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The generalized Chaplygin gas (GCG) is a candidate for the unification of dark energy and dark matter,
and is parametrized by an exotic equation of state given by p, = —A/pg,, where A is a positive constant
and 0 < a = 1. In this paper, exact solutions of spherically symmetric traversable wormholes supported
by the GCG are found, possibly arising from a density fluctuation in the GCG cosmological background.
To be a solution of a wormhole, the GCG equation of state imposes the following generic restriction
A < (8mr) " where r, is the wormhole throat radius, consequently violating the null energy
condition. The spatial distribution of the exotic GCG is restricted to the throat neighborhood, and the
physical properties and characteristics of these Chaplygin wormholes are further analyzed. Four specific
solutions are explored in some detail, namely, that of a constant redshift function, a specific choice for the
form function, a constant energy density, and finally, isotropic pressure Chaplygin wormhole geometries.
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I. INTRODUCTION

The nature of the energy content of the Universe is a
fundamental issue in cosmology, and a growing amount of
observational evidence currently favors an accelerating flat
Friedmann-Robertson-Walker model, constituted of ~1/3
of baryonic and dark matter and ~2/3 of a negative
pressure dark energy component. The dark matter content
was originally inferred from spiral galactic rotation curves,
which showed a behavior that is significantly different
from the predictions of Newtonian mechanics, and was
later used to address the issue of large scale structure
formation. On the other hand, it has been suggested that
dark energy is a possible candidate for the present accel-
erated cosmic expansion [1]. The dark energy models are
parametrized by an equation of state @ = p/p < —1/3,
where p is the spatially homogeneous negative pressure
and p is the dark energy density. The range for which w <
—1 has been denoted phantom energy, and possesses pecu-
liar properties, such as, an infinitely increasing energy
density [2], resulting in a “‘big rip,” negative temperatures
[3], and the violation of the null energy condition, thus
providing a natural scenario for the existence of wormholes
[4—6]. In fact, recent fits to supernovae, cosmic microwave
background radiation, and weak gravitational lensing data
favor an equation of state with the dark energy parameter
crossing the phantom divide @ = —1 [7,8]. Note that w =
—1 corresponds to the presence of a cosmological con-
stant. It has also been shown, in a cosmological setting, that
the transition into the phantom regime, for a single scalar
field [8] is probably physically implausible, so that a
mixture of various interacting nonideal fluids is necessary.

An alternative model is that of the Chaplygin gas, also
denoted as quartessence, based on a negative pressure
fluid, which is inversely proportional to the energy density
[9,10]. The equation of state representing the generalized
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where A and «a are positive constants, and the latter lies in
the range 0 < @ = 1. The particular case of & = 1 corre-
sponds to the Chaplygin gas. Within the framework of a flat
Friedmann-Robertson-Walker cosmology the GCG equa-
tion of state, after being inserted in the energy conservation
equation, p = —3a(p + p)/a, yields the following evolu-
tion of the energy density:

B
Peh = [A t =i : 2

1/(1+a)
a3(1+a)i|
where a is the scale factor, and B is normally considered to
be a positive integration constant, as to ensure the domi-
nant energy condition. However, it is also possible to
consider B < 0, consequently violating the dominant en-
ergy condition, and one verifies that the energy density will
be an increasing function of the scale function [11]. An
attractive feature of this model is that, at early times, the
energy density behaves as matter, py, ~a >, and as a
cosmological constant at a later stage, p., = const. It has
also been suggested that these two stages are intermediated
by a phase described by a mixture of vacuum energy
density and a soft matter equation of state p = ap with
a # 1 [10]. This dual behavior is responsible for the
interpretation that the GCG model is a candidate of a
unified model of dark matter and dark energy [12], and
probably contains some of the key ingredients in the dy-
namics of the Universe for early and late times. In
Ref. [13], a new model for describing the unification of
dark energy and dark matter was proposed, which further
generalizes the GCG model, and was thus dubbed the new
generalized Chaplygin gas (NGCG) model. The equation
of state of the NGCG is given by p = —A(a)/p®, where a
is the scale factor and A(a) = —wAa31+@)1+a) and the
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interaction between dark energy and dark matter is char-
acterized by the constant «.

The GCG model has been confronted successfully with a
wide variety of observational tests, namely, supernovae
data [14], cosmic microwave background radiation [15],
gravitational lensing [16], gamma-ray bursts [17], and
other observational data [18], which have placed con-
straints on the free parameters. A variable Chaplygin gas
model, with p = —A(a)/p, where A(a) is a positive func-
tion of the scale factor has also been analyzed, and it was
found to be consistent with several observational data for a
broad range of parameters [19]. In the context of the
NGCG model, it was shown that the analysis of the ob-
servational data also provides tight constraints on the
parameters of the model [13]. The GCG scenario has
also been analyzed in some detail in a modified gravity
approach [20], and another interesting aspect of the
Chaplygin gas is its connection with branes in the context
of string theory. The Chaplygin gas equation of state, with
a =1, is associated with the parametrization invariant
Nambu-Goto d-brane action in a d+ 2 spacetime
[10,21], which leads to the action of a Newtonian fluid,
in the light-cone parametrization. Thus, in this context, the
Chaplygin gas corresponds to a gas of d-branesina d + 2
spacetime.

It has been argued that a flaw exists in the GCG model,
as it produces oscillations or an exponential blowup of the
matter power spectrum, which is inconsistent with obser-
vations. However, it has been counterargued [22] that, due
to the fact that the GCG is a unique mixture of an interact-
ing dark matter component and a cosmological dark en-
ergy, a flow of energy exists from the former to the latter.
This energy flow is vanishingly small at early times, but
became significant only recently, leading to a dominance of
the dark energy component. It was also shown that the
epoch of the dark energy dominance occurs when the dark
matter perturbations start deviating from its linear behav-
ior, and that the Newtonian equations for small scale
perturbations for dark matter do not involve any
k-dependent term. Therefore, it was concluded that neither
oscillations nor a blowup in the power spectrum should
develop [22].

As emphasized above, recent fits to observational data
favor an evolving equation of state with @ crossing the
phantom divide —1. If confirmed in the future, this behav-
ior holds important implications to the model construction
of dark energy, and thus excludes the cosmological con-
stant and models with a constant parameter. In this context,
note that the Chaplygin gas in the dark energy limit cannot
cross the phantom divide, however in Ref. [23] it was
shown that an interaction term between the Chaplygin
gas, which in this model plays the role of dark energy,
and dark matter can achieve the phantom crossing. In
Ref. [24], by considering an extension of the Chaplygin
gas, it was shown that the phantom divide w = —1 can
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also be realized. A further generalization of the GCG was
also carried out in Ref. [25] to allow for the case where w
lies in the phantom regime.

The phantom regime is rather significant, as it violates
the null energy condition (NEC), providing a natural sce-
nario for the existence of traversable wormholes [4—6]. An
interesting feature is that, due to the fact of the accelerated
expansion of the Universe, macroscopic wormholes could
naturally be grown from the submicroscopic constructions
that originally pervaded the quantum foam. In Ref. [26] the
evolution of wormholes and ringholes embedded in a
background accelerating Universe driven by dark energy
was analyzed. An interesting feature is that the wormhole’s
size increases by a factor which is proportional to the scale
factor of the Universe, and still increases significantly if the
cosmic expansion is driven by phantom energy. The accre-
tion of dark and phantom energy onto Morris-Thorne
wormbholes [27,28] was further explored, and it was shown
that this accretion gradually increases the wormhole throat
which eventually overtakes the accelerated expansion of
the universe, consequently engulfing the entire Universe,
and becomes infinite at a time in the future before the big
rip. This process was dubbed the ““big trip”* [27,28]. It was
shown that using k-essence dark energy also leads to the
big rip [29], although, in an interesting article [30], con-
sidering a generalized Chaplygin gas the big rip may be
avoided altogether. In this paper, we shall be primarily
interested in considering the possibility that traversable
wormholes may be supported by the GCG equation of
state. In this context, and related to the features of the
big trip, the accretion of a generalized Chaplygin gas
onto wormholes was explored in Ref. [31]. Several cases
were extensively analyzed. Imposing the dominant energy
condition, it was found that the evolution of the wormhole
mass decreases with cosmic time. Considering the viola-
tion of the dominant energy condition, i.e., with B <0, as
the wormhole accretes Chaplygin phantom energy, the
wormhole mass increases from an initial value, and reaches
a plateau as time tends to infinity. In fact, a wide region of
the Chaplygin parameters were found where the big trip is
avoided.

Despite the fact that the GCG in the dark energy regime
describes a spatially homogeneously distributed fluid, it
has been pointed out that the GCG equation of state is that
of a polytropic gas with a negative polytropic index [32],
and thus inhomogeneous structures, such as a GCG dark
energy star may arise from a density fluctuation in the GCG
cosmological background. Other astrophysical implica-
tions of the model have also been analyzed. In Ref. [33],
a gravitational vacuum star solution (gravastar) was con-
structed by replacing the interior de Sitter solution, with
the Chaplygin gas equation of state in the phantom regime,
which was dubbed a Born-Infeld phantom gravastar. A
generalization of the gravastar picture (see Ref. [34] and
references therein), with the inclusion of an interior solu-
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tion governed by the equation of state w = p/p < —1/3
was also analyzed in Ref. [34].

In this work, we shall construct static and spherically
symmetric traversable wormhole geometries, satisfying the
GCG equation of state, which we denote ‘““Chaplygin
wormholes,” by considering a matching of these geome-
tries to an exterior vacuum spacetime, and further analyze
the physical properties and characteristics of these solu-
tions. We find that the spatial distribution of the exotic
GCQG is restricted to the throat neighborhood. We shall also
consider specific solutions, and explore the traversability
conditions [35,36] and apply the ‘““volume integral quanti-
fier” [37], which amounts to measuring the amount of
averaged null energy condition violating matter, to particu-
lar cases.

This paper is outlined in the following manner. In
Sec. II, we present a general solution of a traversable
wormhole supported by a generalized Chaplygin gas,
with a cutoff of the stress-energy tensor at a junction
interface. In Sec. III, specific wormhole geometries are
analyzed and several of their physical properties and char-
acteristics are explored in some detail, namely, that of a
constant redshift function, a specific choice for the form
function, a constant energy density, and finally, isotropic
pressure Chaplygin wormhole geometries. Finally, in
Sec. IV, we conclude.

II. CHAPLYGIN WORMHOLES
A. Metric and field equations

The spacetime metric representing a spherically sym-
metric and static wormhole is given by

ds? = — 2P0 g2 4+ + r2(d6* + sin’0d¢?),

3

dr?
1—0b(r)/r

where ®(r) and b(r) are arbitrary functions of the radial
coordinate, r, denoted as the redshift function, and the
form function, respectively [35]. The radial coordinate
has a range that increases from a minimum value at r,
corresponding to the wormhole throat, to infinity. One may
also consider a cutoff of the stress-energy tensor at a
junction radius a.

A fundamental property of a wormhole is that a flaring
out condition of the throat, given by (b — b'r)/b*> > 0, is
imposed [35,36]. The latter may be deduced from the
mathematics of embedding, and from this we verify that
at the throat b(ry) = r = ry, the condition b'(ry) <1 is
imposed to have wormhole solutions. Another condition
that needs to be satisfied is 1 — b(r)/r > 0, i.e., b(r) <r.
For the wormhole to be traversable, one must demand that
there are no horizons present, which are identified as the
surfaces with ¢2® — 0, so that ®(r) must be finite
everywhere.
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Using the Einstein field equation, G, = 87T, (with
¢ = G = 1), we obtain the following relationships:

b' = 8mrp, 4)
— b+ 87rp, )
2r2(1 — b/r)’
2
pr= ;(pt —p)—(p+p)¥, (6)

where the prime denotes a derivative with respect to the
radial coordinate, r. p(r) is the energy density, p,(r) is the
radial pressure, and p,(r) is the lateral pressure measured
in the orthogonal direction to the radial direction.
Equation (6) may be obtained using the conservation of
the stress-energy tensor, 7#”,, = 0, which can be inter-
preted as the hydrostatic equation for equilibrium for the
material threading the wormhole.

Another fundamental property of wormholes is the vio-
lation of the null energy condition (NEC), T, k*k” = 0,
where k* is any null vector [35,38]. From Egs. (4) and (5),
considering an orthonormal reference frame with k#* =
(1,1,0,0), so that T ;k~k” = p + p,, one verifies

11br—0» b\ @’
p(r)+p,(r)=§r[ rr3 +2<1——>—}. @)

r;) r

Evaluated at the throat, ry, and considering the flaring out
condition and the finite character of ®(r), we have p +
p, < 0. Matter that violates the NEC is denoted exotic
matter.

B. GCG equation of state

The equation of state representing the generalized
Chaplygin gas (GCG) is given by pg, = —A/p%, where
A and « are positive constants, and the latter lies in the
range 0 < @ = 1. The particular case of @« = 1 corre-
sponds to the Chaplygin gas. An attractive feature of this
model, as mentioned in the Introduction, is that at early
times the energy density behaves as matter, p., ~ a3, and
as a cosmological constant at a later stage, p., = const. In
a cosmological context, at a late stage dominated by an
accelerated expansion of the Universe, the cosmological
constant may be given by 877A4'/0+®_ This dual behavior is
responsible for the interpretation that the GCG model is a
candidate of a unified model of dark matter and dark
energy. It has been shown that GCG can be algebraically
decomposed into a dark matter and a dark energy compo-
nent [22], in which there exists a transference of energy
from the former to the latter.

It was noted in Ref. [32] that the GCG equation of state
is that of a polytropic gas with a negative polytropic index,
and thus suggested that one could analyze astrophysical
implications of the model. In this context, we shall explore
the construction of traversable wormholes, possibly from a
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density fluctuation in the GCG cosmological background.
As in Refs. [4,5], we will consider that the pressure in the
GCQG equation of state is a radial pressure, and the tangen-
tial pressure can be determined from the Einstein equa-
tions, namely, Eq. (6). Thus, taking into account the GCG
equation of state in the form p, = —A/p®, and using
Egs. (4) and (5), we have the following condition:

P/(r) = [—A(877)1+“ ;Z,;L + %}/(1 - é) (8)

Solutions of the metric (3) satisfying Eq. (8) shall be
denoted “Chaplygin wormholes.”

We now have a system of four equations, namely,
Egs. (4)—(6) and (8), with five unknown functions of r,
i.e., the stress-energy components, p(r), p,(r), and p,(r),
and the metric fields, b(r) and ®(r). To construct specific
solutions, we may adopt several approaches, and in this
work we shall mainly use the strategy of considering
restricted choices for b(r) and ®(r), in order to obtain
solutions with the properties and characteristics of worm-
holes. One may also impose a specific form for the stress-
energy components and through the field equations and
Eq. (8) determine b(r) and ®(r). Throughout this paper, we
shall consider the cases that the energy density is positive
p > 0, which implies that only form functions of the type
b'(r) > 0 are considered.

As shown above, to be a wormhole solution, the condi-
tion b'(ry) < 1 is imposed. Now, using the GCG equation
of state, evaluated at the throat, and taking into account
Eq. (5), we verify that the energy density at r is given by
p(ro) = (87r3A)"/*. Finally, using Eq. (4), and the condi-
tion b'(rg) < 1, we verify that for Chaplygin wormholes
the following condition is imposed:

A< (8mr})~(te), )

It is a simple matter to show that this condition necessarily
violates the NEC at the wormhole throat. However, for the
GCG cosmological models it is generally assumed that the
NEC is satisfied, i.e., p + p =0, which implies p =
A0+ The NEC violation is a fundamental ingredient
in wormhole physics, and it is in this context that we shall
explore the construction of traversable wormholes, i.e., for
p < AYU*®) Note that, as emphasized in Refs. [11,31],
considering a negative integration constant, B <0, in the
evolution of the energy density, Eq. (2), one also deduces
that p., < A/0+9)_ This condition violates the dominant
energy condition, and is consistent with the analysis out-
lined in this paper, proving the compatibility of both works.

Note that the velocity of sound has been interpreted as
v2=0p/dp = Aa/p't®. Thus, from the condition that
the latter should not exceed the speed of light, i.e., vy, = 1,
and from the violation of the NEC, p + p <0, we have the
additional constraints 1 < A/p!"® = 1/a. The latter eval-
uated at the throat takes the form a® = A(87Tr(2))(1+“) <1
for o < 1. However, it is worth pointing out that, in the
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presence of exotic matter, one cannot naively interpret
dp/dp as the speed of sound, as a detailed microphysical
model describing the physics of exotic matter is still lack-
ing. Therefore, one cannot a priori impose 0 < dp/dp =
1, and it is worth noting that there are several known
examples of exotic dp/dp <0 behavior, namely, the
Casimir effect and the false vacuum. (See Ref. [39] for a
detailed analysis.)

C. Stress-energy tensor cutoff

We can construct asymptotically flat spacetimes, in
which b(r)/r — 0 and ® — 0 as r — co. However, one
may also construct solutions with a cutoff of the stress-
energy, by matching the interior solution of metric (3) to an
exterior vacuum spacetime, at a junction interface. If the
junction contains surface stresses, we have a thin shell, and
if no surface stresses are present, the junction interface is
denoted a boundary surface. The solutions analyzed in this
work are not asymptotically flat, where the spatial distri-
bution of the exotic GCG is restricted to the throat neigh-
borhood, so that the dimensions of these Chaplygin
wormholes are not arbitrarily large.

For simplicity, consider that the exterior vacuum solu-
tion is the Schwarzschild spacetime, given by the following
metric:

dr?
_ M
r

2M
ds? = —<1 — —)dt2 + 7

r

+ r2(d6* + sin0d ¢?).

(10)

Note that the matching occurs at a radius greater than the
event horizon r, = 2M, i.e., a > 2M. The Darmois-Israel
formalism [40] then provides the following expressions for
the surface stresses of a dynamic thin shell [6,41]:

1 2M b
o= ——<\/1 ——+a2—\/1 ——(a)+a2>, (11)
41ra a a
1 [1—%+a2+aa

JI— 2+ a2

1+ ad®H(1 — % + ) + ai — *(b—b'a)

2(a—b) i| (12)
Y1 — 22+ 42

where the overdot denotes a derivative with respect to the
proper time, 7. o- and P are the surface energy density and
the tangential surface pressure, respectively. The static
case is given by taking into account ¢ = d = 0 [42].

- 87ma

III. SPECIFIC SOLUTIONS

A. Constant redshift function

Consider, for instance, a constant redshift function,
@'(r) = 0, so that from Eq. (8) one determines the follow-
ing form function:
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b(r) = r0|:(3A)l/a<87T>(1+a)/a

3}’0

/(+a)
X (r3(a+1)/a _ ra(anl)/a) + 1:|oz @ ) (13)

For the particular case of the Chaplygin gas, &« = 1, the
form function reduces to
64 A 1/2
b(r)—ro[?l( o — r8) + 1} . 4)

To be a solution of a wormhole, the condition b'(ry) < 1
is imposed. Thus, from the latter condition and Eq. (14),
we deduce the restriction A < (877r3)”2. For instance,
considering A = B(87r3) "2, with 0< B <1, the form
function is given by

b(r) = ro{§[<r—ro>6 - 1} + 1}1/2. (15)

Note that this does not correspond to an asymptotically flat
spacetime; however, one may match this solution to an
exterior vacuum geometry, so that the dimensions of this
specific Chaplygin wormhole cannot be arbitrarily large.
To be a solution of a wormhole, the condition b(r) < r is
also imposed. Note that b(r) = r has two real and positive
roots given by r_ =r, and r, = ry{[(12/8 — 3)'/2 —
1]/2}/2, so that, to be a solution of a wormhole, r lies in

the range
1r/12 1/2 1/2

This restriction is shown graphically in Fig. 1 for the values
of 8 =1/3 and B = 1/4. Note that the wormhole dimen-
sions increase for decreasing values of (.

It is also of interest to consider the traversability con-
ditions required for a human being to journey through the

1.8 —
1.7 B=153,
1.6 /

1.5;
b(r)/ro1.44
] r/ro
1.37
1.2;

1.19 . ;;:ii/

17T 1.'2 13 14 15 16 17 1.8
r/ro

FIG. 1. To be a solution of a wormhole, the condition b(r) < r
is imposed, so that only the interval below the solid line r/r,
provide wormhole solutions. The plot depicts the values of 8 =
1/3 and B = 1/4, and one verifies that the wormhole dimensions
increase for decreasing values of B. See the text for details.
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wormhole. Rather than reproduce the results here, we refer
the reader to Refs. [5,35,36]. We shall consider, for sim-
plicity, a constant and nonrelativistic traversal velocity for
the traveler. Note that, for the specific solutions considered
in this subsection, the conditions required that the accel-
eration felt by the traveler, and that the radial tidal accel-
eration should not exceed Earth’s gravity, g4, are readily
satisfied (see Refs. [5,35,36] for details). From the condi-
tion that the lateral tidal acceleration should not exceed
Earth’s gravitational acceleration, evaluated at the worm-
hole throat r(, one obtains the inequality

280
Y P
(1=P8)In*|

where 52 is the separation between two arbitrary parts of
the traveler’s body, measured along the lateral direction in
the traveler’s reference frame, and, for simplicity, we shall
assume that |n%| = 2 m [5,35].

Now, as in Ref. [5], considering the equality case, with
B = 1/2, and assuming that the wormhole throat is given
by ry = 10> m, the traversal velocity takes the following
value v = 4 X 10> m/s. Considering that the junction ra-
dius is given by a = 10* m, then one obtains the traversal
times of A7 = At = 50 s, as measured by the traveler and
for the observers that remain at rest at the space stations
situated at a, respectively (see Ref. [5] for details). It is
interesting to note that these traversability conditions are
identical to the specific case of an asymptotically flat
phantom wormhole spacetime analyzed in Ref. [5].

B. b(r) = ro\Jr/ry

Consider b(r) = rg\/r/rg, so that from Eq. (8), consid-
ering the Chaplygin gas with = 1, one determines the
following redshift function:

D(r) = — 12847 r0[1n<\/r:0_ 1) i%<_>m}
" ln<1 B \/7:) e (18)

The constant of integration, C, may be determined from the
boundary conditions, ®(a), at the junction interface. Note
that this solution reflects a nontraversable wormhole as it
possesses an event horizon at the throat r = r(, as may be
readily verified from the first term in square brackets in the
right-hand side of Eq. (18). However, imposing the condi-
tion A = (1287%r§)~!, Eq. (18) reduces to

i %(7;)/2 - 1n< ri> +C (19)

n=1 0

a7)

O(r) = —

As in the previous example, this solution is not asymptoti-
cally flat, however, one may match the latter to an exterior
vacuum spacetime at a junction radius a. Note that the
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constant C is given by

c= cp(a)+§11<r—o>/ +ln< \/}%) (20)

This solution now reflects a traversable wormhole, as the
redshift function is finite in the range ry = r =< a.

Using the “‘volume integral quantifier,” which provides
information about the “‘total amount” of averaged null
energy condition violating matter in the spacetime (see
Ref. [37] for details), given by Iy, = [[p(r) + p,(r)]dV,
with a cutoff of the stress-energy at a, we have

== 3)u(s fzz/rﬂa
oulu
fr:(r - b)[ln(%ﬂ dr. @1

Now, using the form and redshift functions provided above,
and evaluating the integral, one finally ends up with the
following simplified expression for the “volume integral
quantifier’:

a 2 fa\11/2 9
Lo=r| =2 (2) 7 -2 22
v 0[\/; i) CTf @

By taking the limit a — r(, one readily verifies that I, —
0. This proves that, as in the specific case of phantom
wormbholes [5], one may theoretically construct a worm-
hole with arbitrarily small amounts of a Chaplygin gas. As
emphasized in Ref. [5], this result is not unexpected.
However, it is interesting to note the relative ease that
one may theoretically construct wormholes supported by
infinitesimal amounts of exotic fluids used in cosmology to
explain the present accelerated cosmic expansion.

C. Constant energy density

Considering a constant energy density, p = p,, we ver-
ify from Eq. (4) that the form function is given by

b(r)=C(r? - ra) + 7y, (23)

with the definition C = 87 p/3. The condition &’(ry) < 1
imposes the following restriction: 3Cr3 < 1. Consider C =
BB3r3)~1, with 0 < B < 1, so that Eq. (23) takes the form

b(r) = ro{f[cj - 1} + 1}. (24)

To be a wormhole solution the condition b(r) < r is also
imposed. Note that b(r) = r has two real positive roots

givenby r_ = rgand r; = ro(y/12/8 — 3 — 1)/2, so that
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r lies in the range

ro<r<%</l—ﬁz—3—l>. (25)

From Eq. (8), the redshift function is formally given by

O(r)— B — ro) 247wA8mr/ B)*rir’ +3r
f r(r—ro)[r*+ror— (3 — ,B)r

+C,. (26)

dr

The constant of integration, C, may be determined from
the boundary conditions, at the junction interface, a. For
the particular case of the Chaplygin gas, @ = 1, Eq. (26) is
integrated to provide

D(r) = —ﬁ{(mm%@ ~ B)In(r — ro)
R2A7 3B -2
+ |:§ _ 3247 "0[; B)i|ln[[3r2 + Bryr
-6 - AT
V384 — B)
BR2r+ ry) 1
X arctanh[ro = ,8)}} 5 In(r) + C,. (27)

One verifies, as in the previous case, that this is a solution
of a nontraversable wormhole, as an event horizon exists at
ro- However, imposing the condition A = B(647r]) ™!
with 0 < B < 1, the redshift function reduces to

O(r) = —% In(r) + % In[Br* + Bror — (3 — B)r}

[rﬁar+nﬁ }+C1
0

+ ; arctanh
2\/38@ - B) 34— pB)

(28)

It is a simple matter to show that ®(r) given by Eq. (28) is
finite in the range (25), so that this solution now reflects a
traversable wormhole. This interior wormhole solution is
now matched to an exterior vacuum spacetime within the
range of the inequality (25). Note that the condition A =
B(6472r}) ! satisfies the restriction of the inequality (9).

D. Isotropic pressure

Consider an isotropic pressure, p, =
Eq. (6) we have the differential equation

Py so that from

!

AP _ i, (29)

p(A — p*™h)

which has the following solution:
p(r) =[A7! 4 ¢~ llatD/al®()c =11/ +a)] (30)

From the GCG equation of state, p, = —A/p?®, and using
Eq. (5), we verify that the energy density, evaluated at the
throat, reduces to p(ry) = (87r3A)"/, so that the constant
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C, is given by
Cl — [(87Tr%A)f(l+a)/a _ A*l]e[(od»l)/a](l)(ro). (31)

Taking into account Eq. (4), and considering a specific
choice for the redshift function, for instance,

D(r) = 1n<i>, (32)
To
we have

r\—(+a)/aq-1/(1+a)
) } . (33)

b'(r) = 877'1"2[A_l + C1<—
To
Equation (33) may be integrated to provide

b(r) = C, + (8713 /3)AY/ I+ ®hypergeom

1 —3a] 12« ro\1+(/a)
X , , , —— CA\
l+ta l+a 1+« r

(34

For the particular case of & = 1, the hypergeometric func-
tion takes the form

hypergeom <[1/2, —-3/2},[-1/2] - ’%f—21A>

= r3(r? = 2r5C A r* + r3CiA, 35)

so that the form function reduces to

8m/A
b(r) = — AP+ rRCA(P? — 2r3C1A) + Cy. (36)

Note that the constant C;, for this case, may be obtained
from Eq. (31), and takes the form

C, =[@®mr3A) 2 —A""] (37
Taking the radial derivative of the form function, or
simply using Eq. (33), and inserting the expression de-
duced for C;, we have
8mAr
b(r) = AT . 068)
\/rz — 3+ (8wr)2A7!

which, evaluated at the throat, reduces to b'(ry) =
(87r3)?A. From the condition b/(ry) < 1, we verify once
again A < (87r3) 2, which is consistent with the generic
wormhole restriction given by Eq. (9), with & = 1. Note
that considering A = B(87r3) 2, with 0 < 8 < 1, the con-
stant C, takes the form C, = (87r3)*(1 — B)/B* The
constant C,, may be evaluated from the condition b(r,) =
ro, and is given by C, = 2r,/(38). The form function is
finally given by the following expression:

- o) --a)
(39)

To be a solution of a wormhole, the condition b(r) < r is
imposed, as emphasized above. This restriction is shown
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/

29 A B = 1/31// //

91.6 r/ro

L=

T

1 12 14 16 18 2 22 24
r/ro

FIG. 2. To be a solution of a wormhole, the condition b(r) < r
is imposed, so that only the interval below the solid line r/r,
provide wormhole solutions. The plot depicts the values of 8 =
1/3 and B8 = 1/4, and one verifies that the wormhole dimensions
increase for decreasing values of 3. See the text for details.

graphically in Fig. 2 for the values of 8 =1/3 and B =
1/4. One verifies that the wormhole dimensions increase
for decreasing values of 3, so that the dimensions of this
specific Chaplygin wormhole cannot be arbitrarily large.

IV. SUMMARY AND CONCLUSION

The generalized Chaplygin gas (GCG) is a possible
candidate for the unification of dark energy, responsible
for the present accelerated cosmic expansion, and of dark
matter, inferred, for instance, from galactic rotation curves.
The GCG is parametrized by an exotic equation of state
given by p., = —A/pg,, where A and « are positive con-
stants, with 0 < @ = 1. The GCG models, in a cosmologi-
cal context, have at least two significant features that stand
out. First, they describe a smooth transition from a decel-
erated expansion of the Universe to a present epoch of a
cosmic acceleration. Second, they provide a unified macro-
scopic phenomenological description of dark matter and of
dark energy.

In this paper, we have studied the possibility that tra-
versable wormholes may be supported by the GCG. We
have found that, to be a generic solution of a wormhole, the
GCG equation of state imposes the following restriction
A < (87r3)~1+ @ consequently violating the NEC condi-
tion, which is a necessary ingredient in wormhole physics.
We analyzed the physical properties and characteristics of
these Chaplygin wormholes, studying in some detail four
specific solutions. The first is that of a constant redshift
function, and specific wormhole dimensions, the traversal
velocity, and traversal time were deduced from the travers-
ability conditions for this particular geometry. The second
solution is that of a specific choice for the form function,
and the theoretical construction of this spacetime with
infinitesimal amounts of averaged null energy condition
violating Chaplygin gas was also explored. The third case
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analyzed is that of a constant energy density, and finally
isotropic pressure Chaplygin traversable wormhole solu-
tions were also presented. The solutions found are not
asymptotically flat, where the spatial distribution of the
exotic GCG is restricted to the throat vicinity, so that the
dimensions of these Chaplygin wormholes are not arbi-
trarily large.

In concluding, it is noteworthy the relative ease with
which one may theoretically construct traversable worm-
holes with the exotic fluid equations of state used in
cosmology to explain the present accelerated expansion
of the Universe. As for phantom energy traversable worm-
holes [5], these Chaplygin variations have far-reaching

PHYSICAL REVIEW D 73, 064028 (2006)

physical and cosmological implications, namely, apart
from being used for interstellar shortcuts, an absurdly
advanced civilization may convert them into time ma-
chines [36,43,44], probably implying the violation of
causality.
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