gaussian form. This
is not the probability of real interest, although it can be
used in certain circumstances to find the probability that we
need. We will call the one that we do need g5(N; W; i), the
probability density that a random walk piercing at the
origin repierces for the first time at /m using exactly N
steps, with the vector i restricted to lie in the lattice plane
that is nearest neighbor to the Wilson surface. The proba-
bility density p;(N; W;m) is simply p;(N;m) with m
restricted to the Wilson surface. Our interest is in proba-
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bilities summed over the Wilson surface, so we define

P3N W) = > p3(N; Wiiin);

mew ) (16)
a3(Ns W) = > q3(N; W; ).

mew

By the standard rules of probability [13]
N
p3(N; W) =8y + D g3(sW)ps(N = Js W) (1)
2

which says that the random walk, having pierced the
surface for the first time after J steps, may penetrate it
many times again before ending on the surface after N
steps. (Note that it takes N = 2 additional steps of the
random walk, at minimum, to repierce the surface, given
that these steps are counted as starting with the first step
after the first piercing.) If the total number of piercings is
odd (even) the vortex is linked (unlinked). The case of no
further intersections after the first piercing is to be in-
cluded; the standard area-law model of Sec. Il is equivalent
to assuming that this probability is unity, and all other
probabilities are zero. This is far from the case, as we
will see.

Equation (17) is easily solved in terms of generating
functions

P3(s; W) = > p3(N; W)s;
0

(18)
O5(s; W) = ZCB(N; W)sV.
2
We have
Ps3(s; W) = 1+ P3(s; W)Qs(s; W);
1 (19)

Q3(S; wW)=1- m

Note that we may express the elementary solution for
P;(s; W), which is

1
1 — Qs3(s; W)’

in a suggestive way for the original probabilities:

Py(s; W) = (20)

P3(N; W) =8y + q5(N; W)

+ 3 g3(K; W)g;(N — K; W) ... (21)

showing how the probability p; is compounded from prob-
abilities of first return [see, e.g., Fig. 1(d)].

The final probability of interest is the probability that the
random walk ever repierces the surface; this is clearly
given by the sum of all the g3, or by Q3(s = 1; W).

Equation (19) also holds in certain other problems,
notably the gambler’s ruin problem (described in the
Appendix), which asks for the probability that a d = 1
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random walk starting at the origin ever returns to it. In this
problem backtracking (retracing the last step) is allowed,
and (as we review in the Appendix) it is straightforward to
show that the corresponding probability of ever returning is
exactly unity. It is also unity in two dimensions. However,
our problem differs from the gambler’s ruin problem in two
essential ways: No backtracking is allowed, and ultimately
the problem becomes three-dimensional, when the radius
of gyration N'/2 of the random walk becomes large com-
pared to the size scale L of the Wilson loop. (Actually, the
radius of gyration for self-avoiding walks has an exponent
somewhat different from 1/2, but we ignore that compli-
cation here.) It has long been known (as reviewed in [12])
that the probability of return to the origin in d = 3 is finite,
with a value of approximately 0.34. Furthermore, self-
avoidance completely changes the problem; for example,
a self-avoiding “random” walk in d = 1 has probability
zero of ever returning to any site it has reached.

Let P be the probability that a vortex, having penetrated
the Wilson surface once, never penetrates it again. Then,
with Q5(1; W) as the probability that it ever penetrates the
surface again,

P =1-05(1;W). (22)

Or one may write, as in Eq. (21), a probability sum rule
saying that the sum of probabilities of piercing exactly
once, exactly twice, etc., must be unity:

1= T{l + Zq3(K; W) + [Z%(K; W)T + .- }
(23)

As before, the sum over K begins with 2 for self-avoiding
random walks.

It is now necessary to estimate 7, or equivalently
0s(1; W). Unfortunately, this is not a straightforward mat-
ter when there is self-avoidance (see the Appendix for a
brief review of some of the well-known analysis when this
condition is not imposed). One way to proceed is simply to
count the number of self-avoiding paths going from an
original piercing to another piercing as a function of their
step length, and look for ways of partially resumming the
results. Our proposal, given below, is more accurate for
random walks that do not backtrack than for true self-
avoiding walks; the difference is that a nonbacktracking
walk may violate the condition of self-avoidance by loop-
ing back on itself. We propose the following expression for
nonbacktracking walks, valid for J = 2:

AN1IT/3  1\V-2 /3 1\/2
JW)=[—=)=|[-+ ¢ +(-—< . (24
=)l 5+s) G T oe
The corresponding generating function, approximately
valid for self-avoiding walks, is

06w = (55 =@ * T=es )

(25)
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The explanation of the terms is as follows. The factor 4/25
is the probability for Fig. 1(b), for J = 2. For a nonback-
tracking walk in d = 3 there are 5 possible choices to add a
new step to the random walk. The horizontal step in this
figure has probability 4/5 (note that we are summing over
all possible sites), and the next, vertical, step has probabil-
ity 1/5. The appearance at larger J of 3/5 in the formula
expresses the probability that a nonbacktracking random
walk will take its next step horizontally (with respect to the
Wilson surface), and 1/5 is the probability of a vertical step
in one particular direction (up or down). (The restriction to
even powers of 1/5 is easily understood by drawing a few
figures, in the style of Fig. 1.) So a random walk once
started in a horizontal plane has a 3 times larger probability
of staying in that plane than of moving to a plane higher
above the Wilson surface. It is easy to check the combina-
torics of the low-order powers of 1/5 in Eq. (24), and also
the highest powers, for example, the last term (4/25) X
(1/5)7 2. This is the probability that the random walk goes
as high as possible, takes one horizontal step, and then
returns straight down to the Wilson surface. This can only
happen for even J, and one easily sees that the maximum
attainable height is J/2. We have compared the approxi-
mation of Eq. (24) with explicit counting of self-avoiding
walks through J = 8 and find that the difference between
self-avoiding and nonbacktracking is acceptably small.

The difference between nonbacktracking walks and self-
avoiding walks first appears at N = 5, where there are 144
nonbacktracking walks but only 128 self-avoiding walks.
This is about an 11% error, but because the erroneous
contribution to the N =5 walks is 16/3125 ~ 0.0052,
out of a total of about 0.533, the error in the final result
from N = 5 terms is less than 1%. In any case, to deal with
true self-avoidance rather than just nonbacktracking raises
the same issues as having a condensate of mutually avoid-
ing vortices, and we do not discuss that issue in any detail
in this paper.

We find an approximation to Q5(1; W) by summing over
all J in Eq. (24), with the result

Cs{1; W) = %)ﬂl = 24/5) e 12/5)} ~ 5

= (.533. (26)

At this point one might guess that the dilution factor «
should be equal to the probability 2 of never returning. But
this is not quite right; we really need the probability of
being linked or unlinked. To do this, one should separately
find the probabilities that there is an even or odd number of
piercings, as expressed by separating the even and odd
powers of Q3(1) in Eq. (23). We use P, for the probability
that a vortex is linked, and 2Py, for the probability that it is
unlinked; these are defined by
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P, = ?{1 + 2Q3(1)N} !

even - 1+ Q3(1)’ (27)
— N — Q3(1)
Py ?%Qm) T+ o)

Now it seems that @« = P; . If we to use our approximation
05(1) = 0.53 we would find the link probability (dilution
factor) to be about 0.65, somewhat larger because we are
counting three, five, ... piercings as well as a single
piercing.

Equation (27) is not quite right either, because while P;
expresses the probability of linkage, when (say) three sites
are used for the link instead of one, there is dilution that
must be accounted for. We account for this by calculating a
sum of weighted probabilities, where the weight for the
appearance of K powers of Q3(1) in Eq. (27) is the inverse
of the number of sites occupied by the linked vortex, or
(K + 1)~L. For example, when K = 2 three A-squares are
pierced, as shown in Fig. 1(d). This result for &, when
modified by the original piercing probability p, should give
something like the link number per unit area, in effect
increasing the size of A-squares to account dilution. The
weighted sum for P, gives another estimate for a:

e QY] 1= 0s() 1+ 05(1)
- T{ N+ 1} 20:(1) 1“[1 ~0,()

For Q;(1) = 0.53 this gives @ = 0.52.

It is plausible that Qs(1; W) lies between the no-self-
avoidance d = 3 value of 0.34 and the d = 1 value of 1. In
that case, the estimate of @ with no inverse-site weighting
[Eq. (27)] gives a finite value even in the d = 1 limit,
where we find P; = P, = 1/2, so the dilution factor is
1/2. This is a singular limit, because the original proba-
bility 2 used to construct P;, Py vanishes, but this is
canceled by a singularity in the sum over Qs. It is not
surprising that the limiting probabilities are each 1/2, since
there is no way of distinguishing an even number of pierc-
ings from an odd number. The value of « from this equa-
tion for the d = 3 value Q5(1; W) = 0.34 is about 0.75.
Equation (28), with inverse-site weighting, gives 0.75 for
05(1; W) = 0.34 and 0 for Q5(1; W) = 1. Presumably this
latter case is unrealistic, because at some point the radius
of gyration of the random walk is large compared to the
Wilson-loop scale L and the problem really is three-
dimensional; in any case, the d = 1 self-avoiding case is
completely opposite to the no-self-avoidance case.

To be more accurate in estimating «, one would need to
account for mutual-avoidance effects such as shown in
Fig. 1(c), and be more precise about weighting various
random-walk configurations. We will not attempt that here,
and close by saying that our estimates for the dilution
factor are consistent with & = 0.6 = 0.1.

In the following sections we look for further manifes-
tations of inert vortices of type III, going beyond the local

} (28)
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effects that led to the dilution factor. But these local effects
still occur, and so everywhere in our arguments the original
probability p should be replaced by the diluted probabil-
ities

p = ap; p=1-p. (29)
IV. INERT VORTICES AND THE SPANNING
SURFACE

Now we return to the problem that the spanning surface
used for counting link numbers as piercings is arbitrary, yet
there surely is a unique area in the area law. The simplest
possible case, where there is no doubt as to the answer, is
that of a flat Wilson loop, and one can get the right area law
by using the flat spanning surface in Stokes’ theorem. Yet
one should also get the right answer by using any other
surface. How does this come about?

Figure 2 shows such a flat Wilson loop, with two span-
ning surfaces. The first, labeled 3, is flat and is correct. The
second is labeled S. We choose orientations so that the
combined surface 3 + S is oriented. Of course, this sur-
face is closed.

We must now improve upon the techniques outlined in
Sec. 1V, to account for inert vortices of type III. The
calculation of the area law based on the flat surface X
needs no change. But what if we instead wished to calcu-
late the area law based on surface S? Here there is extra
dilution. The vortices linked to surface S are still those
linked to surface 3, which must pass through surface 2, and
surface S once each, but there are also inert vortices, which
pass through surface S twice and surface 3 not at all. (We
will not account for vortices linking three, five, ... times,
most of which are included in the dilution factor.) We
denote the number of linked vortices by N; and the number
of inert vortices by N;/2. The factor of 1/2 in the latter
definition simply reflects the fact that every inert vortex
pierces surface S twice, so that N; is the total number of
pierce points of inert vortices. It is not convenient to
introduce this factor of 1/2 for linked vortices, because

FIG. 2. A flat Wilson loop, and two spanning surfaces, labeled
3, and S.
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the diluted pierce probability p, introduced above, is re-
lated to the number N, of vortices linked to surface 2 by

_ PAs
oA
where As is the area of surface . That is, N, is the number
of pierce points of vortices on surface 2.

The total number of vortex piercings of the combined
surface 2 + S, denoted N, is

Ny = 2N + Ny,

Np (30)

D

with the two arising because linked vortices penetrate both
surface S and surface . By hypothesis of a uniform areal
density of vortices, this total number of vortex pierce
points on the combined surface % + S is also given by

p(As + Ay)

N = =72 (32)
Combining these equations, one finds
p(As — As)

N, = 3422 (33)

To calculate the area law in the DGA, we can easily use
the formulas of Sec. II for the flat 3, surface, which has a
total of Ny = As/A? A-squares:

W) =1[p = pI" — e~ K, (34)

with Ky =2p/A% as before. It is more interesting to
calculate it from the point of view of the other spanning
surface S. Here we must account for the diminished proba-
bility of occupation of this surface by linked vortices, since
some of them, as counted by N, are inert. So we change
the probabilities by adding to p, the probability of no
occupation, the probability p; = N,/Ng of occupation by
an inert vortex of type IIl. This gives

. Ay
p—>po=p+p1=p+p<1—A—>= -
S

Similarly, the new link probability p = 1 — p is

. DAs
p=—.

A, (36)

Using Eq. (34) with the new probabilities for the surface S
one gets, going to the DGA limit as before,

(WY =[Py — pIVs — e 2P/M)As = = 20/As (37

V. COMPOUND WILSON LOOPS

Consider the compound Wilson loop shown W, in
Fig. 3, composed of two identical but oppositely oriented
Wilson loops. [The orientation is irrelevant in SU(2).]
They are separated transversely by a distance z. The rele-
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(a) (b)

FIG. 3. Two identical but oppositely oriented rectangular
Wilson loops 1 and 2, separated by a distance z. (a) When z is
small compared to loop scales, the Wilson-loop area, labeled 3,
connects the loops. (b) When z is large, the Wilson-loop areas
are the disjoint areas, labeled 1 and 2, of each loop.

vant expectation value is

Weomp) = (W(WT(2)). (38)

When the distance z between the loops is small com-
pared to the loop, intuition [7] suggests that the surface
whose area should appear in the area law, as in Eq. (1), is
the minimal surface 3 joining the two loops as shown in
Fig. 3(a). When z is large, intuition suggests that the
situation in Fig. 3(b) holds, where each loop is spanned
by its own minimal surface with no connection to the other
surface. We will show that intuition is indeed correct for
the compound area law of center-vortex theory, and give an
approximate interpolation formula for intermediate values
of z.

Begin with the SU(2) case, where the orientation of the
Wilson loop does not matter, and W = WT. As usual, we
assume that the time extent 7, the spatial extent R of the
Wilson loop, and their separation z are all large compared
to the QCD scale length A and assume that 7 >> R. In this
limit the spanning surface S5 of Fig. 3(a) is nearly flat, and
has area Ay =~ 2zT. (We ignore the contribution = 2zR from
the top and bottom.) The Wilson-loop surfaces S, have
areas A} = A, = RT.

Imagine now a configuration where all surfaces S; ;3
exist, so that there is a closed surface with two marked
contours, the Wilson loops 1 and 2. This constitutes a
minor generalization of the configuration already consid-
ered in Sec. I'V. There are several ways that vortices can be
linked or inert (in the sense of Sec. III A), after the renor-
malization of type I and type II vortices. Use the notation
N; for the total number of vortices penetrating surface S;.
These obey

PA;
A2

Each of these is subdivided as follows: The number of
vortices piercing S; and S3 an odd number of times is

N; = (39)
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called Ny3, with analogous notation for N,; = Ni3; the
number piercing surface S; and S, each an odd number
of times is Nj,; and the number entering S; and then
exiting the same surface is Nij.

As indicated in the Appendix, the probability that a
vortex known to be at a point remote from a surface that
then penetrates the surface (once) is proportional to the
surface area, and is finite when the QCD scale length A
vanishes. If we require the number of vortices penetrating
one surface, say S, and then another surface, say §,, that
probability is proportional to A;A,. So we now assume that

Niy ~ AjA; = AF; Niz ~ AlAs; N33 ~ A3,

(40)

These vortex-linking numbers are related to the total

vortex-piercing numbers by
N1:N12+N13; N3:2N13+N33. (41)

Equations (39)—(41) are easily solved to yield

2pAT PAI1A;
Np=—F—"—"—"-: N3 =—-7—7:
A(2A, + Aj) AQ2A| + A3) 42)
PA3
N33 = 27.
224, + Ay)

We will now compute the expectation value (W) of the
product W = W; W, of the two Wilson loops, from the
point of view of the surfaces §;,. Only the number N3
contributes nontrivially to an SU(2) Wilson loop. As in
Sec. IV we introduce modified probabilities

A2N13= pAs
A, A+ Ay

p1= po=1-p.  (43)

Just as in calculating the Wilson-loop VEV from Eq. (37),
we have the following in the DGA:

2KpA 1A
— (B — B4/, axp—| ZBFAIAS
<Wcornp> (pO p) exp |:2A1 +A3:|
_ 2K;TRz

This formula is only approximate, but it shows features
that we believe are generally correct (and one feature that
is not correct). For example, the heavy-quark potential V
[coefficient of —T in the exponent of Eq. (44)] has the
behavior V =~ 2Kz in the limit z << R, showing that the
area law of two SU(2) Wilson loops [or, as in Fig. 3, two
oppositely directed Wilson loops] disappears as the two
loops approach each other and form an N-ality zero con-
figuration. (For N-ality zero loops there is a pseudo-area
law, coming from the finite size of vortices [14], at dis-
tances z ~ A, but that is irrelevant here.) In the opposite
limit of z > R we find V = 2KgR, so the VEV is just the
product of the separate VEVs for two Wilson loops. While
this in itself is correct, the approach to this limit cannot be,
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for it would yield a residual potential V — 2KzR which
vanishes only like 1/z. In actuality, at some point when
R = 7 the spanning surface switches on the length scale A
from S3 to S; + §,, much as the corresponding soap-
bubble surface would for two physical wire loops 1 and
2. We do not see this breaking because we have not
included effects coming from a network of gluon world
lines running from loop 1 to loop 1, from loop 2 to loop 2,
and from loop 1 to loop 2. The simplest step in the
formation of this network has been discussed [15] in
connection with baryonic and mesonic hybrids, having
extra gluons along with their quark content. There it is
shown that a single gluon acts like a physical string which
separates a Wilson-loop spanning surface into two sur-
faces, and the string requires extra energy to be stretched
if the string stretching leaves the minimal spanning sur-
face. The fluctuations associated with this stretching
should yield the Liischer [16] term, as well as leading to
the transition from surface S3 to S| + S, as the gluons in
the network recombine. But when this stretching is not too
great the potential should behave roughly as given in
Eq. (44).

In SU(N) with N > 2 the orientation of the Wilson loops
does matter. If the loops have opposite orientation, as
shown in Fig. 3, the problem is essentially the same as
for SU(2). But one should also consider the problem of two
loops of the same orientation. Since for SU(3) the treat-
ment of this problem is quite similar to that for the baryon,
which is a compound of three Wilson loops, we defer
further discussion to Sec. VI.

VI. VORTICES ANALOGOUS TO INERT
VORTICES AND THE BARYONIC AREA LAW

It is by now well-established both in center-vortex the-
ory [8] and on the lattice [17,18] that, as shown in Fig. 4, in
SU(3) the heavy-quark baryonic potential has three
Wilson-loop surfaces spanning a boundary consisting of

FIG. 4. A baryonic Wilson loop in SU(3) is composed of three
simple Wilson loops sharing a common central line (expanded in
the figure). The central line is invisible to SU(3) center vortices.
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the quark world lines, with the three Wilson loops coincid-
ing along a central line (the so-called Y law). The Y law
also emerges [19] from lattice studies of center vortices as
random surfaces [1].

This is a threefold compound Wilson loop, sharing some
of the features of the double loop discussed in Sec. V. In
particular, a vortex may pierce two loops. Such a vortex is
not inert, as were the vortices piercing surfaces 1 and 2 of
Fig. 3 and discussed in the previous section. Instead, link-
age with these analogs of inert vortices are important to
establish that the string tension in the baryonic area law is
precisely the mesonic string tension K.

Of course, it is also possible that a vortex can pierce all
three Wilson loops in turn; such a vortex is genuinely inert.
This possibility occurs with lesser probability than the
piercing of two loops, and is roughly comparable to the
possibility that a vortex piercing an SU(3) mesonic Wilson
loop has link number 3 due to 3 windings of the vortex
around the Wilson loop and is thus inert; we have men-
tioned in Sec. III A that we will ignore such windings,
generally less probable than those considered.

The analysis of the dilution factor « for SU(3) is slightly
more complicated, because a vortex piercing twice is not
unlinked as it is in SU(2); it is simply equivalent to an
antivortex piercing once. Given the complete symmetry
between vortex and antivortex, this means that an antivor-
tex piercing twice is equivalent to a vortex piercing once.
There is a modification of the numerical value of the
dilution factor, since it is now possible to dilute unit link
number by occupying a minimum of two sites, rather than a
minimum of three as for SU(2). However, the string ten-
sion is still lessened by a single dilution factor «, just as for
SU(2), and we can continue to use the notation developed
for that case. We will not pursue the question of what the
value of the dilution factor is for SU(3); it must be quite
similar to that for SU(2).

The SU(3) version of the standard area law for a single
Wilson loop, given in Eq. (6) for SU(2), is

D . . Ag/ 22
(W) = {ﬁ T ’2’[627”/3 + 6_27”/3}} :

_1_3ﬁAs/A2
AR

Here we use p/2 as the probability (accounting for dilu-
tion) that a vortex of flux 277/3 pierces the surface, with
equal probability that the antivortex of flux —2/3 pierces
it; this means that, as before, p = 1 — p. This leads im-
mediately to the DGA SU(3) string tension Kp =
3pA2/2.

To discuss the baryonic area law in similar terms to those
used with the double Wilson loop, introduce a surface
made of flat pieces, labeled 4 and shown in Fig. 5, that
forms a closed surface when combined with the surfaces
spanning Wilson loops 1 and 3.

(45)
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FIG. 5. We introduce a new surface labeled 4 that creates a
closed surface consisting of the two Wilson-loop surfaces for
quarks 1 and 3 plus a surface joining these.

In what follows we will be careful to distinguish vortices
from antivortices, although at the end the symmetry be-
tween them makes this simply a distinction for conve-
nience of exposition. As in Sec. V we introduce the
number N;; as the number of times that a given vortex
(not antivortex) is linked to both spanning surface 1 and
surface 3 (that is, pierces each of these surfaces an odd
number of times), and N4 is defined analogously for
surfaces 1 and 4. We consider that the dilution factor a
has been applied, so we can take this odd number to be just
one. The number N, is the number of vortex piercings on
surface 1, and it obeys

PA
= 46
> (46)

1 _
Ny 7—N13+N14-

The factor of 2 in the denominator arises because there are
just as many antivortices piercing any given surface; it is
the same factor of 2 dividing the explicit probabilities in
the area law of Eq. (45).

Any vortex that pierces surface 1 once must leave
through either surface 3 or surface 4. If it leaves through
surface 4 it is associated with a phase factor exp[2ri/3]; if
it leaves through surface 3 it is associated with a phase
factor exp[—2i/3]. For any such vortex configuration
there is an equally probable antivortex configuration,
with the phase factors interchanged. So the fotal number
of piercing, vortices plus antivortices, is 2N, and the
number of antivortices piercing surface 3 is N3, etc.
This, plus the relation of Eq. (46), means that the standard
calculation of the baryonic area law using surface 1 (plus
surfaces 2 and 3), giving the Y law, is exactly the same as
accounting for the linkages of vortices and antivortices
through surfaces 1 and 4, plus linkages through surfaces
1 and 3 (plus permutations for the other two quarks). There
really are no unlinked type III vortices in this problem, the
way there were in Secs. IV and V. The baryonic string
tension is precisely the mesonic string tension, because
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when it is calculated from the three quark surfaces 1, 2, and
3 separately, without regard to the other two quarks, it is
just the standard simple Wilson-loop calculation. But it is
just the same when linkages to two quarks are considered.
Of course, no one doubted the equality of string tensions
for baryons and mesons, but the point was to see how it
worked out in the center-vortex picture.

VII. SUMMARY AND CONCLUSIONS

We have discussed semiquantitatively some of the ef-
fects of inert vortices that do not couple as effectively as
they might to a Wilson loop, and that change the probabil-
ity of linkage by a dilution factor & = 1. In turn, this
changes the SU(2) DGA string tension from K, = 2p to
Kr = 2ap, where p is the areal density of vortices pierc-
ing a large flat surface. Our estimate, based on partial sums
of  nonbacktracking walks, is a=0.6=x0.1.
Understanding inert vortices also leads to understanding
of how it is that there is a unique area in the area law, even
though any surface spanning a Wilson loop is suitable for
counting link numbers in the center-vortex picture. We
found a finite-range van der Waals force, due to inert
vortices, that links two mesonic Wilson loops, in this
case vortices that are simultaneously linked to both
Wilson loops. And finally we showed that the analogs of
inert vortices in the two-loop problem do not interfere with
the usual formulation of the area law for SU(3) baryons,
based on considering the three Wilson loops as
independent.

There seems to be no possibility of a detailed analytic
approach to these problems, which therefore are best
studied further with lattice computations. One can, of
course, create a center-vortex condensate through simula-
tion of the underlying non-Abelian gauge theory, but it
would also be very interesting and possibly simpler to
study inert-vortex effects with simulations that begin
with an a priori vortex model, similar in spirit to the
approach of [1], rather than having to deal with all the
complications of the full gauge theory. Indeed, it seems
that relating Kr and p on the lattice has numerous com-
plications [4—6], and has not been attempted recently. But
the simulation of two Wilson loops seems approachable on
the lattice.

APPENDIX A: PROBABILITY ISSUES

This appendix discusses two issues: (1) A brief review of
well-known analysis for return probabilities for random
walks with backtracking allowed; (2) The probability for a
vortex to pierce two separated Wilson loops. The first
serves for cautionary notes in the problem calculating the
dilution factor of Sec. III, and the second arises in finding
the area law for the compound Wilson loop of Sec. V. For
the most part and for dimension d = 4, analytic results are
only available for random walks without self-avoidance
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constraints, and we will only discuss those in the next
subsection.

1. The gambler’s ruin problem [Sec. III]

The only problems that one has any real chance to
analyze are for non-self-avoiding walks, and we will re-
view a famous one, the gambler’s ruin problem, here. The
basic probability concepts are the same for self-avoiding
walks, and so this review should be helpful to those un-
familiar with the underlying ideas. The cautionary note
here is that while the d = 1 gambler’s ruin problem seems
superficially quite similar to those of Sec. III, in practice
they are very different, both because the questions of
Sec. III have three-dimensional effects and because they
deal with self-avoiding walks.

We ask for the probability ¢;(K;m) that an unbiased
random walk starting from the origin on a lattice of points
in d = 1 will return to the point m = 0 for the first time
after K steps. The case m = 0 is the standard gambler’s
ruin problem. For an unbiased walk [all step probabilities
equal to 1/(2d) in d dimensions] Pédlya long ago proved
that in the limit of infinite steps the probability of return to
the origin is unity in d = 1, 2 but less than one in all other
dimensions. This is perhaps plausible from the fact that the
probability of being at the origin after N steps in d dimen-
sions is, for N > 1,

Pa(N) ~ N=2, (A1)
and the sum over N diverges at large N in d = 1, 2 but not
in higher dimensions.

As in Sec. III, the relation between the p,(N; m) and the
q1(N;m) is

N
piN;m) = pi(N—J;m=0)q,(J;m)
=i

J (A2)

(pl(N = Oam) = 6m,0)'

Note that in the sum on the right p; has m set equal to zero,
because we are compounding the probability of first return
to m, as given by ¢, with the probability of being at this
same point m after more steps.

To solve these relations, define the generating functions
Pi(s;m) and Q,(s; m):

Py(s;m) = pi(Nym)s";
0

(A3)
Qi(s;m) = qu(N; m)sN.
2
Equation (A2) then translates to
Pi(s;m) = 8,,0 + Q,(s; m)P(s;0). (Ad)
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It is straightforward to find p;(N;m) and P;(s; m). The
probability p(N;m) is the standard random-walk proba-
bility, given by [12]

pi(Nim) = f 7 d0[cos0]" exp[imf].  (AS5)
27 Jo

From this we find the generating function (for m = 0)

1 T imé
P,(s;m) =2—ﬁ) dg—

T 1 — scosf

1 m
= {—[1 - (1 - s2)1/2” (1 =572 (A6)
s
and the gambler’s ruin (m = 0) generating function is

Pi(s;m=0)=[1— s2]71/2 (A7)

This yields for the gambler’s ruin problem the well-known
result

O/ssm=0)=1-P(s;m=0)""=1-[1-s]"2
(A8)

One learns from this that the probabilities for first return
after K = 2,4,6,8, ... steps are 1/2,1/8,1/16,5/128, ...
independent of the total number of steps in the random
walk (if this number is larger than K), and that the proba-
bility of ever returning is unity. This follows from
Egs. (A1) and (A3), which shows that P,(1) diverges in
d =1 (and also in d = 2) but not in higher dimensions.
For nonzero m we have

Pi(s;m) = Q(s; M)P(s;m = 0). (A9)
It then follows from Egs. (A6), (A7), and (A9) that
osm =i - - A

By expanding in s, one sees that the probabilities vanish for
N < m, as expected, and by setting s = 1 in Q(s; m) one
sees that the probability of ever reaching m is unity. The
probability ¢,(N;m) peaks for N ~ m?, when m is com-
parable to the vortex radius of gyration.

Now consider calculating the probability of first return
anywhere on an infinite plane in d = 3. The probability
p3(N; m) of going from the origin to lattice point 7 in N
steps on an infinite lattice is given in Eq. (14) and the
corresponding generating function is

PHYSICAL REVIEW D 73, 065004 (2006)

1 3 (2w K
Pi(s;m) = —— do; |11 — =[cosf; + cosf
) = | 1,0 1 = 3leosn ot
-1 N
+ cost%]} explif - m];
P3(0;7) = 8,5 (Al1)

Take m; = 0 in Eq. (Al1) and sum from —oo to oo over
my,. The result is, not unexpectedly, a simple variant on
the d = 1 gambler’s ruin problem, and yields

P3(S) = Z P3(S; mp, mp, msz = 0)

my,ny=—00
1 (= do 4s  §27-1/2
== — = |l -5t .
mJo 1 — % — 3 cosf [ 3 3 :|
(A12)

Using a standard expansion and Eq. (A8) we find the
probabilities g3(K):

q3(K) = _3K/2C1_<1/2<j§>

where the C,}l/ 2

(A13)
are Gegenbauer polynomials.

2. Probability that a vortex pierces two separated
Wilson loops [Sec. V]

The next problem comes up in the compound Wilson-
loop estimates of Sec. V, where a vortex can pierce two
separated Wilson loops. In d = 3, consider the plane sur-
face of dimensions L, L, centered on and perpendicular to
the z-axis at a distance M along this axis from the origin.
We ask for the probabilities p;(N; L, Ly, M) to end up on
this surface after N steps; the probability g;(N; L, L,, M)
of reaching this surface for the first time after N steps; and
the probability of ever reaching it. Also to be calculated are
the corresponding generating functions Ps(s; L;, M) and
0s(s; L;, M). We assume that all lengths L;, M are large
in lattice units, so that the number of steps is also large.

The first probability is a sum over the surface of the
probability given in Eq. (14):

m;=L;/2
ps(N; Ly M) = > ps(Nsii)lyymse (A4
m;=—L;/2

The sum is easily done to yield

1 3 2
= W[nﬁ) dej}[cosﬁl + cosf,
=

sin[(L, + 1)0,/2]
sin[0,/2]

p3(N7 Li: M)

+ cosf; ]V exp[iM 6]

sin[(L, + 1)60,/2]
sin[6,/2]

In the large-N limit N > L?

i

(A15)

one finds an area factor
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emerging:

A 3 2
p3(N; L, M) ~ W[nﬁ) dﬁj}[cosel + cosb,
i=1

+ cosf;]" expliM 6] (A16)
where A = L,L, is the area of the surface. This happens
because the integrand is only appreciable when 6; =
N~'2. The generating function for this probability, if
needed, is constructed as in Eq. (A11), including summing
over my, mj.

The probability g;(N; Ly, L,, M) is determined by an
analog of Eq. (A2), including a sum over surface variables:

p3(N; Ly M) = "> g3(Jsmy, M)ps(N — Jym;, 0)
J m;

(A17)

where the sum over m, m, is delimited as in Eq. (A14). To
see what this sum means, write the g-probability in Fourier
form
1 S
Gim, M) = s [ 00,0 (A1)
(2m)
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with m3; = M. We find, using Eq. (14),

&0 . >
sN;L, M) =S f "M G3(J; 6)
p'; J (2 )3 Q3

=12 Sln[(ﬁj + a] + 1/2]

X (;137“)3 [(Z cosai>/3}NJ. (A19)

We anticipate, and can confirm later, that in the limit
N — oo the 6; are of order J~1/2 and the a; are of order
(N — J)~'/2. Tt turns out that N — J is large compared to J
(which is of order M?) and so we can drop the «; , in the
argument of the sine functions in Eq. (A19). The « integral

then factors out, and is given by the probability p3(N —
J; 6) of returning to a given point after N — J steps.

The problem is now solved, in principle, by using gen-
erating functions, as in Eq. (A9). Or one can study the sum
of Eq. (A19) directly, and find by a scaling argument that
the maximum value of the g-probability on the right-hand
side behaves like A/J ~ A/M?. Note that when lattice
lengths L;, M are converted to physical lengths by multi-
plying by A this probability remains finite.
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