
PHYSICAL REVIEW D 73, 064037 (2006)
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We present an improved version of the approximate scheme for generating inspirals of test bodies into a
Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original ‘‘hybrid’’
scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the
semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and
angular momentum fluxes, amended by the assumption of constant inclination angle � during the inspiral.
Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for
orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper
we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First,
we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing
eccentricity and/or 90� inclination. Second, we use higher order post-Newtonian formulas, adapted for
generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter
constant by means of an approximate post-Newtonian expression and subsequently extract the evolution
of �. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and
inclination evolution determined by Teukolsky-based calculations. As an application of our improved
scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date,
and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to
decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for
exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in
the LISA data.
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I. INTRODUCTION

Among the most promising and rewarding sources of
gravitational radiation for the future LISA space observ-
atory [1] are the so-called extreme mass ratio inspirals
(EMRIs). These binary systems are formed as the result
of the capture of compact stellar remnants by supermassive
black holes in the nuclei of galaxies [2]. As a result of two-
body scattering in the surrounding cusp stellar population,
such objects can end up on orbits that pass close to the
central black hole. Occasionally these objects are captured
by the massive black hole’s gravitational ‘‘pit’’ with initial
orbital parameters which ensure that the subsequent dy-
namics of the newly formed binary are almost entirely
governed by gravitational radiation. The expected event
rate for this scenario is quite promising (taking into ac-
count the capabilities of LISA), despite the uncertainties
[2–4].

The detection of EMRIs and the subsequent extraction
for the system’s parameters will rely heavily on the tech-
nique of matched filtering [5] which requires an accurate
theoretical model of the true gravitational wave signal. The
computation of EMRI waveforms is an ongoing effort,
which is currently limited by our inability to accurately
describe the orbital motion of the small body in the Kerr
spacetime under the influence of radiation reaction. The
traditional way of describing the system is via the cele-
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brated Teukolsky perturbation formalism [6] (where the
system is modeled as a test-body in the field of a Kerr black
hole) combined with the assumption of adiabatic evolution
(see [7,8] for recent reviews and further references). This
latter property is well justified as a first order approxima-
tion: the system’s extreme mass ratio �=M� 10�6 guar-
antees that any influence of gravitational backreaction will
become significant at time scales much longer than any
orbital time scale. In the adiabatic approach, one first
assumes that the small body is moving on a geodesic and
computes averaged fluxes of energy E and angular mo-
mentum Lz for this orbit. These fluxes are used to update
the parameters of the geodesic and the procedure is then
repeated. This procedure works very well in special cases:
orbits that are either equatorial, or inclined and circular.
For those two families the change in the third integral of
motion, the Carter constant Q, is either trivial or can be
directly inferred from the other two fluxes. This is no
longer possible for generic (i.e., eccentric and inclined)
orbits. Dealing with them requires input from the more
advanced framework of gravitational self-force computa-
tions (see [9,10] for recent reviews in the field).

Generating an inspiral and the associated waveform is a
computationally expensive exercise even at the level of the
Teukolsky formalism, let alone a self-force based calcula-
tion. Presently there are Teukolsky-based results for equa-
torial or inclined-circular orbits that show how a given
-1 © 2006 The American Physical Society
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orbit would evolve under radiation reaction [11–13] and
recently some initial results have become available for
generic orbits [14]. However, to date the only available
full inspiral computation is the one by Hughes [15] for
circular-inclined orbits. A computation along the same
lines can be carried out for equatorial-eccentric orbits
and full generic inspirals should appear in the near future.
However, these will be computationally very expensive.

Since present perturbative methods are either computa-
tionally demanding or incomplete, it is highly desirable to
have at hand a ‘‘quick and dirty’’ scheme for generating
Kerr inspirals and waveforms, which can then be utilized in
crucial data analysis computations for LISA [4].
Glampedakis, Hughes and Kennefick [16] (hereafter
GHK) proposed a hybrid scheme for computing approxi-
mate generic EMRI trajectories. This hybrid scheme works
by combining post-Newtonian radiation reaction formulas
with a strong-field definition of the orbital parameters. It is
able to reproduce many of the features expected from true
inspirals and compares well to existing Teukolsky-based
results [11–13].

However, there are some significant problems with the
approach in certain regions of the orbital phase space. We
describe in the present paper a set of fixes and improve-
ments to the GHK formalism that address these problems.
The most crucial improvement comes from the study of the
limiting cases of nearly circular and/or nearly polar orbits.
In order to guarantee a smooth orbital evolution, the exact
fluxes need to satisfy certain consistency relations. By
adding appropriate correction terms we can enforce the
fluxes to satisfy these relations, thereby eliminating the
pathologies of the GHK scheme in those regions of phase
space.

We also make improvements to the weak-flux expres-
sions for E and Lz. An immediate improvement comes
from simply using available higher post-Newtonian (PN)
expressions. By combining Tagoshi’s [17] 2.5PN fluxes for
equatorial small-eccentricity orbits, Shibata et al.’s [18]
2PN fluxes for circular small-inclination orbits and Ryan’s
[19] fluxes (which are fully accurate in the leading
Newtonian and 1.5PN pieces), we construct approximate
2PN fluxes which perform well for practically all eccen-
tricities and inclinations and improve the strong-field be-
havior of the GHK inspirals.

A further modification is to change the prescription for
the evolution of the orbital inclination, or equivalently for
the Carter constant flux. GHK adopted the simple (but
fairly accurate) rule of fixed inclination during inspiral.
Here we improve on this by adding the next order spin-
dependent correction, and allowing inclination to evolve. A
final improvement to the fluxes comes by fitting functions
to the results of Teukolsky-based computations for
circular-inclined orbits [12]. The combination of the above
ingredients ensures the new hybrid scheme is applicable
throughout parameter space, is qualitatively correct every-
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where, and exhibits very good performance when com-
pared to accurate, Teukolsky-based inspirals.

The paper is organized as follows. In Sec. II we give a
brief overview of the GHK approach to computing inspi-
rals. In Secs. III and IV we describe two corrections that
are required to give physically reasonable behavior in
nearly circular and nearly polar inspirals. These correc-
tions must be included when any approximation is used for
the energy and angular momentum fluxes. Then, in Secs. V
and VI, we provide new flux approximations that are
accurate to higher post-Newtonian order than the leading
order fluxes used in [16]. In Sec. VII we illustrate the use of
these expressions by investigating the properties of some
example inspirals. Finally, in Sec. VIII, we briefly discuss
the conservative component of the self-force which is not
otherwise considered in this analysis. In the standard man-
ner we adopt geometrized units G � c � 1.

II. SUMMARY OF GHK HYBRID SCHEME

In the GHK paper [16], the orbit is reparametrized in
terms of an eccentricity, e, semilatus rectum, p, and incli-
nation angle, �. The parameters e and p are defined in
terms of the turning points of the radial motion, which are
determined by the roots of the radial potential

R�r� � �E�r2 	 a2� � aLz
2

� �r2 � 2Mr	 a2���2r2 	 �Lz � aE�
2 	Q
: (1)

We use M and � to denote the masses of the primary and
secondary, respectively. For a given value of the energy, E,
z-component of the angular momentum, Lz, and Carter
constant, Q, the motion oscillates between a periapse, rp,
and an apoapse, ra. Once these have been determined from
(1), p and e are defined by
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p

1	e
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;e�
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The orbital inclination is defined by
Q � L2

z tan2�: (3)

In the limit a! 0, Q! L2
x 	 L

2
y � L2 � L2

z , and defini-
tion (3) agrees with the usual notion of inclination.

GHK constructed inspirals by evolving E, Lz andQ. The
energy and angular momentum were evolved using lowest
order post-Newtonian fluxes, modified from Ryan [19]
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FIG. 1. Illustration of the problem with the hybrid fluxes for
nearly circular orbits. We show three inspirals in the equatorial
plane of a black hole with spin a � 0:9M.
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Ryan also provides an expression for the evolution of Q,
but this was found to overpredict the change in inclination
angle, when compared to accurate Teukolsky-based calcu-
lations for circular-inclined orbits [12]. For this reason,
GHK used a ‘‘constant inclination’’ approximation1 to
evolve Q

_� � 0) _Qsph �
2Q
Lz

_Lz: (7)

The energy and angular momentum fluxes (4) and (5) are
evaluated using the p and e given by definition (2). This
was found to work much better in the strong field than
rewriting the right-hand sides of (4) and (5) using the
Keplerian relation between E, Lz and p, e and evaluating
the resulting expressions for the orbit with the same E, Lz
and Q.
III. CORRECTING THE BEHAVIOR OF NEARLY
CIRCULAR INSPIRALS

The original GHK inspirals exhibit some unphysical
features for nearly circular (e � 0) and nearly polar (� �
�=2) inspirals. These problems arise because the GHK
approach uses post-Newtonian expressions to evolve E,
Lz and Q, which are only valid to certain orders in the
spin, eccentricity etc., but then computes the evolution of
the eccentricity and semilatus rectum using the exact trans-
formation law, accurate to arbitrary order. As a conse-
quence, sensitive cancellations which are needed to
ensure reasonable behavior in certain limits do not occur
and this leads to some bizarre behavior. This can be ame-
liorated somewhat by extending the flux expressions to
higher post-Newtonian order (see Sec. V), but the prob-
lems are not eliminated entirely. However, it is possible to
make corrections to the fluxes that force the necessary
cancellations to occur. We describe these corrections in
this and the following section.

In Fig. 1 we show a selection of inspirals in the equato-
rial plane of a black hole with spin parameter a � 0:9M.
Three inspirals are shown, with initial semilatus rectums
and eccentricities given by the pairs �20M; 0:3�,
�15M; 0:001� and �10M; 0:001�. The inspirals have been
1This rule is in fact exact in a spherically symmetric gravita-
tional field (see [16] for a discussion).
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computed using the original GHK fluxes (4) and (5). The
unphysical behavior near e � 0 manifests itself in two
ways. For inspirals that start with comparatively large
semilatus rectum, but very small eccentricity, the inspiral
moves rapidly away from circularity—in fact, the trajec-
tories are almost vertical near to the e � 0 axis. For
inspirals that start with high eccentricity, the turnover point
at which the eccentricity starts to increase occurs at a
higher value of p=M than one would expect from
Teukolsky-based calculations [20]. There is also a strange
tendency for the curves to attract—for these quite diverse
choices of initial parameters, every inspiral plunges at
nearly the same point in phase space. Changing from the
original GHK fluxes to the higher order fluxes described in
Sec. V alleviates the rapid increase in eccentricity prior to
plunge, but the nearly circular orbits are still pushed away
from circularity and the trajectories still converge at
plunge.

A. The cause of the problem

The origin of this problem can be understood by con-
sidering the behavior of the fluxes near e � 0. The rate of
change of the eccentricity is given by the fluxes of energy,
angular momentum and the rate of change of the inclina-
tion angle, _� (or equivalently, the flux of the Carter constant
_Q) by

_e �
@e
@E

_E	
@e
@Lz

_Lz 	
@e
@�

_�: (8)

The partial derivatives may be derived from the definitions
of the radial potential (1) and eccentricity (2)
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Since the eccentricity enters this equation only as e2, it
follows that E, Lz and the fluxes _E and _Lz must be func-
tions of p, e2 and �. The post-Newtonian fluxes (4) and (5)
satisfy this condition. However, it also means that e2 may
be written as a function of E and Lz. We anticipate that
@�e2�=@E is well behaved for all eccentricities, but
@e=@E � �@�e2�=@E�=e will diverge like 1=e.
Differentiation of the condition (9) yields the necessary
partial derivatives
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where

N1�r� � Er4 	 a2Er2 � 2aM�Lz � aE�r;

N2�r� � �Lzsec2�r2 	 2M�Lzsec2�� aE�r� a2Lztan2�

N3�r� � L2
z tan�sec2��r�2M� r� � a2�;
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The substitution e$ �e leaves the right-hand side of
these expressions unchanged, so as expected the deriva-
tives are functions of e2 only. The functionD�r� is given by
the derivative of the radial potential 1

2@R=@r and so we can
rewrite it
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In the limit of small eccentricity at fixed p and �, we
deduce
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where N1�p; �� � N1�ra� � N2�rp� for e � 0 and similarly
for N2, N3.

It is now clear from (8) that _e / 1=e for small e, unless
the fluxes satisfy a consistency condition in the limit e! 0

N1�p; �� _E�p; �; 0� 	 N2�p; �� _Lz�p; �; 0�

	 N3�p; �� _��p; �; 0� � 0: (13)

We will see in Sec. IV that it can be better to evolve the
Carter constant, Q, instead of �. Using the definition (3) to
write _� in terms of _Q and _Lz, (13) becomes
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(15)

It is understood that the Ni’s are evaluated for the circular
orbit with the specified p and �. The GHK fluxes [16] do
not satisfy this relation, which explains the bizarre behav-
ior seen for small eccentricity.

What does the condition (13) or (14) mean physically?
For simplicity, we first examine equatorial orbits before
extending to inclined orbits. In the equatorial plane, _� � 0
by symmetry, and this condition is satisfied by the GHK
scheme (7). In the circular equatorial limit, the energy and
angular momentum are given in terms of the semilatus
rectum by
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where the upper (lower) sign is for prograde (retrograde)
orbits. We find that condition (13) reduces to
-4
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where ���p� is the azimuthal velocity, d�=dt, of the
circular orbit. Expression (17) is just the condition that
circular orbits remain circular under radiation reaction,
which must be true for the actual gravitational waves
emitted by the orbit [21]. The general condition (13) is
similarly just another way to write the circular goes to
circular rule [21]. By forcing the leading term to cancel
from our _e expression, we ensure that _e / e and therefore
that _e � 0 for circular orbits.

We can compute the difference _E���
_Lz for circular

equatorial orbits under the GHK scheme. Expanding in
powers of the spin parameter, a, we find
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The cancellation occurs correctly to linear order in the
spin. This is expected since the fluxes were derived in a
low-spin limit. If we use the higher order fluxes (37) and
(38) described in Sec. V, we similarly find
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In each case, the cancellation occurs to the post-Newtonian
order at which the fluxes were derived. However, when we
use the fluxes to evolve inspirals, this is no longer accurate
enough since we are using definitions of eccentricity and
semilatus rectum that are accurate to arbitrary order. Since
we know that the circular goes to circular rule must hold
for real inspirals, we can improve our approximate scheme
by modifying our fluxes to enforce this condition.

B. Correcting the hybrid fluxes

The condition (13) is a relationship between the fluxes
for circular orbits. The easiest way to impose it is to specify
two of the flux expressions and use (13) to determine the
other. Since this relation applies only to circular orbits, we
adopt the approach of leaving the eccentricity corrections
largely unchanged, and correct only the circular piece of
the fluxes. However, we must include the usual �1� e2�3=2

factor in front of the near-circular correction to ensure
reasonable behavior at high eccentricity. As the eccentric-
ity approaches the parabolic limit, e � 1, at fixed semilatus
rectum, we expect the total change in E, Lz, Q and � to be
approximately constant, since the strong-field part of the
orbit, where most of the radiation is lost, does not change
significantly. However, the orbital period diverges like
�1� e2��3=2, and therefore the orbital averaged flux must
tend to zero in the same way. This is the origin of the �1�
e2�3=2 prefactor in (4) and (5), and we must also include it
in the circular correction. We cannot reliably say anything
about further eccentricity corrections, since such correc-
tions are higher order than the available post-Newtonian
results. Our approach ensures that the eccentricity pieces
are asymptotically correct and the new fluxes have the right
leading order behavior at high eccentricity. It may be
possible to get more accurate expressions by applying the
correction to the other eccentricity terms as well, but a
priori we have no justification for doing this.

If we chose to fix _E and _Lz by expressions (4) and (5)
and use (13) to determine _�, we would find that _� � 0 in the
equatorial plane, which is unphysical. For simplicity, we
want to use the same correction throughout parameter
space, so we will modify either _E or _Lz. In Fig. 2 we
show new equatorial inspirals computed by imposing the
fix in two different ways. For the solid lines we use the
post-Newtonian _E expression (4), and correct the circular
piece of the post-Newtonian _Lz using (13). For the dashed
lines, we leave the post-Newtonian _Lz expression (5) un-
changed, and correct the circular piece of the _E expression.
We note first that it does not make a great deal of difference
which way the fix is implemented. The trajectories differ a
little near to plunge, but are largely the same. The most
striking feature of Fig. 2 is how much better the inspirals
now look. The orbits are no longer pushed away from
circularity and the turnover in the eccentricity occurs
much later—both features that are expected in true inspi-
rals. The different trajectories also plunge at somewhat
-5
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FIG. 2. Improved inspiral trajectories after implementation of
the fix described in the text. We show inspirals in the equatorial
plane of a black hole with spin a � 0:9M. The solid lines
correspond to using the post-Newtonian _E expression (4) to
correct the angular momentum flux, _Lz. The dashed lines corre-
spond to using the post-Newtonian _Lz expression (5) to correct
the energy flux, _E.
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FIG. 3. Inspirals into a black hole of spin a � 0:9M for initial
eccentricity e � 0:3 and initial semilatus rectum p � 10M.
These inspirals were computed using the fluxes (4) and (5),
but without the small-eccentricity correction. The inspirals are
shown for initial inclinations of � � 75�, 80�, 85�, 100� and
105�.

JONATHAN R. GAIR AND KOSTAS GLAMPEDAKIS PHYSICAL REVIEW D 73, 064037 (2006)
more different points. There is some excess growth in
eccentricity close to plunge, but this is due to the failure
of the GHK flux expressions (4) and (5). Using higher
order expressions (see Sec. V) eliminates this feature. We
conclude that it does not make too much difference how the
fix is imposed, but imposing the fix gives a significant
improvement in the qualitative behavior of the inspirals
deep in the strong-field region of the spacetime.

In the limit of a nearly polar orbit, we find that
e�@e=@Lz�jE;� and e�@e=@��jE;L both diverge like 1=Lz,
while e�@e=@E�jL;� is finite (this will be discussed in
more detail in the next section). As a result, if we specify
_Lz and _� and use (13) to correct the circular piece of _E, the

correction diverges in the limit �! �=2. Therefore, when
evolving � one should use _E and _� to correct _Lz. However,
if we evolve Q instead of �, the functions e�@e=@Lz�jE;Q
and e�@e=@Q�jE;L are both finite at the pole and there is no
problem. However, e�@e=@Lz�jE;Q vanishes for certain ret-
rograde orbits. Using _E and _Q to correct _Lz would there-
fore lead to a divergence at this point (unless _E and _Q are
constrained to cancel appropriately). Thus, when evolving
Q, it is better to use _Lz and _Q to correct _E . The modified _E
is

_E � �1� e2�3=2

�
�1� e2���3=2�� _E�GHK�p; �; e; a�

� � _E�GHK�p; �; 0; a� �
N4�p; ��
N1�p; ��

� _Lz�GHK�p; �; 0; a�

�
N5�p; ��
N1�p; ��

� _Q�GHK�p; �; 0; a�
�
: (20)

In this, � _E; _Lz; _Q�GHK refer to the prescription of the energy
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and angular momentum fluxes being used, e.g., (5) and (7)
in this case. If the fluxes are modified (e.g., to the 2PN
expressions given in Sec. V) the correction is applied as
above, with � _E�GHK replaced by � _E�2PN etc.

IV. CORRECTING THE BEHAVIOR OF NEARLY
POLAR INSPIRALS

The GHK hybrid scheme also exhibits some pathologi-
cal behavior for orbits that are nearly polar, i.e., with � �
�=2. In Fig. 3 we show inspirals for four different initial
inclination angles, computed under the original GHK
scheme. The inspirals have two strange properties. First,
the transition passing across the pole is not smooth—there
is a discontinuity between trajectories with � slightly less
than 90�, and those with � slightly above 90�. In fact, it is
not possible to compute trajectories in this approximation
for � slightly less than 90�, since it predicts an increase in
p. Second, orbits with high prograde inclinations rapidly
circularize, which is unphysical. This latter effect looks
like a manifestation of the problem _e / 1=e for small e
discussed in the previous section, but the coefficient of
proportionality is now positive. We might hope that the
correction for near-circular orbits discussed above will fix
this problem. Figure 4 shows the same set of inspirals,
computed including the near-circular correction (20). As
expected, the correction does fix the rapid circularization
problem, but the transition across the pole is still
discontinuous.

The remaining problem near � � �=2 can again be
understood by considering the behavior of _e (or _p) in
that limit. The derivatives @e=@Lz and @e=@� are both
singular, diverging like sec� as �! �=2. This is clear
from looking at N2�r� and N3�r� in that limit (10). In
-6
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fact, in terms of the Carter constantQ of the polar orbit, we
find

N2�r� �
����
Q

p
��r2 	 2Mr� a2� sec�;

N3�r� � Q��r2 	 2Mr	 a2� sec�)
N3�r�
N2�r�

�
����
Q

p
:

(21)

The divergence of _e, which corresponds to a divergence in
_rp and _ra is unphysical. It will be avoided if the singular-
ities in the Lz and � fluxes cancel appropriately, which
implies

_L z

�
p; e; � �

�
2

�
� �

��������������������������������
Q
�
p; e; � �

�
2

�s
_�
�
p; e; � �

�
2

�
:

(22)

There is nothing special about polar orbits which should
allow us to specify an additional condition, so where does
(22) come from? This is answered by looking at the
derivative of the Carter constant

_Q � 2Lztan2� _Lz 	 2L2
z tan�sec2� _�

� 2
����
Q

p sin�
cos�

�
_Lz 	

����
Q

p 1

sin2�
_�
�
: (23)

The condition (22) is equivalent to requiring that _Q is finite
in the limit �! �=2. The problem has arisen because we
have chosen to evolve the inclination angle rather than
evolve Q directly. A real radiation field will generate a
finite change in the Carter constant, and the rate of change
of � computed from this will automatically satisfy (22).
The main thing this tells us is that the constant inclination
approximation, _� � 0, is unphysical—polar orbits lose
angular momentum, which drives them to become retro-
grade. An alternative prescription for the evolution of � is
therefore required. If we specify _Lz and _� at some post-
Newtonian order, the relation (22) will not hold exactly, as����
Q
p

is accurate to arbitrary PN order. We can account for
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this by adding a correction to _Lz, as for the near-circular
correction. However, since this correction is only required
at the pole, it is difficult to extend it smoothly to nonpolar
orbits. The need for a correction can be eliminated entirely
if we evolveQ instead of �, i.e., we choose to specify _Q and
derive _� from this.

Ryan’s expression [19] for _Q, written in terms of our
orbital elements is

_QR � �
64

5
�3

�
M
p

�
3
�1� e2�3=2sin2�

�
f3�e� �

a
M

�
M
p

�
3=2

� cos�f6�e�
�
; (24)

with

f3�e� � 1	
7

8
e2; f6�e� �

85

8
	

211

8
e2 	

517

64
e4:

(25)
We can use this in conjunction with the fluxes (4) and (5) to
compute inspirals. Figure 5 shows the set of inspirals
depicted in Figs. 3 and 4, but now evolved using (24)
instead of the constant inclination approximation. The
resulting inspirals now change smoothly as the inclination
angle is increased. However, the change in � over the
course of the inspiral is much too large when compared
to the results of Teukolsky computations for circular orbits
[15]. This is the reason GHK chose to evolve � rather than
Q. In Sec. VI we will show how to improve the approxi-
mation for _Q to give more reasonable evolutions.

V. INCLUSION OF HIGHER ORDER POST-
NEWTONIAN FLUXES

The corrections discussed in the previous two sections
must be applied in any version of the hybrid scheme, and
ensure that the inspiral properties are physically reason-
able. However, the expressions used to evolve E, Lz and Q
-7
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can be improved, to give better agreement with perturba-
tive calculations [12,13,15].

A. Equatorial orbits

A natural way to extend GHK is to replace (4) and (5)
with higher order expressions for the evolution of E and Lz.
Tagoshi [17] derived 2.5 Post-Newtonian (PN) fluxes for
the case of equatorial and eccentric orbits under the as-
sumption of small eccentricity [Tagoshi kept up to O�e2�
terms]. The assumption of small e is not as restrictive as it
initially sounds, as can be demonstrated by comparing
inspirals generated using the GHK fluxes (4) and (5) to
those generated using GHK truncated at O�e2�. This com-
parison is shown in Fig. 6 and indicates that inspirals can
be faithfully reproduced using the e-truncated fluxes pro-
vided e & 0:8. We expect the same to be true for the higher
order PN fluxes that we construct below.

In his calculation, Tagoshi [17] describes the test-body’s
orbital motion with the parameters r0, ej and v2 � M=r0.
The parameter r0 is the radius at which the potential, Vr,
governing the radial motion has a minimum. Then, ej is
defined by the requirement that r � r0�1	 ej� is a turning
point for the radial motion, i.e. Vr�r � r0�1	 ej�� � 0. It
turns out that the radial motion r�t�, to O�e2

j � accuracy, is
given by

r�t� � r0�1	 ejr�1��t� 	 e2
jr
�2��t� 	O�e3

j �
; (26)

where

r�1��t� � cos�rt; (27)

r�2��t� � q3�1� cos�rt� 	 q4�1� cos2�rt�: (28)

The quantity �r is the angular frequency associated with
the radial motion, while q3, q4 are functions of r0 and the
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hole’s spin q � a=M (we write explicitly only the former),

q3�r0� � 1�
M
r0
	 2q

�
M
r0

�
3=2
� �6	 q2�

�
M
r0

�
2

	 20q
�
M
r0

�
5=2
	O�v6�: (29)

From Eq. (26) we can immediately see that the apoastron
and periastron are given by

ra � r0�1	 ej� 	O�e3
j �; (30)

rp � r0�1� ej 	 2q3e2
j � 	O�e3

j �: (31)

The averaged fluxes at infinity are given by [17],
_E � �
32

5

�2

M2 v
10

�
1�

1247

336
v2 	 4�v3 �

73

12
qv3 �

44 711

9072
v4 	

33

16
q2v4 �

8191

672
�v5 	

3749

336
qv5

	 e2
j

�
37

24
�

65

21
v2 	

1087

48
�v3 �

211

6
qv3 �

465 337

9072
v4 	

105

8
q2v4 �

118 607

1344
�v5 �

95 663

672
qv5

�
	O�v6�

�
;

_Lz � �
32

5

�2

M
v7

�
1�

1247

336
v2 	

�
4��

61

12
q
�
v3 	

�
�

44 711

9072
	

33

16
q2

�
v4 	

�
�

8191

672
�	

417

56
q
�
v5

	 e2
j

�
�

5

8
	

749

96
v2 	

�
49

8
��

57

4
q
�
v3 	

�
�

232 181

6048
	

203

32
q2

�
v4 	

�
773

336
��

28 807

224
q
�
v5

�
	O�v6�

�
: (32)
In order to adapt these fluxes to the GHK scheme, we
first need to rewrite them in terms of our parameters p and
e. Assuming a small eccentricity, e� 1, we have

ra �
p

1� e
� p�1	 e	 e2� 	O�e3�; (33)

rp �
p

1	 e
� p�1� e	 e2� 	O�e3�: (34)

Combining these with Eqs. (30) and (31) leads to
ej � e	 e2q3�p�; (35)

1

r0
�

1

p
�1	 e2�q3�p� � 1�
: (36)

It is now straightforward to rewrite the fluxes (32) in terms
of p and e. To enhance accuracy, we adopt the approach
‘‘where possible, include higher order terms in e’’ (for
example, by comparing with Ryan’s expressions). In par-
ticular, we must have the factor �1� e2�3=2 to ensure the
-8
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behavior is qualitatively correct for high eccentricity, as
discussed earlier in the context of the near-circular correc-
tion. We find

_E � �
32

5

�2

M2

�
M
p

�
5
�1� e2�3=2

�
g1�e� � q

�
M
p

�
3=2
g2�e�

�

�
M
p

�
g3�e� 	 �

�
M
p

�
3=2
g4�e� �

�
M
p

�
2
g5�e�

	 q2

�
M
p

�
2
g6�e� � �

�
M
p

�
5=2
g7�e� 	 q

�
M
p

�
5=2
g8�e�

�
;

(37)
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_Lz � �
32

5

�2

M

�
M
p

�
7=2
�1� e2�3=2

�
g9�e� � q

�
M
p

�
3=2
g10�e�

�

�
M
p

�
g11�e� 	 �

�
M
p

�
3=2
g12�e� �

�
M
p

�
2
g13�e�

	 q2

�
M
p

�
2
g14�e� � �

�
M
p

�
5=2
g15�e�

	 q
�
M
p

�
5=2
g16�e�

�
; (38)

where the various e-dependent coefficients are
g1�e� � 1	
73

24
e2 	

37

96
e4; g2�e� �

73

12
	

823

24
e2 	

949

32
e4 	

491

192
e6;

g3�e� �
1247

336
	

9181

672
e2; g4�e� � 4	

1375

48
e2;

g5�e� �
44 711

9072
	

172 157

2592
e2; g6�e� �

33

16
	

359

32
e2;

g7�e� �
8191

672
	

44 531

336
e2; g8�e� �

3749

336
�

5143

168
e2;

g9�e� � 1	
7

8
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61
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8
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g11�e� �
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97

8
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g13�e� �
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33

16
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16
e2;

g15�e� �
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48 361

1344
e2; g16�e� �

417

56
�
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672
e2: (39)
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FIG. 7. Determining which PN order is more reliable: the
figure shows inspirals with initial parameters p � 20M, e �
0:5 and spin a � 0:5M generated using the fluxes (37) and (38)
truncated at 2.5PN (dashed curve) and 2PN (solid curve). It is
clear that 2PN is the best choice.
It is a well known fact that PN expansions are characterized
by poor convergence, that is, a higher PN order does not
necessarily mean more accurate result. The same behavior
is found in these fluxes also. After some testing we found
that the optimal order is 2PN (in agreement with the
literature on the subject). This is illustrated in Fig. 7 where
we compare 2PN with 2.5PN fluxes. Note that, in this and
subsequent figures, we are including the near-circular cor-
rection (20) and, for inclined inspirals, are evolving the
inclination by prescribing _Q.

Figure 8 illustrates a set of inspirals computed using the
revised fluxes (37) and (38) (truncated at 2PN level). These
represent equatorial inspirals into a black hole of spin a �
0:8M. This is one case for which the original GHK scheme
did not perform accurately. The revised inspirals are a
significant improvement over the GHK results, particularly
near the separatrix. Comparison of the numerical values of
_Lz and _E with the results of Teukolsky-based calculations

[13] also indicate we are making a significant improve-
ment.
-9



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2  4  6  8  10  12  14  16  18  20

e

p/M

FIG. 8. Equatorial inspirals generated with the help of the new
fluxes (37) and (38) (solid curves) compared to the original GHK
inspirals (dashed curves). The initial parameters are p � 20M,
e � 0:6 and p � 10M, e � 0:6 for black hole spin a � 0:8M.

JONATHAN R. GAIR AND KOSTAS GLAMPEDAKIS PHYSICAL REVIEW D 73, 064037 (2006)
B. Extension to nonequatorial inspirals

The results presented in the previous section apply only
to equatorial orbits, but ultimately the goal is to improve
064037
the inspiral of generic (inclined and eccentric) orbits. The
only available higher order PN expansion for inclined
orbits has been derived by Shibata et al. [18] for the case
of circular orbits with small inclination. Shibata et al. use
the inclination parameter

y �
Q

L2
z 	 a

2�1� E2�
; (40)

and assumed that this is a small number. The relation
between y and our inclination angle � is

cos 2� �
1

1	 y�1	 a2�1� E2�=L2
z

; (41)

which for small �, y and to 2PN accuracy becomes

y � �2�1� a2�1� E2�=L2
z
 � �2�1� �a=M�2�M=p�2
:

(42)

The fluxes derived by Shibata et al. are given by
_E � �
32

5

�2

M2 v
10

�
1�

1247

336
v2 	 4�v3 �

73

12
qv3�1� y=2� �

44 711

9072
v4 	

33

16
q2v4 �

527

96
q2v4y	O�v5�

�
;

_Lz � �
32

5

�2

M
v7

�
1� y=2�

1247

336
v2�1� y=2� 	 4�v3�1� y=2� �

61

12
qv3�1� 3y=2� �

44 711

9072
v4�1� y=2�

	 q2v4

�
33

16
�

229

32
y
�
	O�v5�

�
:

(43)
At 2PN accuracy, we find that 1� y=2 � 1� �2=2	
�2=2�a=M�2�M=p�2. Term by term comparison (where
possible) between expressions (43) and Ryan’s fluxes (4)
and (5) suggests the correspondence 1� y=2! cos� and
1� 3y=2! �1=2	 3=2cos2� when one goes from small
to arbitrary inclination for these terms. For the 2PN q2

terms, we expect _E to contain terms proportional to 1 and
cos2�, while _Lz should contain pieces proportional to cos�
and cos3� [22]. This is born out by fits to circular Teukolsky
computations [12] (see Sec. VI C 1).
The cosine terms contribute in the equatorial plane and
therefore, using (37) and (38), we know the e-dependent
factors that multiply them. However, this is not true for the
sine terms. Consequently, we expect terms that contain sin�
to be incomplete and of modest accuracy. Nevertheless we
have included them in our fluxes (and verified that for
orbits not close to the equator these terms play an impor-
tant role). Putting together all of the above, we extend the
fluxes (37) and (38) to generic orbits as follows:
� _E�2PN � �
32
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M
p

�
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�1� e2�3=2

�
g1�e� � q

�
M
p
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g2�e� cos��

�
M
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�
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�
M
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3=2
g4�e�

�

�
M
p
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g5�e� 	 q2

�
M
p

�
2
g6�e� �
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96
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�
M
p

�
2
sin2�	O�v5�

�
; (44)

� _Lz�2PN � �
32
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M
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M
p

�
7=2
�1� e2�3=2

�
g9�e� cos�	 q

�
M
p

�
3=2
fga10�e� � cos2�gb10�e�g �

�
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p

�
g11�e� cos�

	 �
�
M
p

�
3=2
g12�e� cos��

�
M
p

�
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M
p

�
2

cos�
�
g14�e� �
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8
sin2�

�
	O�v5�

�
; (45)

where
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ga10�e� �
61

24
	

63

8
e2 	

95

64
e4;

gb10�e� �
61

8
	

91

4
e2 	

461

64
e4:

(46)

As discussed earlier, we have included higher order eccen-
tricity terms where possible and truncated the series at 2PN
level. We must also remember that we do not actually use
the circular pieces of the _E expression (44), but determine
these using the circular fix (20).

Some numerical inspirals produced by incorporating
these fluxes in the GHK scheme are shown in Fig. 9, along
with the original GHK inspirals for comparison. These are
inspirals into a black hole with spin a � 0:9M for two
different inclinations—� � 30� and � � 60�. We are
evolving Q using Ryan’s expression (24). As for the case
of equatorial orbits, we find that the new fluxes produce
inspirals that are more physically reasonable than the
original GHK results.

VI. AN IMPROVED PRESCRIPTION FOR THE
CARTER CONSTANT FLUX

The constant inclination approximation (7) is a ‘‘spheri-
cal’’ approximation in the sense that it is exact in the limit
a! 0. In Sec. IV we saw that _� � 0 cannot be used to
evolve nearly polar orbits. High inclination orbits offer the
orbiting body an opportunity to more effectively probe the
aspherical nature of the Kerr metric, thus it is not surprising
that the ‘‘spherical’’ rule fails in such cases. Unfortunately,
the available (and approximate) expressions for computing
_Q for generic orbits are extremely limited. Ryan’s weak-

field expression [19] gives rather poor results. As discussed
in [16], the bulk of the change in Q is reliably captured by
Eq. (7). Hence, we will attempt to add a correction to this
expression in order to improve the inspirals.
064037
A. What is the connection between the ‘‘spherical’’ _Q
and the Kennefick-Ori formula?

Kennefick and Ori [21] give an expression for the evo-
lution of the Carter constant in terms of the theta compo-
nent of the self-force. Expressing the Carter constant as

Q � p2
� 	 cos2��a2��2 � E2� 	 sin�2�L2

z


� p2
� 	H�E;Lz; ��; (47)

the Kennefick-Ori formula [Eq. (11) of [21]] gives

_Q � H;E
_E	H;Lz

_Lz 	
2�u�

ut
F�; (48)

where � � r2 	 a2cos2�. Writing this explicitly,

_Q � �2a2Ecos2� _E	 2Lzcot2� _Lz 	
2�u�

ut
F�: (49)

This formula and the spherical _Q (7) have both been
discussed and used in calculations in the extreme mass
ratio literature over recent years [12,16,21]. However, as
yet there has been no discussion on their relation.

In the a! 0 limit, the first term of (49) vanishes, �!
r2, the Carter constant becomes Q � L2

tot � L
2
z (where Ltot

is the total angular momentum) and the inclination angle �
becomes the true inclination of the orbital plane, tan2� �
Q=L2

z . Taking the y-axis to lie in the orbital plane, without
loss of generality, the Boyer-Lindquist coordinates of the
particle at any point of the orbit obey the relation

f��;�� � cos�� sin� cos� tan� � 0: (50)

Symmetry ensures that the self-force has no component
perpendicular to the orbital plane and therefore

u � n � 0 � F � n)
F�

F�
�
u�

u�
�

sec� tan�

sec2� tan�

� sin2�
����������������������������
tan2�� cot2�

p
: (51)

In this, n� � @f=@x� is the normal to the orbital plane and
u� � dx�=d� is the particle four-velocity. The third term
in Eq. (49) thus becomes

2�u�

ut
F� �

2r4u�F�

ut
� 2

�
u�

u�

�
2
r4 u

�F�

ut

� 2
�tan2�� cot2��

ut
u�F�: (52)

But, u� � Lz and F� � dLz=d�, so F�=ut � _Lz and (49)
becomes

_Q � 2�cot2�	 tan2�� cot2��Lz _Lz � 2tan2�Lz _Lz

� 2Q
_Lz
Lz
; (53)

which brings (49) to the form (7). Switching back on the
spin makes (49) depart from its spherical value and con-
sequently � to change. It is easy to deduce that some
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leading order (with respect to the spin) terms will be
provided by the third term in (49). This is because the
leading order change in F� is linear in a, as can be found
from Ryan’s expressions for the self-force [19]. The first
term, on the other hand, contributes only at O�a2�.

B. An improved formula for _Q

If we expand the spherical formula (7) at the PN order of
Ryan’s expression, we find

_Qsph � �
64

5
�3

�
M
p

�
3
�1� e2�3=2sin2�

�
f3�e�

	
q

cos�

�
M
p

�
3=2
ff4�e� � cos2�f6�e�g

�
; (54)

where f4�e� � 61=24	 63e2=8	 95e4=64 as in Eq. (6),
and q � a=M as before. We see that the O�a� piece of this
expression is not the same as in Eq. (24) which by con-
struction includes all terms of this order. We conclude that
there is an O�a� piece missing in the spherical _Q formula.
Written explicitly,

�Q � _QR � _Qsph �
64

5
�3

�
M
p

�
9=2
�1� e2�3=2q

sin2�
cos�

f4�e�:

(55)

This piece represents the leading ‘‘aspherical’’ contribu-
tion to _Q. This gives rise to an evolution in �. We note,
however, that this term is divergent at the pole, since it is
proportional to 1= cos�. This is a manifestation of the near
polar problem discussed in Sec. IV. In reality, _Q will be
finite at the pole, so physically _�must be what is required to
cancel all of the divergent pieces of the spherical _Q. We
can therefore derive an improved prescription for _Q by
expanding the spherical formula (7) and removing all terms
that diverge at the pole. In this way, we derive from the
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2PN angular momentum flux (45) a new expression for _Q
of the form
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sin�
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: (56)

This method for prescribing _Q removes the divergences at
the pole, but is incomplete, since it tells us nothing about
the pieces of _� that vanish at the pole (or equivalently, the
corrections to the nondivergent pieces of _Q that come from
_� � 0). Nonetheless, this is an improved prescription for
the evolution of Q. In the next section we derive a further
improvement to the circular piece of the _Q expression.

C. Fitting to Teukolsky data

1. Circular orbits

The evolution of circular-inclined orbits has been com-
puted accurately by solution of the Teukolsky equation
[12,15]. We can use these results to improve the circular
piece of our expression for _Q. It turns out that the best
results are obtained by fitting functions to the Teukolsky _Lz
and _� data, and deriving _Q from these, via expression (23).

Using data provided by Scott Hughes, we find that a
good fit to the angular momentum flux _Lz for circular
orbits is given by the function
� _Lz�fit��
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where

da1 ��10:7420; db1 � 28:5942; dc1 ��9:07738; da2 ��1:42836; db2 � 10:7003; dc2 ��33:7090;

ca1 ��28:1517; cb1 � 60:9607; cc1 � 40:9998; ca2 ��0:348 161; cb2 � 2:372 58; cc2 ��66:6584;

ca3 ��0:715392; cb3 � 3:215 93; cc3 � 5:288 88; ca4 ��7:61034; cb4 � 128:878; cc4 ��475:465;

ca5 � 12:2908; cb5 ��113:125; cc5 � 306:119; ca6 � 40:9259; cb6 ��347:271; cc6 � 886:503;

ca7 ��25:4831; cb7 � 224:227; cc7 ��490:982; ca8 ��9:006 34; cb8 � 91:1767; cc8 ��297:002;

ca9 ��0:645000; cb9 ��5:135 92; cc9 � 47:1982; fa1 ��283:955; fb1 � 736:209; fa2 � 483:266;

fb2 ��1325:19; fa3 ��219:224; fb3 � 634:499; fa4 ��25:8203; fb4 � 82:0780; fa5 � 301:478;

fb5 ��904:161; fa6 ��271:966; fb6 � 827:319: (57)

Similarly, a good fit to the evolution of � is given by
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where

ca10 � �0:030 934 1; cb10 � �22:2416; cc10 � 7:552 65; ca11 � �3:334 76; cb11 � 22:7013;

cc11 � �12:4700; fa7 � �162:268; fb7 � 247:168; fa8 � 152:125; fb8 � �182:165;

fa9 � 184:465; fb9 � �267:553; fa10 � �188:132; fb10 � 254:067: (58)
The pieces of _Lz and _� that are nonvanishing at the pole
were constrained to cancel so that the derived _Q is finite
there. The d coefficients describe these terms. The spin and
inclination terms are polynomial in q and cos� and take the
form of the next post-Newtonian terms that should enter
the flux expressions. The p-dependence of the fit starts at
2.5PN order, but the factors of p are not consistent with the
post-Newtonian orders of the spin and inclination terms
they multiply. The c coefficients were obtained by a fit to
data in the range p � 5M to p � 30M. A fit that was
consistent with post-Newtonian expansions was also de-
rived, but this exhibited pathological behavior when it was
used at low p. The above form of the fit is virtually
identical in the range over which the fit was derived, but
does not show the same problems for p! M. Data was
also available for some orbits with p � 3M. The parts of
the fits parametrized by the f coefficients were derived to
reduce the errors in the first fit at p � 3M and p � 5M.
The p-dependence was taken to be of a simple form that
went to zero asymptotically at least as quickly as the rest of
the fit. This ensured the quality of the fit was not degraded
at large p. Note that several of the f terms in the _Lz fit have
the same form as the c coefficient terms. These are sepa-
rated in (57) only because they were derived in these two
different ways.
064037
The fit matches the data to an accuracy of <3% at all
points. It should be trustworthy in the region p > 3M, but it
will be less accurate as p! M since data was not used in
this range. However, the fit is such that the behavior in this
regime is qualitatively correct, namely _Lz < 0 for near
equatorial prograde orbits and _� > 0 for all orbits.
Inspirals generated using this hybrid scheme will therefore
evolve in a reasonable way, but the evolution will not be
entirely accurate as the particle gets close to the central
black hole. As this last stage of inspiral is very rapid
anyway, the loss of accuracy in this regime should not
affect the use of the hybrid scheme for exploring the
inspiral problem. Moreover, the flux comparisons given
in Sec. VII B indicate that the hybrid scheme does pretty
well even for very strong-field orbits.

As discussed in Sec. IV, we want to specify _Q rather than
_� in the hybrid scheme. A suitable expression for _Q is
obtained by substituting expressions (57) and (58) into
Eq. (23). By including the factor sin2�=

����
Q
p

in the _� fit,
we ensure that the divergent terms cancel precisely and _Q
is finite everywhere. The procedure of fitting _� and deriving
_Q may seem more convoluted than fitting for _Q directly,

but it ensures that the evolution of the inclination angle is
always sensible, and thus generates more physically real-
istic inspirals. We have not presented a fit for _E here, but
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this is not necessary since the evolution of energy for
circular orbits is determined precisely by the evolution of
Lz and Q when we apply the circular orbit correction
described in Sec. III.

This procedure has allowed us to improve the hybrid
fluxes for circular orbits, but we have not yet improved the
eccentricity-dependent terms in the fluxes. However, as
discussed earlier, we must include the usual �1� e2�3=2

prefactor to ensure reasonable behavior in the limit e! 1.
The resulting expression for _Lz is

� _Lz�mod � �1� e
2�3=2��1� e2���3=2�� _Lz�2PN�p; �; e; a�

� � _Lz�2PN�p; �; 0; a� 	 � _Lz�fit
 (59)

in which the subscript ‘‘2PN’’ refers to expression (45) and
the subscript ‘‘fit’’ refers to expression (57). We obtain the
expression for _Q=

����
Q
p

in the same way:

� _Q�mod � �1� e2�3=2
�������������������������
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	 2 tan�
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Q�p; �; 0; a�

p
sin2�

� _��fit

��
: (60)

The final expression for _E is still obtained from Eq. (20)
and expression (44).

2. Eccentric orbits

The expressions quoted above are missing some
eccentricity-dependent pieces. The omission of these ec-
centricity terms manifests itself as some unphysical behav-
ior for inspirals generated using the hybrid scheme. For
prograde equatorial orbits with radius p � 2M around a
black hole of spin a � 0:99M, we find that the magnitude
of _Lz becomes smaller as the orbital eccentricity increases,
in stark contrast to the behavior of Teukolsky generated
fluxes (see Table I). For eccentricity e > 0:3 we find _Lz >
0 and _p > 0 which is unphysical. Glampedakis and
Kennefick [13] tabulate Teukolsky-based fluxes for
equatorial-eccentric orbits and these can be used to derive
an additional eccentricity-dependent correction to the
fluxes. However, the inclination dependence of this correc-
tion is unknown since the data is provided for equatorial
orbits only, and it is difficult to constrain the p dependence
with the limited data provided in [13]. Recently, Sago et al.
published new 2PN results for the energy and angular
momentum fluxes from orbits with small eccentricity and
small inclination [23]. After rewriting the expressions in
our coordinates, these results confirm the extrapolations
that lead us to Eqs. (44) and (45) and also give the eccen-
tricity dependence of one of the 2PN terms that we could
not otherwise derive. We deduce that Eqs. (44) and (45)
should only change in the final term, with the modifications
064037
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When these expressions (adding the consistency correc-
tions and the fit for the circular flux) were tested by
comparison to Teukolsky-based results, they were found
to perform less well than the version of the hybrid scheme
described above. It is not clear why this is the case. The
new results in [23] are inconsistent at 2.5PN order with the
results in [7]. Although we do not use the 2.5PN order
results, it is possible the inconsistency is indicative of some
other error which might also have affected the new eccen-
tricity terms above. However, it may just be that the new
expressions do not perform well because we are using a
weak-field expansion (the PN expansion) and applying it in
the strong field. The motivation for developing the hybrid
scheme was to find a set of expressions that reproduce
accurate, Teukolsky-based results as closely as possible.
In that spirit, we recommend ignoring these new correc-
tions and using the expressions quoted in Secs. V, VA, V B,
VI, VI A, VI B, and VI C 1 instead. Once the new results
have been more thoroughly tested, and perhaps augmented
with further fits to Teukolsky-based data, it might be
possible to improve our expressions further, but this will
be considered in future publications.

Recent work by Sago et al. [24], based on a paper by
Mino [25], provides an expression for the time evolution of
the Carter constant, Q, which uses the same Teukolsky
variables needed for the computation of the energy and
angular momentum fluxes. The paper [23] makes use of
this expression to derive a 2PN formula for _Q as well. The
analogue of Eq. (56) is found to be
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: (61)

Note that Sago et al. actually give a 2PN expression for _Q,
not _Q=

����
Q
p

as given above. We quote the above result,
obtained by expanding

����
Q
p

at 2PN order and comparing
to Sago et al.’s results, for consistency with (56). Also note
that Sago et al.’s results were computed to linear order in
�2, so it is not possible to determine any pieces proportional
to sin2� in the final term of Eq. (61), although such terms
are present in expression (56).
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FIG. 10. Location of the critical radius rcrit, at which the _e � 0
curve intersects the e � 0 axis for equatorial orbits, as a function
of spin. The pluses mark points computed using Teukolsky
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computed using the hybrid scheme described in this paper.
The agreement between the two curves is within �5% for all
spins.
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Equation (61) shows amazing agreement with our pre-
vious result, considering the way in which the latter was
derived and this gives us some confidence in our approach.
At present, there is no strong-field Teukolsky-based data
for dQ=dt, so we have no way of determining if Eq. (61)
performs better than (56). Because of the inconsistencies in
[23] mentioned above, at present we suggest ignoring (61)
and using (56) [more precisely, (56) augmented with the
circular fit (60)]. As Teukolsky data based on the new
formula for dQ=dt [24] becomes available, we will be
able to assess the alternative expressions for dQ=dt and
determine which gives the best results in the hybrid
scheme.

The results given in the following section are based on
Eqs. (44), (45), and (56), augmented with the near-circular
correction (13) and the fits to circular Teukolsky data (57)–
(60). We recommend using this form of the hybrid scheme
in calculations, although one should bear in mind that the
eccentricity pieces in these fluxes are incomplete and the
fluxes are unphysical in a few small regions of parameter
space. However, the unphysical behavior appears only very
close to plunge, thus the hybrid scheme in its current form
should be adequate for most applications. Once Teukolsky-
based data is available for a wider range of generic orbits it
will be possible to compute a significantly more accurate fit
to the missing eccentricity-dependent pieces. As we saw
earlier, it is likely that fitting only the e2 pieces of
Teukolsky-based fluxes will be sufficient to give accurate
inspirals and this will be pursued in the future.

VII. INSPIRAL PROPERTIES

A. Stability of nearly circular orbits

Kennefick [20] examined the stability of nearly circular
orbits in the equatorial plane using Teukolsky-based cal-
culations. This involved expanding the eccentricity deriva-
tive _e near e � 0. As described above, we expect
_e � f�p�e near e � 0. For orbits very close to the separa-
trix, _e > 0 as e! 0, while for orbits with larger periapse,
_e < 0 in that limit. It is possible to find the point where the
transition in behavior occurs, i.e., where f�p� � 0. The
locus of points where _e � 0 is important for determining
the global properties of inspiral trajectories, and the root
f�p� � 0 is the point where this curve intersects the e � 0
axis. Figure 8 indicates that the improvements to the hybrid
scheme move the point where _e changes sign in a given
inspiral much closer to plunge when compared to the
original GHK scheme. This is in keeping with the results
presented in [20]. We can compute the root f�p� � 0 as a
function of the black hole spin, a=M, for the new hybrid
fluxes and compare this to Kennefick’s results (these were
corrected in [13] and we use the corrected values in this
plot). This comparison is shown in Fig. 10. We find that the
agreement in the location of the critical radius is extremely
good, within �5% for all values of the black hole spin.
This is particularly remarkable since the location of the
064037
critical radius depends on the leading eccentricity terms in
the fluxes, and we have already seen that the 2PN expres-
sions used are somewhat inaccurate close to the separatrix.
The structure of the inspiral phase space depends signifi-
cantly on two curves—the separatrix at which orbits
plunge, and the critical curve _e � 0, where inspirals turn
up. The hybrid scheme includes the correct separatrix by
construction and Fig. 10 indicates that the new hybrid
fluxes recover the critical curve very well, so we can
have some confidence that inspirals generated under this
improved hybrid scheme are qualitatively correct.

B. Flux comparisons

The hybrid flux expressions allow us to compute the
rates of loss of energy and angular momentum from an
arbitrary geodesic orbit. The true fluxes are given by
solution of the Teukolsky equation, and we can compare
the hybrid results to existing Teukolsky-based results avail-
able in the literature. This comparison is shown in Table I.
The table is divided into three sections. The top section is
for circular and inclined orbits, for which the Teukolsky
data was provided by Scott Hughes [12]. The middle
section is for eccentric and equatorial orbits, for which
the Teukolsky data was taken from Glampedakis and
Kennefick [13]. The bottom section is for generic orbits,
and the Teukolsky data was taken from Drasco and Hughes
[14]. In each case we tabulate the hybrid and Teukolsky-
based fluxes of energy and angular momentum, plus the
rate of change of inclination angle. Drasco and Hughes use
the spherical formula (7) to evolve the inclination angle,
which we have seen to be inaccurate. The Teukolsky
results should not therefore be regarded as more accurate
for that comparison.
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TABLE I. Comparison of hybrid and Teukolsky-based results. We tabulate the fluxes of energy and angular momentum and the rate
of change of the inclination angle, �, for a variety of geodesics. These are divided into circular/inclined (top section), eccentric/
equatorial (middle section) and eccentric/inclined (bottom section).

�M=��2 _E �M=�2� _Lz �M3=�2� _�
a=M p=M e � Teuk Hybrid Teuk Hybrid Teuk Hybrid

0.05 100 0 60 �6:237� 10�10 �6:237� 10�10 �3:119� 10�7 �3:119� 10�7 6:706� 10�12 6:718� 10�12

0.95 100 0 60 �6:219� 10�10 �6:219� 10�10 �3:122� 10�7 �3:122� 10�7 1:267� 10�10 1:268� 10�10

0.05 7 0 60 �3:951� 10�4 �3:958� 10�4 �3:697� 10�3 �3:704� 10�3 1:104� 10�5 1:107� 10�5

0.95 7 0 60 �3:055� 10�4 �3:051� 10�4 �3:368� 10�3 �3:362� 10�3 1:706� 10�4 1:701� 10�4

0.5 5 0.1 0 �1:813� 10�3 �1:787� 10�3 �2:063� 10�2 �2:019� 10�2 0 0
0.5 5 0.2 0 �2:087� 10�3 �1:951� 10�3 �2:208� 10�2 �2:019� 10�2 0 0
0.5 5 0.3 0 �2:601� 10�3 �2:170� 10�3 �2:480� 10�2 �2:001� 10�2 0 0
0.99 2 0.1 0 �4:4067� 10�2 �3:938� 10�2 �1:657� 10�1 �1:204� 10�1 0 0
0.99 2 0.2 0 �4:723� 10�2 �4:702� 10�2 �1:700� 10�1 �7:249� 10�2 0 0
0.99 2 0.3 0 �5:444� 10�2 �5:084� 10�2 �1:771� 10�1 2:395� 10�3 0 0
0.99 3 0.1 0 �1:083� 10�2 �1:096� 10�2 �6:583� 10�2 �6:293� 10�2 0 0
0.99 3 0.2 0 �1:153� 10�2 �1:259� 10�2 �6:684� 10�2 �6:001� 10�2 0 0
0.99 3 0.3 0 �1:262� 10�2 �1:439� 10�2 �6:825� 10�2 �5:473� 10�2 0 0
0.99 11 0.1 180 �4:961� 10�5 �4:932� 10�5 1:736� 10�3 1:711� 10�3 0 0
0.99 11 0.2 180 �5:589� 10�5 �5:248� 10�5 1:821� 10�3 1:709� 10�3 0 0
0.99 11 0.3 180 �6:657� 10�5 �5:687� 10�5 1:963� 10�3 1:695� 10�3 0 0

0.9 6 0.1 40.192 285 �6:145� 10�4 �6:196� 10�4 �7:551� 10�3 �7:534� 10�3 0 2:611� 10�4

0.9 6 0.3 40.176 668 �7:209� 10�4 �7:512� 10�4 �7:641� 10�3 �7:632� 10�3 0 3:197� 10�4

0.9 6 0.5 40.145 475 �8:654� 10�4 �8:475� 10�4 �7:670� 10�3 �7:143� 10�3 0 3:768� 10�4

0.9 6 0.1 80.046 323 �8:060� 10�4 �8:007� 10�4 �3:427� 10�3 �3:395� 10�3 0 4:371� 10�4

0.9 6 0.3 80.042 690 �1:086� 10�3 �9:879� 10�4 �4:023� 10�3 �3:659� 10�3 0 5:051� 10�4

0.9 6 0.5 80.035 363 �1:685� 10�3 �1:163� 10�3 �5:133� 10�3 �3:761� 10�3 0 5:602� 10�4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6  8  10  12  14  16  18  20

e

p/M

FIG. 11. Inspirals in the �p; e� plane computed using the
revised hybrid scheme (solid curves). The dashed curves repre-
sent the original GHK results and are included for comparison.
Initial values for �p; e; �� are �20M; 0:99; 100��,
�14M; 0:99; 100�� and �20M; 0:4; 100��. The black hole spin is
a � 0:5M.
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Overall, the agreement between the hybrid and
Teukolsky results is remarkably good. The agreement for
circular, inclined orbits is excellent, but this is unsurprising
since we used Teukolsky data to fit the circular part of the
hybrid fluxes. The hybrid scheme also performs very well
for orbits of low eccentricity, but the performance is a little
worse for orbits of higher eccentricity, particularly in the
strong field. Specifically, we see the decrease in j _Lzj with
increasing eccentricity for p � 2M and p � 3M that was
discussed earlier, and find one prograde equatorial orbit
that has _Lz > 0. This is a consequence of the missing
eccentricity-dependent terms in the fluxes. In the future,
deriving a fit to the missing terms using Teukolsky-based
data should correct these remaining problems.

C. Sample inspirals

The main application of the hybrid scheme is to generate
inspiral trajectories. These can be used to investigate the
general properties of extreme mass ratio inspirals, and also
as input for the generation of approximate gravitational
waveforms [26]. Such approximate waveforms are being
used for scoping out data analysis issues for the detection
of EMRIs with LISA [4] and may also find application as
detection templates in the final analysis of LISA data.

In Fig. 11 we illustrate some inspirals in the p� e plane
computed using the final form of the hybrid scheme (59)
for a black hole of spin a � 0:5M. We show the same
064037
inspirals as computed under the original GHK scheme for
comparison. The improvement of the new scheme over the
old one is quite evident and the old pathologies are no
longer present. In Fig. 12 we show a further sequence of
inspirals in the p� e plane computed under the new
-16
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FIG. 12. A set of inspirals in the p� e plane computed using
the revised hybrid scheme. For each inspiral we initially set p �
20M and � � 30� (top panel) or � � 100� (bottom panel). The
inspirals are shown for two different initial eccentricities, e �
0:4 or e � 0:99, and three different values of the central black
hole spin, a � 0:3M (solid curves), a � 0:5M (dotted curves)
and a � 0:9M (dashed curves).
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FIG. 13. The radiation reaction induced evolution of � during
inspiral for the inspirals shown in Fig. 12. For each inspiral we
initially set p � 20M and � � 30� (top panel) or � � 100�

(bottom panel). We used two different values of the initial
eccentricity, e � 0:4 (dashed curves) or e � 0:99 (solid curves),
and three values for the black hole spin (as labeled).
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hybrid scheme. These all have initial semilatus rectum of
p � 20M, and have a variety of eccentricities, inclinations
and spins. Every inspiral has the same basic structure—
initially the orbit circularizes as it inspirals, but once the
orbit gets close to plunge, a critical point is reached where
_e � 0 and the eccentricity then begins to increase until the
object plunges into the black hole. Orbits of lower initial
eccentricity circularize less rapidly. As the spin of the
central black hole is increased, the plunge point moves
closer to the central black hole, and so does the critical
radius. Orbits of higher inclination plunge further from the
central black hole, so the net effect of spin is reduced, as is
clear from the � � 100� panel in Fig. 12.

Figure 13 illustrates the same inspirals, but shows how
the inspiral proceeds in the p� � plane. We see that,
typically, � changes only slightly over the inspiral, but
always increases. The magnitude of this change increases
as the spin is increased, and is greater for orbits nearer to
polar (� � 90�) than for nearly equatorial (� � 0) orbits.
064037
Orbits of lower initial eccentricity also exhibit a lower total
change in inclination over the inspiral. For low spins, the
change in � is less than 1�, but it can be somewhat larger
(� 3�) for near polar inspirals into rapidly rotating black
holes. These features, and the nonzero, but small, increase
in inclination is in good agreement with the results of
Teukolsky-based calculations [15].
VIII. CONSERVATIVE SELF-FORCE
CORRECTIONS

In this paper we have focused on improving the compu-
tation of the trajectories that EMRIs follow in phase space,
specifically the evolution of the three principal constants of
the motion, E, Lz and Q. These three constants determine
the shape of any given geodesic. However, a geodesic also
has three additional ‘‘positional’’ constants of the motion,
which essentially label the position of the particle along the
geodesic trajectory at some fiducial time. The self-force
interaction between the inspiralling body and the central
-17
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black hole acts to change not only the principal constants
of the motion (the dissipative self-force), but also the
positional constants (the conservative self-force). In this
analysis we have looked only at the dissipative contribu-
tion. However, the influence of the conservative self-force
on the orbital evolution cannot be ignored, since it could
lead to several cycles of phase discrepancy in template
waveforms over the course of an inspiral. In a recent paper
[27] Pound et al. explored a toy problem in which an
orbiting charged particle experienced both a dissipative
and a conservative electromagnetic self-force. They found
that in the weak-field the phasing contribution from the
conservative self-force was comparable to or larger than
the dissipative contribution. While that particular analysis
was not applicable in the strong-field regime and did not
look at the gravitational self-force directly, it is likely that
the conservative gravitational self-force will have a signifi-
cant influence on the phasing of an inspiral.

The conservative self-force alters the orbit that an in-
spiralling body with particular energy etc. follows. This
change in the orbit in principle will modify the radiated
fluxes of E, Lz and Q. However, this is a much lower order
effect and so can be ignored. The expressions presented
here can therefore be accurately used to model EMRI
phase space trajectories. On the other hand, conservative
effects should be included when an inspiral path (i.e., the
path through space which the orbiting body follows) is
computed based on the phase space evolution. This is the
next step in constructing approximate waveforms (see dis-
cussion in next section and Fig. 14). One way to add
conservative effects is to include the three positional con-
stants of the motion when parametrizing the orbit and
evolve these as well as the principal constants along the
phase space trajectory. This is discussed in more detail in
[26]. Perturbative calculations have not yet reached the
stage of computing the conservative self-force for strong-
field orbits, although this should be possible in the near
future for Schwarzschild orbits [9]. There are post-
Newtonian expressions for the conservative self-force
available in the literature (e.g. [28]), so it should be pos-
sible to put together existing results to construct a hybrid
scheme for the evolution of the positional orbital constants,
along similar lines to the hybrid scheme described in this
paper for the principal constants. However, this is a com-
plicated procedure and we leave it for a future paper.
IX. CONCLUDING REMARKS

In this paper we have described a number of ways to
alter the GHK hybrid scheme in order to expand its validity
and reliability. The inclusion of all of these corrections
leads to inspirals that are physically reasonable and seem
qualitatively correct throughout parameter space. More-
over, direct comparisons of the hybrid fluxes to
Teukolsky-based results indicate that the approach per-
forms well. However, at present we can only judge the
064037
scheme based on physical intuition and lessons learned
from studies of specific families of orbits (equatorial-
eccentric and circular-inclined) and the limited number
of fluxes for generic (inclined-eccentric) orbits that are
currently available [14]. As more extensive results for
generic orbits are generated in the near future, we will be
able to more thoroughly test this new hybrid scheme and
improve it if necessary. An important point to note is that
the new scheme is still computationally inexpensive, which
is why it is valuable to pursue this approach in conjunction
with more accurate perturbative calculations.

There are a number of ways in which the scheme might
be further improved in the future. The _E, _Lz and _Q flux
expressions, (44), (45), and (56) could be improved by
including additional terms. The current expressions do
not include all eccentricity terms, and we saw in
Sec. VI C 2 that additional terms currently available in
the literature can be easily included, although these do
not appear to improve the performance of the hybrid
scheme. However, it should hopefully still be possible to
gain improvements by using higher order PN results as
these become available. The spin-independent terms could
also be amended by using the 2PN fluxes derived by
Gopakumar and Iyer [29] for a binary system with non-
spinning members moving in quasielliptical orbits. A
modification like the latter should improve the numerical
inspirals for e� 1. Another approach would be to con-
struct the Padé approximants of the PN fluxes, which are
typically more effective than the original Taylor-series
fluxes [30]. Once generic Teukolsky data is available, the
scheme could also be enhanced by improving the
eccentricity-dependent pieces of the _E, _Lz and _� fluxes
using fits to the Teukolsky results. As discussed in
Sec. VIII, a significant gap in the present hybrid scheme
is the omission of conservative self-force corrections.
While this omission does not affect the phase space inspiral
trajectories described here, it might significantly influence
the gravitational waveform phasing and cannot therefore
be ignored. Using PN results and data from perturbative
self-force calculations, it should be possible to include the
conservative self-force by computing a positional phase
space trajectory in conjunction with the ‘‘principal’’ phase
space trajectory described here. This will be pursued in the
future.

A key point to remember in any future version of the
hybrid scheme is that the consistency condition (13) must
be satisfied by the fluxes in order to produce reasonable
inspirals. To incorporate this correction, we added a term to
the energy flux that is essentially the difference between
the prescribed energy flux and what it should be to be
consistent with the prescribed angular momentum and
inclination fluxes. As the flux expressions are pushed to
higher and higher order, the size of this correction will
naturally diminish and we will ultimately converge to the
true adiabatic inspiral.
-18
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The conditions (13) and (22) also have some relevance
for Teukolsky-based calculations for generic orbits. Until
recently, these had been carried out only for circular orbits
of arbitrary inclination [12] and equatorial orbits of arbi-
trary eccentricity [13]. In both cases, the additional sym-
metries allow the Carter constant to be evolved correctly.
More recently, Teukolsky-based calculations have been
carried out for ‘‘snapshots’’ of generic orbits [14].
Because of the difficulties in computing the evolution of
the Carter constant for a generic inspiral, these results
made use of the constant inclination approximation, _� �
0, to compute _Q. It is clear from the analysis here that this
will not work for nearly circular or nearly polar orbits,
since we need the correct _� in those limits to ensure con-
ditions (13) and (22) are satisfied. The constant inclination
approach is therefore problematic. However, the new for-
mula for the evolution of Q presented by Sago et al. [24]
allows computation of _Q using the same Teukolsky varia-
bles used to evaluate _E and _Lz. Future generic codes should
make use of this new formula to avoid the consistency
problems described here.

As mentioned earlier, inspirals generated using this
hybrid scheme can be used to investigate the qualitative
properties of EMRIs, and also to construct approximate,
‘‘kludge’’, EMRI waveforms for use in LISA data analysis.
By integrating the Kerr geodesic equations along the tra-
jectory through phase space constructed using the method
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FIG. 14. Snapshots of an approximate gravitational waveform from
orbital parameters p � 20M, e � 0:99 and � � 30�. The snapshots
rectum has the value p � 20M (top left), p � 10M (top right), p �
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described here, the path followed by a particle can be
computed in Boyer-Lindquist coordinates. Identifying
these coordinates with spherical polar coordinates and
constructing the corresponding flat space quadrupole mo-
ment tensor allows the generation of an approximate gravi-
tational waveform. Such waveforms are being used to
scope out LISA data analysis algorithms [4]. In Fig. 14
we show short snippets of the kludge gravitational wave-
form from one of the inspirals illustrated in Figs. 12 and 13,
with a � 0:9M and initial parameters p � 20M, e � 0:99
and � � 30�. The snippets are of 6000 s duration (assum-
ing masses of M � 106M� and � � 1M�) and are shown
at four points along the inspiral trajectory. We include this
figure for illustration purposes only. More details on the
construction of kludge waveforms can be found in [26].

ACKNOWLEDGMENTS

We thank Stanislav Babak and Scott Hughes for useful
discussions and Scott Hughes for supplying the Teukolsky
data used in computing the fits for the radiation from
circular orbits. We also thank Bernard Whiting for useful
suggestions regarding the evolution of the Carter constant.
The work of J. R. G. was supported in part by NASA Grants
No. NAG5-12834 and No. NAG5-10707 and by St.
Catharine’s College, Cambridge. K. G. acknowledges sup-
port from PPARC Grant No. PPA/G/S/2002/00038.
 1000  2000  3000  4000  5000  6000
t (s)

 1000  2000  3000  4000  5000  6000
t (s)

an inspiral with a � 0:9M, M � 106M � , � � 1M� and initial
are each of 6000 s duration, and are shown when the semilatus
5M (bottom left) and p � 2:75M (bottom right).

-19



JONATHAN R. GAIR AND KOSTAS GLAMPEDAKIS PHYSICAL REVIEW D 73, 064037 (2006)
[1] K. Danzman et al., LISA–Laser Interferometer Space
Antenna, Pre-Phase A Report, Max-Planck-Institute fur
Quantenoptic, Report No. MPQ 233, 1998.

[2] M. J. Rees, Classical Quantum Gravity 14, 1411 (1997); S.
Sigurdsson and M. J. Rees, Mon. Not. R. Astron. Soc. 284,
318 (1997); S. Sigurdsson, Classical Quantum Gravity 14,
1425 (1997).

[3] M. Freitag and M. Benz, Astron. Astrophys. 375, 711
(2001); M. Freitag, Classical Quantum Gravity 18, 4033
(2001); 583, L21 (2003); C. Hopman and T. Alexander,
Astrophys. J. 629, 362 (2005).

[4] J. R. Gair, L. Barack, T. Creighton, C. Cutler, S. L. Larson,
E. S. Phinney, and M. Vallisneri, Classical Quantum
Gravity 21, S1595 (2004).

[5] C. W. Helstrom, Statistical Theory of Signal Detection
(Pergamon Press, London, 1968).

[6] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[7] Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi, and T.

Tanaka, Prog. Theor. Phys. Suppl. 128, 1 (1998).
[8] K. Glampedakis, Classical Quantum Gravity 22, S605

(2005).
[9] E. Poisson, Living Rev. Relativity 7, 6 (2004), http://

www.livingreviews.org/lrr-2004-6.
[10] Special issue: Gravitational radiation from binary black

holes: advances in the perturbative approach [Classical
Quantum Gravity 22, 1 (2005)].

[11] C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50,
3816 (1994).

[12] S. A. Hughes, Phys. Rev. D 61, 084004 (2000).
064037
[13] K. Glampedakis and D. Kennefick, Phys. Rev. D 66,
044002 (2002).

[14] S. Drasco and S. A. Hughes, Phys. Rev. D 73, 024027
(2006).

[15] S. A. Hughes, Phys. Rev. D 64, 064004 (2001).
[16] K. Glampedakis, S. A. Hughes, and D. Kennefick, Phys.

Rev. D 66, 064005 (2002).
[17] H. Tagoshi, Prog. Theor. Phys. 93, 307 (1995).
[18] M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys.

Rev. D 51, 1646 (1995).
[19] F. D. Ryan, Phys. Rev. D 53, 3064 (1996).
[20] D. Kennefick, Phys. Rev. D 58, 064012 (1998).
[21] D. Kennefick and A. Ori, Phys. Rev. D 53, 4319 (1996).
[22] E. Poisson, Phys. Rev. D 57, 5287 (1998).
[23] N. Sago, T. Tanaka, W. Hikida, K. Ganz, and H. Nakano,

gr-qc/0511151.
[24] N. Sago, T. Tanaka, W. Hikida, and H. Nakano, Prog.

Theor. Phys. 114, 509 (2005).
[25] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[26] S. V. Babak, H. Fang, J. R. Gair, K. Glampedakis, and

S. A. Hughes (unpublished).
[27] A. Pound, E. Poisson, and B. G. Nickel, Phys. Rev. D 72,

124001 (2005).
[28] W. Junker and G. Schaefer, Mon. Not. R. Astron. Soc. 254,

146 (1992).
[29] A. Gopakumar and B. R. Iyer, Phys. Rev. D 56, 7708

(1997).
[30] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.

D 57, 885 (1998).
-20


