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Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion
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We present an analytic method based on the Hadamard-WKB expansion to calculate the self-force for a
particle with scalar charge that undergoes radial infall in a Schwarzschild spacetime after being held at
rest until a time t � 0. Our result is valid in the case of short duration from the start. It is possible to use
the Hadamard-WKB expansion in this case because the value of the integral of the retarded Green’s
function over the particle’s entire past trajectory can be expressed in terms of two integrals over the time
period that the particle has been falling. This analytic result is expected to be useful as a check for
numerical prescriptions including those involving mode-sum regularization and for any other analytical
approximations to self-force calculations.
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I. INTRODUCTION

Computation of the self-force for a point particle in orbit
around a black hole is a topic of active research today [1–3]
prompted by the preparation of gravitational wave detec-
tors such as LISA which are capable of detecting gravita-
tional waves emitted when a compact object falls into a
supermassive black hole [4,5].

An exact expression for the self-force in a black hole
spacetime has been obtained only for the cases of a scalar
or electric charge held at rest in a Schwarzschild spacetime
[6–9] and an electric charge held at rest on the symmetry
axis of a Kerr spacetime [10,11]. Approximate analytical
expressions have been obtained using Green’s functions for
scalar, electric, and gravitational charges in various weak
field limits [12–14]. Most other calculations have involved
the use of mode-sum techniques [15,16] in cases of high
symmetry such as a static charge [17–19], radial infall
[20,21], a circular orbit [22–25], or a slightly elliptical
orbit [24].

Since the mode-sum regularization procedure has been
developed extensively, aiming at practical calculations, it is
important to find independent ways to check its accuracy
and reliability. This of course also applies to any other
method, numerical or analytical that might be developed in
the future. To date the checks on various mode-sum regu-
larization procedures which we are aware of fall into three
categories: (1) comparisons with exact analytical results,
(2) comparisons with analytical approximations, (3) com-
parisons of the results of one mode-sum regularization
technique with those of another. Most of the comparisons
that have been made fall into the third category [21,23–
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27]. Comparisons with exact analytical results are of
course the most reliable but also the most limited. They
have only been done in the case of static scalar and electric
charges held at rest in a Schwarzschild spacetime [17].
Comparison with an analytic approximation in the weak
field limit has been made for a static scalar charge at rest in
an axisymmetric spacetime [19]. In this paper we present
results which can be used as a check in the second category.
However, unlike most previous analytical approximations
to the self-force, ours is valid in the strong field as well
as the weak field limit. Specifically, we consider the case
of a particle with scalar charge which is held at rest until
a time t � 0 and subsequently falls radially towards a
Schwarzschild black hole.

In a previous paper [28] (which we will refer to as Paper
I) we introduced an approximation for the computation of
the self-force of a scalar charge in a Schwarzschild space-
time using the Hadamard-WKB expansion [29–35] which
can account for the radiation reaction effects from the
charge’s recent past history. This is an expansion for the
tail term part of the retarded Green’s function and is valid
in a spacetime region close to the charge. A similar ap-
proach has been taken to compute part of the gravitational
self-force in an arbitrary spacetime by Anderson,
Flanagan, and Ottewill [36]. In Paper I an eighth order
WKB expansion was used to compute the nonvanishing
part of the tail term to order �x� x0�6. Since then we have
obtained results to order �x� x0�14 using a 16th order
WKB expansion.

Recently Anderson and Wiseman [37] investigated the
convergence of the Hadamard-WKB expansion for the
self-force. They posited that convergence is obtained as
long as the point separation in proper time is small enough
so that the null geodesics emanating from the point at the
earlier time have not had time to reintersect the particle’s
path. We know the absence of caustics is perhaps the least
-1 © 2006 The American Physical Society
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stringent criterion for the validity of a quasilocal expansion
(e.g., the domain of validity of Riemann normal coordi-
nates). After computing this proper time separation for the
case of a particle orbiting a black hole in a circular path,
they use the result of Paper I [Hadamard-WKB expansion
to order �x� x0�6] to evaluate the convergence of the series
expansion for the self-force.

Anderson and Wiseman go on to show that the primary
constituent of the self-force comes from the tail term of the
Green’s function when the points are too widely separated
for this expansion to converge. This would seem to rule out
the possibility of using the Hadamard-WKB expansion by
itself to compute the self-force, which is not surprising, as
the quasilocal expansion has this intrinsic limitation to
begin with.

However, we want to point out that there is at least one
case in which it is possible to determine the entire self-
force using the Hadamard-WKB expansion. If the particle
is held at rest until a time t � 0 after which it falls radially
towards the black hole, then the entire self-force can be
determined using the Hadamard-WKB expansion so long
as the particle has not fallen too far from its starting point.
While the range over which the particle falls must be small,
the results can serve as a useful check on other methods of
computing the self-force.

In Sec. II a brief review is given of the general method
we use to compute the self-force. In Sec. III the self-force
is computed for the case in which a particle is held at rest
until time t � 0 and subsequently falls towards the event
horizon of a Schwarzschild black hole. We derive a closed
expression for the self-force in terms of integrals over the
tail part of the retarded Green’s function when the points
are split by only a small amount. The splitting is between
the point where the particle is at a time t > 0 and various
other points inside the past lightcone of this point. We then
use the Hadamard-WKB expansion described in Paper I to
derive power series expressions for the nonzero compo-
nents of the self-force. In Sec. IV the series are evaluated
for a specific example. The results are given in Table I and
Fig. 1. Some details of the calculations are given in
Appendices A and B and the coefficients derived for the
series are also given in Appendix B.

II. REVIEW OF METHOD

Consider a massless scalar field with a source term
consisting of a point particle of scalar charge q. The
wave equation is [2,8]1
1Note that our conventions differ from those of [2,8]. One can
obtain those of Ref. [2] by letting �! �=

�������
4�
p

, q!
�������
4�
p

q, and
GR ! GR=�4��. Those of Ref. [8] can be obtained by letting
�! ��=

�������
4�
p

and q!
�������
4�
p

q.
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���x� � ���x�; ��x� � q
Z 1
�1

�4�x; z�����������
�g
p d�; (1)

where � is the proper time and z��� is the trajectory of the
particle. A formal solution to this equation can be obtained
using the retarded Green’s function:

��x� � q
Z 1
�1

GR�x; z��
0��d�0: (2)

The self-force is given formally by

f���� � q�r���x��x�z���: (3)

This expression is divergent and must be regularized.
Quinn [2] has shown that the regularized expression for
the self-force can be split into a local term plus a finite
integral over the gradient of the retarded Green’s function.
The latter is often called the ‘‘tail term.’’

The Hadamard expansion for the retarded Green’s func-
tion is [2,32,33,35]2

GR�x; x
0� � ��x; x0�

�
u�x; x0�

4�
����x; x0��

�
v�x; x0�

8�
�����x; x0��

�
: (4)

Here �����x; x0�� is defined to be one if the point x0 is
inside the light cone of the point x and zero otherwise,
while ��x; x0� is defined to be one if the point x resides in
the future of a spacelike hypersurface involving the point x0

and zero otherwise. The quantity ��x; x0� is equal to one-
half the square of the proper distance between x and x0

along the shortest geodesic connecting them. The function
v�x; x0� contributes to the tail part of the self-force [2]. It
obeys the equation

�xv�x; x0� � 0 (5)

and is symmetric under the exchange of the two points, i.e.
v�x; x0� � v�x0; x�. In a general spacetime [30,31]

v�x; x� � �
1

6
R�x�: (6)

The tail term for the self-force obtained from Eqs. (1) and
(2) can be written in the form (see, e.g., [37])
incorrect factor of ��x; x0� in the denominator of the first term.
The relationships between our definitions of u and v and those of
Ref. [2] were also given incorrectly. Taking into account the
previously mentioned difference in the definition of the retarded
Green’s function, the correct relationship is that the definition of
u in Eq. (4) is equivalent to that in Ref. [2] while the definition of
v differs from that of Ref. [2] by a factor of 1=2. No other
equations in Paper I are affected and the results remain
unchanged.
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�f�����tail � �
q2

8�

Z �

�0

�
@
@x�

v�x; z��0��
�
x�z���

d�0

� q2
Z �0

�1

�
@
@x�

GR�x; z��0��
�
x�z���

d�0: (7)

It is necessary that �0 be chosen so that the Hadamard-
WKB expansion for v is valid throughout the region of
integration of the first integral in Eq. (7).

An expansion for v�x; x0� in Schwarzschild spacetime
was found in Paper I using a WKB expansion for the
Euclidean Green’s function. The WKB expansion is ob-
tained via an iteration procedure and is increased by two
orders upon each iteration. From a WKB expansion of
order �2N� one can obtain an expansion for v�x; x0� that
includes terms up to order �x� x0�2N�2. For the metric

ds2 � ��1� 2M=r�dt2 � dr2=�1� 2M=r� � r2d�2;

(8)

the expansion for v is of the form

v�x; x0� �
X1

i;j;k�0

vijk�r��t� t0�2i�cos�� 1�j�r� r0�k (9)

with

cos� � cos� cos�0 � sin� sin�0 cos�	�	0�: (10)

We have recently found that it is possible to extend this
expansion to order �x� x0�2N�1 by using the fact that
v�x; x0� is a symmetric function. If one takes �2N � 1�
partial derivatives of v�x; x0� with respect to some combi-
nation of the coordinates xa and sets x0 � x then by sym-
metry it must be true that taking the same combination of
derivatives with respect to x0a and setting x0 � x results in
an equivalent expression. Using the expansion (9) results in
the coefficients of terms of odd powers of �x� x0� being
expressed in terms of the coefficients of terms of smaller
even powers. The coefficients of terms of even powers of
�x� x0� cannot be obtained in this way and must be
obtained from the WKB expansion.
III. COMPUTATION OF THE SELF-FORCE

We now proceed to compute the self-force for a particle
of massm and scalar charge q falling radially from rest. We
assume that the particle has been held fixed at r � r0, � �
�0, and 	 � 	0 from t � �1 to t � 0 which corresponds
to proper time � � 0. At time t � 0 the particle is released,
with no initial velocity, and subsequently falls radially
towards a Schwarzschild black hole of mass M. We shall
denote the spacetime point at which it is released by y0.
Our objective is to calculate the self-force exerted on the
particle at a proper time � > 0 when the particle is at the
point y � �t; r; �0; 	0�.
064023
The first term in Eq. (7) can be computed using the
Hadamard-WKB expansion. The results of this computa-
tion are discussed below. The second term is more difficult.
We next show that it too can be computed using the
Hadamard-WKB expansion due to the fact that the charge
is stationary until it begins falling at time t � 0.

First consider the problem of computing the field �static

at the point y due to a completely static charge q at the
position r � r0; � � �0; 	 � 	0. The solution to this
problem in a Schwarzschild spacetime has been given by
Wiseman [8]. For the above locations of the charge and
field point, with a metric of the form (8), and taking into
account a difference in conventions, it can be written as

�static�y� �
1

4�
q

�����������������
1�

2M
r0

s
1

r0 � r
: (11)

On the other hand one can use Eq. (2), to write the field
due to the static charge as

�static�y� � q
Z 1
�1

GR�t; r; t0��0�; r0�d�0: (12)

Here and for the rest of this section we suppress the
dependence of various quantities on the angles �0 and
	0. Dividing the integration region in the same way as
was done in Eq. (7) and using the Hadamard expansion (4)
one can write this latter equation as

�static�y� �
q

4�

�����������������
1�

2M
r0

s Z t

0
u�t; r; t0; r0�����t; r; t0; r0��dt0

�
q

8�

�����������������
1�

2M
r0

s Z tR

0
v�t; r; t0; r0�dt

0

� q
Z 0

�1
GR�t; r; t

0��0�; r0�d�
0: (13)

In the first two terms the integration variable has been
changed from �0 to t0. The two theta functions in Eq. (4)
result in an upper limit for the second integral which is
equal to the retarded time tR which is given in Eq. (A12).
The time t is taken to be the time that it would take a
particle to fall from r0 to r assuming that it starts at rest.
Then the third term on the right in Eq. (13) is the same,
except for the gradient and a factor of q, as the second term
on the right in Eq. (7). The value of this term can be
obtained by computing the other three terms in the equa-
tion. The term on the left is given in Eq. (11) and the
second term on the right can be computed using the
Hadamard-WKB expansion.

To calculate the first term on the right in Eq. (13), we
note that the argument of the delta function vanishes on the
light cone of the point y. Since the charge is static
-3
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��t; r; t0; r0� � ��t; r; tR; r0�

�

�
@
@t0
��t; r; t0; r0�

�
jt0�tR�t

0 � tR� � . . .

� �tR�t
0 � tR� � . . . ; (14)

where the shorthand notation �� � �;� has been used.
Then

����t; r; tR; r0�� � ���tR�t
0 � tR�� �

��t0 � tR�
j�tR j

: (15)

Next one must calculate u�y; yR� with y and yR �
�tR; r0; �0; 	0� connected by a null radial geodesic. By
substituting the Hadamard expansion into the equation
satisfied by the Green’s function it is possible to show
that in general [29–31]

u�x; x0� � �1=2�x; x0�; ��x; x0� � �
det���;�
0 ��������������
�g�x�

p ���������������
�g�x0�

p :

(16)

Thus what remains is to calculate �tR and �;�
0 for the two
points x � y and x0 � yR. Although there may be some
simple way to reason out the answer, as shown in Appendix
A, it can be obtained by solving the geodesic equations and
integrating the result to obtain the proper distance along the
geodesic. The result is

�tR�t; r; tR; r0� � r0 � r; u�t; r; tR; r0� � 1: (17)

Substituting Eq. (17) into Eq. (13) and computing the
integral one finds that

Z 0

�1
GR�t; r; t0��0�; r0�d�0 �

1

8�

�����������������
1�

2M
r0

s

	
Z tR

0
v�t; r; t0; r0�dt0: (18)

With the definitions

�s�y� �
q

8�

�����������������
1�

2M
r0

s Z tR

0
v�t; r; t0; r0�dt

0; (19a)

�f�y� �
q

8�

Z �

0
v�t; r; t0��0�; r0��0��d�0; (19b)

Eq. (7) becomes

f���� � q
�
@
@y�
��s�y� ��f�y��

�
: (20)

Here the facts that in a Schwarzschild spacetime v�x; x� �
0 and (as shown by our expansion) v�y; yR� � 0, have been
used to interchange the order of integration and differen-
tiation. Note that this derivation only works for the time
064023
and radial components of the self-force. Because of spheri-
cal symmetry, the angular components of the self-force for
a radial trajectory are zero. Finally the subscript ‘‘tail’’ has
been dropped because for a geodesic trajectory the local
part of the self-force is zero in a Schwarzschild spacetime
[2].

As a result of Eq. (20), the problem of calculating the
self-force reduces to calculating �s and �f. This is an
exact result. We now calculate the right hand side of
Eq. (20) using the Hadamard-WKB expansion for v�x; x0�
whose form is given in Eq. (9). For radial geodesics,
cos� � 1, so only the coefficients vi0k�r� contribute. The
result for �s is

�s�y� �
q

8�

�����������������
1�

2M
r0

s X1
i;k�0

�
1

2i� 1

�
vi0k�r�

	 �t2i�1 � �t� tR�2i�1��r� r0�
k: (21)

To calculate �f one can use the geodesic Eqs. (A7) to
convert the integral (19b) to an integral over the radial
coordinate r. One can further solve the geodesic equations
to obtain the trajectory t�r�. After substituting the
Hadamard-WKB expansion for v, the integral (19b) can
be computed numerically.

An alternative is to expand all relevant quantities in both
�s and �f in Taylor series about r0. This allows one to
compute the integrals analytically order by order. The
derivation is given in more detail in Appendix B. We find

ft��� �
q2

44800�r2
0

�����������������
1�

2M
r0

s �
40�

106M
r0

��
r0 � r
r0

�
3

�O
��
r0 � r
r0

�
4
�
; (22a)

fr
��� � �
3q2

22400�r2
0

��������
2M
r0

s �
1�

2M
r0

��
r0 � r
r0

�
5=2

�O
��
r0 � r
r0

�
7=2
�

(22b)

with r
 the Regge-Wheeler coordinate defined by

r
 � r� 2M log
�
r� 2M

2M

�
: (23)

It turns out that each subsequent order of the WKB expan-
sion adds another term to the series. Using a 16th order
WKB expansion we have results for a total of six terms in
the expansions for both ft and fr
. The coefficients of these
terms are displayed in Appendix B.
IV. SPECIFIC EXAMPLE

As a specific example we have chosen the case in which
a particle begins falling from rest at r
 � 40M at time t �
� � 0, with r
 defined in Eq. (23). Using the series in
Appendix B, the ft and fr
 components of the self-force
-4



TABLE I. The dependence of the temporal (ft) and radial (fr
 )
components of the self-force on the radial distance r=M are
given for a particle undergoing radial infall after being held at
rest until a time t � 0. The particle’s initial location is at r
 �
40M which corresponds to r � 34:43M. The error shown for
each case is an estimate of the relative error and is obtained by
taking the absolute value of the ratio of the last term used in the
series for the self-force to the entire series.

r=M 1014�M2=q2�ft Error 1014�M2=q2�fr
 Error

34.25 3.465 33 6:9	 10�6 �2:8692 3:4	 10�5

34.00 60.36 4:4	 10�4 �48:39 1:4	 10�3

33.75 308 3:4	 10�3 �260 8:4	 10�3

33.50 1040 0.013 �920 0.025
33.25 2840 0.031 �2600 0.052
33.00 6900 0.059 �6600 0.089
32.75 15 000 0.10 �15 000 0.13
32.50 33 000 0.14 �31 000 0.18
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have been computed. The results are displayed in Table I
and Fig. 1. The relative errors in the table are estimated by
taking the absolute value of the ratio between the last term
used in the series expansion (22) for a given component of
the self-force and the entire series for that component.

The expected convergence distance, obtained by mea-
suring how far the particle will fall in the time for a null
geodesic leaving the location of the particle at time t � 0
to circle the black hole and intersect the particle in a new
location, is r � 30:7M. On the other hand, an examination
of the error shows that more terms than the six we have
computed for each component of the self-force are neces-
sary for an accurate determination of the self-force when
r < 33M.

While the range over which we can compute the self-
force is relatively small and the calculation is for a particle
held at rest that subsequently undergoes radial infall in a
FIG. 1. In this figure the two components of the self-force are
plotted for the case of a particle undergoing radial infall after
being held at rest until a time t � 0. The particle’s initial location
is at r
 � 40M which corresponds to r � 34:43M. The dashed
curve corresponds to ft and the solid curve to fr
 .

064023
Schwarzschild spacetime, the merit of this method is it
produces reliable results and thus can provide an indepen-
dent check on other (existing and future) prescriptions for
the calculation of the self-force. It is worth noting that our
calculation started with a finite result and therefore no
regularization was needed. The generalization to the cases
where the self-force is due to electromagnetism and gravity
should be straightforward.
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APPENDIX A: CALCULATION OF uAND �tR
In this appendix we calculate the quantities u�y; yR� and

�tR�y; yR� with y � �t; r; �0; 	0� and yR � �tR; r0; �0; 	0�;
tR is the retarded time defined in Eq. (A12). The points y
and yR are separated by a radial null geodesic. From
Eqs. (14) and (16) it is clear that

u�y; yR� �
�
� det���;�
0 �x; x

0���������������
�g�x�

p ���������������
�g�x0�

p �
1=2

x!y;x0!yR

; (A1a)

�tR�y; yR� �
�
@
@t0
��x; x0�

�
x!y;x0!yR

: (A1b)

Although the points are separated by a radial null geo-
desic, it is necessary to assume a more general separation
before computing derivatives. Once this is done then the
specific separation can be taken. Because of spherical
symmetry the angular dependence of the quantity ��x; x0�
must be such that it is a function of cos�which is defined in
Eq. (10). To see this assume that the two points have an
angular separation of �. Since any arbitrary rotation of the
coordinate system does not change this angle, the angular
dependence of � can only be through �. Because any 2�
rotation around the origin of the coordinate system should
render � unchanged, � must be a periodic function of �
with period 2�. This dependence can be written as a
Fourier series in sinn� and cosn�. The coefficients of the
sine terms must identically vanish since ��x; x0� is a sym-
metric function in x and x0 and switching x and x0 changes
the sign of �. Since cosn� can be written in terms of
powers of cos� [38], it is then clear that � �
��t; r; t0; r0; cos��.

We next compute the angular derivatives of � beginning
with

�;��x; x0� �
�
@�

@ cos�

�
�� sin� cos�0

� cos� sin�0 cos�	�	0��: (A2)
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Note that in general �;��x; x
0� is a vector at x and a scalar at

x0. Next we can proceed to take a second derivative.

�;��0 �x; x
0� �

�
@2�

@�cos��2

�
�� sin� cos�0

� cos� sin�0 cos�	�	0��2 �
�
@�

@ cos�

�
	�sin� sin�0 � cos� cos�0 cos�	�	0��:

(A3)

For the special case of a radial geodesic, �0 � �, 	0 � 	,
and thus cos� � 1. As a result

��;��0 �cos��1 �

�
@�

@ cos�

�
cos��1

: (A4a)

Similarly it is easy to show that

��;		0 �cos��1 � sin2�
�

@�
@�cos��

�
cos��1

(A4b)

and

��;�t0 �cos��1 � ��;�r0 �cos��1 � ��;�	0 �cos��1 � 0; (A4c)

��;	t0 �cos��1 � ��;	r0 �cos��1 � ��;	�0 �cos��1 � 0: (A4d)

Along with the other combinations of radial and time
derivatives it is still necessary to calculate � @�

@�cos���cos��1.
If we choose coordinates such that � � �0 � �=2 then
from Eq. (A4b)�

@�
@�cos��

�
cos��1

� ��;		0 �	0�	: (A5)

To calculate the rest of the derivatives that comprise
�;�
0 it is useful to write � in terms of the proper time �
and to assume that the points both lie in the equatorial
plane so that � � �0 � �=2. Since � is one-half the square
of the proper distance between the two points along the
shortest geodesic connecting them we have

� � �
1

2
�2: (A6)

The proper time � can be computed by solving the geodesic
equations [39]

� � �
����
E
p Z r

r0

d �r

�1� Ef� �r� � J2f� �r�
�r2 �

1=2
; (A7a)

t� t0 � �
Z r

r0

d �r

f� �r��1� Ef��r� � J2f� �r�
�r2 �

1=2
; (A7b)

	�	0 � �J
Z r

r0

d �r

�r2�1� Ef� �r� � J2f� �r�
�r2 �

1=2
; (A7c)

where f�r� � 1� 2M=r. Note that J � 0 yields a radial
geodesic and E � 0 a null one.

Expanding the integrand of Eq. (A7a) in powers ofE and
J, computing the integral, and then substituting into
064023
Eq. (A6) gives

� � �
E
2
�r0 � r�2 �

E2

2
F�r0 � r� �O�E3� �O�EJ2�

(A8)

with

F � �
Z r

r0
d�rf��r� � r0 � r� 2M ln

�
r0

r

�
: (A9)

The values of the constants E and J can be found by
solving Eqs. (A7b) and (A7c). The integrals can be com-
puted by first expanding the integrands in powers of E and
J. From Eq. (A7c) one finds

J �
r0r
r0 � r

�	�	0� �O�E�	�	0�� �O��	�	0�3�:

(A10)

Keeping terms in the expansion of the integrand in
Eq. (A7b) to O�J2� and O�E2� and using (A10) yields

E � �
2�t0 � tR�
r0 � r

�
r0r

�r0 � r�2
�	�	0�2 �

3�t0 � tR�2F

�r0 � r�3

�O��t0 � tR�
3� �O��t0 � tR��	�	

0�2�

�O��	�	0�4� (A11)

with

tR � t�
Z r

r0

d �r
f� �r�

� t� �r0 � r� � 2M ln
r0 � 2M
r� 2M

:

(A12)

Substituting into Eq. (A8) gives

� � �t0 � tR��r0 � r� �
F

2�r0 � r�
�t0 � tR�2

�
r0r
2
�	�	0�2 �O��t0 � tR�

3�

�O��t0 � tR��	�	
0�2� �O��	�	0�4�: (A13)

Computing the various derivatives of � and then setting
t0 � tR and 	0 � 	 gives

�tR � �r
0 � r� (A14)

and

�;tt0 �
F

r0 � r
;

�;tr0 � �1�
F

f�r0��r0 � r�
;

�;rt0 � �1�
F

f�r��r0 � r�
;

�;rr0 � �
1

f�r�
�

1

f�r0�
�

F
f�r�f�r0��r0 � r�

;

�;		0 � �rr
0:

(A15)
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Using Eqs. (A4) and (A15) it is easy to show that

det���;�
0 �y; yR�� � �rr0 sin�0�
2: (A16)

Substituting into Eq. (A1a) then gives

u�y; yR� � 1: (A17)

This is an exact result.
APPENDIX B: POWER SERIES EXPANSION FOR
THE SELF-FORCE

In this appendix an expansion for the self-force in
powers of r� r0 is derived. The coefficients of the expan-
sion depend on the mass M of the black hole, the radius r0

at which the particle begins falling, the radius rwhich is its
present location, and the charge q.

To begin, consider �s in either Eq. (19a) or (21). Its
contribution to the self-force is given in Eq. (20). From
Eq. (A12) it is clear that @t � @tR . Because v�x; x1� satisfies
the equation �xv � 0 and because of the time translation
and time reversal invariance of the metric (8), v is a
function of �t� t1�2. Making use of this fact one finds that

@�s

@t
�

q
8�

�����������������
1�

2M
r0

s �
v�t; r; tR; r0�

�
Z tR

0

@
@t1

v�t; r; t1; r0�dt1

�

�
q

8�

�����������������
1�

2M
r0

s
v�t; r; 0; r0�: (B1)

Here as in Sec. III we suppress the dependence of v on �0

and 	0.
Next consider �f in Eq. (19b). The geodesic Eqs. (A7)

can be used to change the integration variable from the
proper time to the coordinate time. In this case J � 0 as the
geodesic is radial. Since it starts from rest at r0 it can be
seen from the geodesic equations that E � �1� 2M=r0�

�1.
The result is

�f �
q

8�
1��������������

1� 2M
r0

q Z t

0
v�t; r; t1; r1�

�
1�

2M
r1

�
dt1: (B2)

Noting that in a Schwarzschild spacetime v�x; x� � 0, one
finds

@�f

@t
� �

q
8�

1��������������
1� 2M

r0

q Z t

0

�
@v�t; r; t1; r1�

@t1

��
1�

2M
r1

�
dt1:

(B3)

Since the particle is freely falling, r1 � r1�t1� and one can
write
064023
@v
@t1

�
1�

2M
r1

�
�

d
dt1

�
v
�
1�

2M
r1

��

�
dr1

dt1

@
@r1

�
v
�
1�

2M
r1

��
(B4)

with the result that

@�f

@t
�

q
8�

1��������������
1� 2M

r0

q �
v�t; r; 0; r0�

�
1�

2M
r0

�

�
Z r

r0

@
@r1

�
v�t; r; t1; r1�

�
1�

2M
r1

��
dr1

�
: (B5)

Thus

ft � �
q2

8�
1��������������

1� 2M
r0

q Z r

r0

@
@r1

�
v�t; r; t1; r1�

�
1�

2M
r1

��
dr1:

(B6)

The computation of fr
 is straightforward. Taking the
derivative of Eqs. (21) and (19b) and then using the geo-
desic Eqs. (A7) and (23), one finds

fr
 �
q2

8�

���������������
1�

2M
r0

s �
1�

2M
r

� X1
i;k�0

�
1

2i�1
	

�
dvi0k
dr
�r�r0�

k

�kvi0k�r�r0�
k�1

�
�t2i�1��t� tR�2i�1�

�

�
q2

8�

�
1�

2M
r

� ��������
r0

2M

r Z r

r0

@v�t;r;t1;r1�

@r

��������������
r1

r0�r1

s
dr1:

(B7)

The next step is to expand t in powers of r0 � r and t1 in
powers of r0 � r1. This is done using the geodesic
Eq. (A7b). Then making the change of variables

s �

�������������
r0 � r
r0

s
; s1 �

���������������
r0 � r1

r0

s
;

x0 �

��������
2M
r0

s
; w0 �

�����������������
1�

2M
r0

s (B8)

gives

t �
r0

x0

�
2s
w0
�

�
2

3
� w2

0

��
s
w0

�
3
� . . .

�
: (B9)

Substituting this and the corresponding expression for t1
into Eqs. (B6) and (B7) , expanding in powers of s and s1,
and computing the integrals gives

ft � q2
X1
n�3

a2ns2n; (B10a)

fr
 � q2
X1
n�2

b2n�1s2n�1: (B10b)

Using a 16th order WKB expansion for v�x; x0� we find
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a6 �
w0��13� 53w2

0�

44800�r2
0

;

a8 �
w0

940800�r2
0x

2
0

��703� 2031w2
0� 72w4

0�;

a10 �
w0

310464000�r2
0x

4
0

��404385� 1485889w2
0

� 1990813w4
0� 1497309w6

0�;

a12 �
w0

710341632000�r2
0x

6
0

��1380534784

� 6209685607w2
0� 9489117981w4

0

� 2956643877w6
0� 3255643281w8

0�;

a14 �
w0

258564354048000�r2
0x

8
0

��690105799163

� 3725808468235w2
0� 7969067122446w4

0

� 9871663249718w6
0� 9633792321223w8

0

� 5317042452879w10
0 �;

a16 ��
w0

263735641128960000�r2
0x

10
0

�917523531344444

� 5807610696686037w2
0� 15120303760167717w4

0

� 19548426682161946w6
0� 7163353443413246w8

0

� 11432898205974399w10
0

� 9956772991427823w12
0 � (B10c)

and
064023
b5��
3x0w2

0

22400�r2
0

;

b7�
1

940800�x0r
2
0

��147�1031w2
0�2004w4

0�;

b9�
1

1117670400�x3
0r

2
0

�725274�4840427w2
0

�7544064w4
0�1384911w6

0�;

b11�
1

3196537344000�x5
0r

2
0

��5192394350

�35645887586w2
0�76724155827w4

0

�74055537336w6
0�34933610745w8

0�;

b13�
1

27703323648000�x7
0r

2
0

�88650418610

�652839443586w2
0�1715470441205w4

0

�2048237904519w6
0�938994638717w8

0

�27641613573w10
0 �;

b15�
1

197801730846720000�x9
0r

2
0

��1082712168000450

�8690022729803252w2
0�27039642594514215w4

0

�43159798466443548w6
0�40035939562445204w8

0

�24271024582691064w10
0

�8499901220531595w12
0 �: (B10d)
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