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The Newtonian limit at intermediate energies
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We study the metric solutions for the gravitational equations in Modified Gravity Models (MGMs). In
models with negative powers of the scalar curvature, we show that the Newtonian Limit (NL) is well
defined as a limit at intermediate energies, in contrast with the usual low energy interpretation. Indeed, we
show that the gravitational interaction is modified at low densities or low curvatures.
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Einstein’s General Relativity (GR) describes the gravity
field in a very successful way by the metric tensor of the
space-time through the Einstein-Hilbert (EH) action.
However, this action is non renormalizable and many
authors have tried to solve different cosmological and
astrophysical puzzles by modifying it, i.e. with MGMs;
for example, the introduction of Lagrange densities pro-
portional to Rn with n > 1 (Large MGMs or LMGMs)
leads to Starobinsky inflation [1]. In the last years, terms
proportional to Rn with n < 1 (Small MGMs or SMGMs)
have been taken into account to explain the present cosmic
acceleration without the typical cosmological constant
(n � 0) or dark energy [2]. In early times, it is reasonable
that terms with n > 1 can be significant but negligible
today; whereas terms with n < 1 can be neglected in the
early Universe but not in the present or late epochs, when
the space-time curvature is very small.

The introduction of new scalar curvature dependent
terms in the action modifies Einstein’s Equations (EEs)
in the following way:

�1� "0�R��R�� �
1

2
�R� "�R��g�� � I����r

�r��"0�R��

�
T��
M2

Pl

; (1)

where I���� � �g��g�� � g��g��� and "�n��R� is the nth
derivative of "�R� with respect to the curvature. We are
supposing a small modification of the EH action:
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with the reduced Planck mass MPl � �8�GN�
�1=2 ’ 2:4	

1018 GeV (we are adopting the convention: @ � c � 1).
We are focusing on SMGMs of the form:

"�R� � ��2�2nRn; � � 
1; n < 1�n � 0�:

(3)

However, other terms present a similar behavior (as a
logarithmic one) and some results of this work are general
for any "�R�. To the above gravitational action, we have to
add the standard matter one:
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In the case that there is no matter, due to the symmetries of
the vacuum, the solutions are maximally symmetric space-
times with a constant scalar curvature R0, which is solution
of the equation:

R0�1� "
0
0� � 2"0 � 0; (5)

where "�n�0 � "�n��R0�. Notice that without a cosmological
constant, R0 � 0 is not in general a solution for SMGMs.
In fact, a large number of works has studied such modifi-
cations with ��H0 � 10�33 eV to explain the observed
cosmic acceleration [2–6], whose origin could come from
different compactifications of extra dimensions in
M-theory [7] (see [8] for update reviews).

On the other hand, the third term in the left hand side of
(1) can produce important instabilities in some cases [9],
whose solution seems to demand the introduction of higher
order terms (n > 1) in the scalar curvature [3] (read [10]
for a more general analysis). However, in the present
literature, it is possible to find three other problems of
SMGMs which are directly related to our present discus-
sion [11–13]. In this work we show that these three prob-
lems are connected and that their analyses are not enough
to exclude SMGMs. On the contrary, we argue that this
type of models presents a well defined NL at intermediate
scales.

The NL in SMGMs was studied in [13] through weak
field expansions around maximally symmetric vacuum
solutions. It means that we can perform a series in the
"�R� function supposing analyticity in the background
solution R0: "�R� � "0 � "00��R� � "

00
0 ��R�

2=2� . . .
with �R � R� R0. For instance, taking trace in (1) we
obtain a covariant expansion, whose zero order is given by
(5) and the first order by:
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Here, T � g��T�� is the standard energy momentum ten-
sor associated with (4). On the other hand, if we perform a
small perturbation of the background metric g�� �
g0�� � 2��0

��0
�, we can write the linearized fourth order
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equation for the metric perturbation �, and interpret this
perturbation as the usual Newtonian potential. In [13], it
was shown that we can recover an approximate Poisson
equation and the NL if "000 is small enough, i.e. at distances
r� �"000 �

1=2. However, in SMGMs:

"00�R� � �n�n� 1��R=�2�n�1=R: (7)

The value of "000 is therefore too large due to its inverse
dependence on the Hubble scale R0 ��

2 �H2
0 .

On the other hand, in Ref. [12], the gravitational force
due to a diffuse source in a locally de Sitter background
was calculated in the paradigmatic model with n � �1 [2].
A linearly growing behavior was found, which is unac-
ceptable because, for instance, it can increase the interac-
tion between the Milky Way and Andromeda by 6 orders of
magnitude [12]. To arrive at this conclusion, the authors
also performed a similar expansion and analyzed the first
order tensorial equation from (1) whose trace is given
by (6).

Finally, in Ref. [11], it was shown that these SMGMs are
equivalent to Scalar-Tensor Theories (STTs) excluded by
Solar System (SS) experiments. The MGM action leads to
fourth order equations, which can be studied with the usual
EEs if we add a new Scalar Degree of Freedom (SDF)—It
is the so called Einstein frame [14]. This new field has the
following potential:
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where R�’� is the solution of the equation "0�R� �
exp�
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related to the second derivative of the potential:
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In the vacuum solution, this field satisfies R�’0� � R0 �
�2, which implies that the typical mass is of order m’ �

�. However, if m’ �H0 < 10�18 eV, the model can be
excluded by SS tests, such as the deflection of light by the
Sun, because ’ mediates a new force with a long range
[11,15].

In conclusion, several authors have detected important
problems to the viability of SMGMs. Indeed, these three
works are related because they have obtained inappropriate
behaviors of the gravitational theory taking into account its
vacuum state.

Different solutions have been proposed for some of these
three problems [3]. For instance, Dick [13] has proposed a
fine tuning to save the gravitational potential. A model that
verifies "000 � 0 has the correct NL, but even more signifi-
cantly, this tuning resolves the two other problems: the
usual gravitational interaction between galaxies is recov-
ered, at least at the linearized equations; and the SDF has a
divergent mass (9). Assuredly, the scalar field is not well
064029
defined in the vacuum state. This result can be understood
because this field takes into account the new degree of
freedom of gravity due to its fourth order equations, but if
"000 � 0, the metric has associated the standard second
order equations in vacuum. A fine tuning usually means a
physical misunderstanding, but there could be a fundamen-
tal reason for this cancellation. For instance, Dick has
proposed the following example [13]:

"�R� � �15�4=R� 25�6=R2: (10)

The vacuum solution reads R0 � 5�2. In the vacuum state,
"�R� is as important as the EH action, which means that the
gravitational coupling is modified. The effective MPl can
be deduced from (6): M2

eff � M2
Pl�1� "

0
0�, and in this

particular model: M2
eff � 5M2

Pl=6 [13].
On the other hand, in Ref. [16], it has been shown that

we can recover Newton’s Gravity Law (NGL) through the
Schwarzschild solution inside a de Sitter (or anti–de Sitter)
space. In fact, the metric:

ds2 � �A�r�dt2 � A�r��1dr2 � r2d�2;

A�r� � 1�
2m

M2
Plr
�
R0r2

12

(11)

is solution of the equations of motion (1) for a pointlike
source of mass m and with R0 given by Eq. (5). Therefore,
we can argue that with a small enough background curva-
ture any astrophysical test of gravity, which depends on the
Schwarzschild solution and its NL, will be unaffected by
the studied SMGMs.

However, this result is not completely satisfactory be-
cause it seems in contradiction with the previous analyses.
Furthermore, without a well defined NL, we cannot iden-
tify the MPl in the action. In the same Ref. [16], it has been
commented that in the �! 0 limit, we should recover the
standard NL. Assuredly, if we remove the modification in
the action, i.e. "�R� ! 0, we recover the EH one. However,
if we follow the arguments presented in [13], we arrive at
the conclusion that the effective Planck mass is given by��������

5=6
p

MPl in the model (10) even in the �! 0 limit. We
can find similar surprises in the discussed results of
[11,12]. Without the tuning, the three problems present
more inappropriate behaviors in the EH limit.

In our opinion, the question is that SMGMs modify
gravity at low energies. Therefore, it is consistent that the
gravitational interaction was very different at low curva-
tures or low densities. This is the expected behavior, and
the three discussed results agree with it showing that the
gravitational interaction is more different for smaller val-
ues of �. The interesting question is in what kind of
physical environments we can use their results to contrast
with experiments or observations.

As it has been pointed out in [17,18], the expansions in
scalar curvature perturbations around de Sitter vacuum
solutions for the analyzed SMGMs (3) present the form:
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"�R� � "0�1�O��R=R0� �O���R=R0�
2� � . . .�: (12)

The experiments which provide us with the most precise
values of NGL and the MPl are realized on the Earth [19]
with �R=R0 �O��Air=H2

0M
2
Pl� � 1027 (taking into ac-

count the air density �Air � 1015 eV4), which means that
we cannot identify the MPl with the formula given in [13].
The expansion cannot be truncated inside the SS either;,
for example, we can roughly estimate the minimal SS
curvature by the typical local Dark Matter (DM) value
�local

DM � 10�6 eV4 [20], which implies �R=R0 � 106.
Indeed, we can use this number as a typical value inside

a galaxy. In such a case, we cannot estimate the force
between galaxies with the result reported in [12]. In fact,
as their authors recognized, the linearized approximation
around the vacuum solution inside the source (such as the
Milky Way) is not legitimate. Furthermore, the situation is
analogous inside the body which feels this possible force
(such as Andromeda). Therefore, the real metric solution
of these non linear equations, which drives its dynamic,
can differ very much from the result found in [12].

Finally, in the equivalent STT, we cannot use the vacuum
values for the scalar field to study its effects in the SS [21].
Without performing any calculations, we can guess that
SMGMs could present a very different gravitational inter-
action close to the vacuum. Reference [11] has shown it in
a very elegant way, but the experiments or observations
which are used to constrain STTs are not realized in
vacuum. The SS tests restrict severely STTs if the force
mediated by the new scalar field has associated a long
range. However, as in the chameleon case [21,22], the
characteristics of this field depend significantly on the local
curvature and matter content, to which it is strongly
coupled. The situation is again tricky, and to illustrate it,
we can estimate the range of this new force inside the Sun
supposing a Yukawa-type potential exponentially sup-
pressed by m’. If R� �2, we find by using Eqs. (9) and
(7):

m2
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d2V’
d’2 
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For instance, for the case n � �1: m’ � 1012 eV
(�R=R0 � 1030 with �Sun � 1018 eV4), we observe that
the range is of order of m�1

’ � 10�19 m and conclude
that the scalar field cannot produce a force with observable
effects out of the Sun (with a radius of rS � 109 m). The
situation is similar inside the Earth and all the typical SS
gravitational sources.1

The above estimations show that it is difficult to expect
that the truncated expansions around the vacuum state were
able to describe any physical observation. Practically, this
1Notice that we find a negative square-mass term for the model
with � � n � �1 [2] reproducing the instabilities studied in [9]
from an independent approach.
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type of expansions can only be linearized for cosmological
studies and only in very recent (or future) times when
�R=R0 ��M=�� � 0:3 [23] (or smaller), but this is one
of the most interesting features of SMGMs. They can
modify usual gravity at low curvatures and explain the
present cosmology without a dark energy component.

If these models make any sense, they have to recover
NGL at intermediate energies. We cannot perform an
expansion around the vacuum state, but we can perform
an iterative method to resolve Eq. (1). The zero order
should be given by EEs ("�R� ! 0):

RE�� �
1

2
REgE�� �

T��
M2

Pl

: (14)

Therefore, we find the usual relations: RE � �T=M
2
Pl and

RE�� � �T�� � TgE��=2�=M2
Pl. To obtain the first correc-

tion to EEs, we can interpret the new terms like a new
source: "�n�E � "�n���T=M2

Pl�. Up to this first order:
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2
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Here, the metric gE�� is given by EEs (14) and IE���� �

�gE��gE�� � gE��gE���. This procedure is inappropriate
for conformal matter (T � 0) inside the studied SMGMs
(3), but it allows to perform a post-Newtonian analysis for
non relativistic matter without pressure, T�� � ��0

��0
�:
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�
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Clearly, we do not find any modification to EEs for "�R� �
0. Indeed, for a small enough value of �, the correction is
always negligible (n < 1). It is interesting to estimate when
the maximum value of the new energy contribution
(kT1��k � maxjT1��j) is much smaller than �, which
implies that NGL is recovered. For instance, if we can
neglect the temporal and spatial variations of the source,
we find the following relation:

kT1��k � kT��k ) �� �2M2
Pl�n < 1�: (18)

We observe that the same estimations, which were used to
show that the vacuum expansions were incorrectly trun-
cated, allow us to conclude that we have a well defined NL
inside the SS for the proposed models with ��H0 (n <
1). In fact, the two approximations are opposite in certain
sense. This NL works for large densities (or curvatures) in
relation to the typical cosmological constant scale:
M2

PlH
2
0 � 10�12 eV4 (H2

0 � 10�66 eV2), whereas the line-
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arized vacuum expansions work for small densities (or
curvatures) with respect to the same scale.

In particular, deviations from the NGL are far from the
range of Casimir force, eötvös- and Cavendish-type experi-
ments for the most part of the SMGMs. This modification
cannot be parameterized with the standard PPN parameters
[15], since the corrections are given in terms of new metric
potentials as it is shown by Eqs. (15) and (17). On the
Earth, we find that the most sensitive measurements to
these deviations are the torsion-balance experiments [24],
but which are only able to exclude models with 0:9< n<
1:0 (at the 95% c.l. and supposing � � 10�33 eV).

It is fair to say that we are not able to ensure NGL for the
interesting physical environment studied in [12]. The con-
dition (18) cannot be satisfied in intergalactic spaces for
��H0. Indeed, we think that this is another very interest-
ing property of SMGMs. They modify NGL at low den-
sities, which is the expected behavior for n < 1. For
example, if we neglect the mentioned temporal and spatial
variations of the source, we obtain the following correction
for the model with n � �1: T1�� � ��4M4

Pl�gE�� �

�0
��

0
��=�.

From this point of view, we have a new source of
gravitation, which is certainly a DM source since we can
only detect an anomalous metric behavior. It may be
interesting to try to explain galactic dynamic anomalies
or even rotation curves without DM halos, which requires
the introduction of new unobserved particles in the stan-
dard framework [25]. Similar approaches to general
MGMs can be found in other works with promising results
[4,26]. However, if kT1��k> kT��k, higher order correc-
tions have to be taken into account and a numerical calcu-
064029
lation seems necessary. In this sense, we propose an
iterative method by repeating the described procedure up
to an eventual convergence. Alternatively, if we know the
metric, we can infer the necessary source. If this source
does not agree with the observed one, we can deduce a
possible function "�R� that can explain the difference. For
simplicity, in a first step, we can study the functions given
by Eq. (3) parameterized by �, n and �.

Before concluding this article, we would like to com-
ment briefly about SMGMs inside the Palatini formalism,
in which the metric and the connection are taken as inde-
pendent variables [6]. We think that our discussion can also
clarify several aspects concerning this approach. For in-
stance, it is possible to find different works with different
results about the NL in this formulation [17,27]. In our
opinion, it is fundamental to work at intermediate energies,
as it has been performed very recently in [17], and not in
the traditional low density approximation.

We have studied the viability of SMGMs, which could
be interesting to explain not only the present acceleration
of the Universe but also its DM content. The idea is that
they deviate from GR at low energies or low curvatures. In
contrast, we recover the NL at intermediate scales. More
analyses to clarify the possible existence of other kinds of
problems have to be performed before postulating them as
a real alternative. Work is in progress in this direction.

We thank A. Rajaraman and F. Takayama for important
comments. This Work is supported in part by NSF grant
No. PHY-0239817, the Fulbright-MEC program, and the
BFM 2002-01003 project (DGICYT, Spain).
[1] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980); A. Dobado
and A. Lopez, Phys. Rev. D 52, 1895 (1995).

[2] S. M. Carroll et al., Phys. Rev. D 70, 043528 (2004).
[3] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512

(2003); Gen. Relativ. Gravit. 36, 1765 (2004); Mod. Phys.
Lett. A 19, 627 (2004).

[4] S. Capozziello et al., astro-ph/0303041; Phys. Rev. D 71,
043503 (2005); Class. Quant. Grav. 22, 4839 (2005); Int.
J. Mod. Phys. D 12, 1969 (2003); Phys. Lett. A 326, 292
(2004).

[5] G. J. Olmo, Phys. Rev. D 72, 083505 (2005); Phys. Rev.
Lett. 95, 261102 (2005); I. Navarro and K. Van Acoleyen,
Phys. Lett. B 622 1 (2005); N. J. Poplawski, gr-qc/
0510007; G. Cognola et al., hep-th/0601008.

[6] D. Vollick, Class. Quant. Grav. 21, 3813 (2004); E.
Flanagan, Class. Quant. Grav. 21, 3817 (2004); G.
Allemandi, A. Borowiec, and M. Francaviglia, Phys.
Rev. D 70, 043524 (2004); G. Allemandi et al., Gen.
Relativ. Gravit. 37, 1891 (2005); Phys. Rev. D 72,
063505 (2005); P. Wang and X. Meng, Phys. Lett. B
584, 1 (2004); T. P. Sotiriou, gr-qc/0509029; Class.
Quant. Grav. 23, 1253 (2006).

[7] S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003).
[8] M. Farhoudi, physics/0509210; S. Nojiri and S. D.

Odintsov, Classical Quantum Gravity 23, L29 (2006).
[9] A. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003).

[10] V. Faraoni, Phys. Rev. D 72, 061501 (2005); Phys. Rev. D
72, 124005 (2005).

[11] T. Chiba, Phys. Lett. B 575, 1 (2003).
[12] M. E. Soussa and R. P. Woodard, Gen. Relativ. Gravit. 36,

855 (2004).
[13] R. Dick, Gen. Relativ. Gravit. 36, 217 (2004).
[14] G. Magnano and L. M. Sokolowski, Phys. Rev. D 50, 5039

(1994).
[15] C. M. Will, Living Rev. Relativity 4, 4 (2001).
[16] A. Rajaraman, astro-ph/0311160.
[17] T. P. Sotiriou, gr-qc/0507027.
[18] C. G. Shao et al., Phys. Lett. B 633, 164 (2006).
[19] J. H. Gundlach and S. M. Merkowitz, Phys. Rev. Lett. 85,

2869 (2000).
-4



THE NEWTONIAN LIMIT AT INTERMEDIATE ENERGIES PHYSICAL REVIEW D 73, 064029 (2006)
[20] S. Eidelman et al. Phys. Lett. B 592, 1 (2004).
[21] J. A. R. Cembranos, A. Rajaraman, and F. Takayama (to be

published).
[22] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104

(2004); Phys. Rev. D 69, 044026 (2004).
[23] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175

(2003).
[24] J. K. Hoskins et al., Phys. Rev. D 32, 3084 (1985); Phys.

Rev. Lett. 44, 1645 (1980).
[25] J. R. Ellis et al., Nucl. Phys. B238, 453 (1984); L. Covi,

J. E. Kim, and L. Roszkowski, Phys. Rev. Lett. 82, 4180
(1999); G. Servant and T. M. P. Tait, Nucl. Phys. B650,
064029
391 (2003); H. C. Cheng, J. L. Feng, and K. T. Matchev,
Phys. Rev. Lett. 89, 211301 (2002); J. Alcaraz et al., Phys.
Rev. D 67, 075010 (2003); J. A. R. Cembranos, A.
Dobado, and A. L. Maroto, Phys. Rev. Lett. 90, 241301
(2003); hep-ph/0507066; Phys. Rev. D 68, 103505 (2003);
J. L. Feng, A. Rajaraman, and F. Takayama, Phys. Rev.
Lett. 91, 011302 (2003); Phys. Rev. D 68, 063504 (2003);

[26] I. Navarro and K. Van Acoleyen, gr-qc/0512109.
[27] A. Dominguez and D. Barraco, Phys. Rev. D 70, 043505

(2004); X. H. Meng and P. Wang, Gen. Relativ. Gravit. 36,
1947 (2004); G. J. Olmo, gr-qc/0505136.
-5


