Embedding of the Kerr-Newman black hole surface in Euclidean space

Valeri P. Frolov*

Theoretical Physics Institute, University of Alberta, Edmonton, AB, Canada, T6G 2J1 (Received 24 January 2006; published 16 March 2006)

We obtain a global embedding of the surface of a rapidly rotating Kerr-Newman black hole in an Euclidean 4-dimensional space.

DOI: [10.1103/PhysRevD.73.064021](http://dx.doi.org/10.1103/PhysRevD.73.064021) PACS numbers: 04.70.Bw, 04.20.Jb, 04.50.+h

I. INTRODUCTION

In this paper we discuss the problem of isometric embedding of the surface of a rapidly rotating black hole in a flat space.

It is well known that intrinsically defined Riemannian manifolds can be isometrically embedded in a flat space. According to the Cartan-Janet [1,2] theorem, every analytic Riemannian manifold of dimension *n* can be locally real analytically isometrically embedded into \mathbb{E}^N with $N =$ $n(n + 1)/2$. The so called Fundamental Theorem of Riemannian geometry (Nash, 1956 [3]) states that every smooth Riemannian manifold of dimension *n* can be globally isometrically embedded in a Euclidean space \mathbb{E}^N with $N = (n + 2)(n + 3)/2.$

The problem of isometric embedding of 2D manifolds in \mathbb{E}^3 is well studied. It is known that any compact surface embedded isometrically in $E³$ has at least one point of positive Gauss curvature. Any 2D compact surface with positive Gauss curvature is always isometrically embeddable in \mathbb{E}^3 , and this embedding is unique up to rigid rotations. (For general discussion of these results and for further references, see e.g. [4]). It is possible to construct examples when a smooth geometry on a 2D ball with negative Gauss curvature cannot be isometrically embedded in \mathbb{E}^3 (see e.g. [5,6]). On the other hand, it is easy to construct an example of a global smooth isometric embedding for a surface of the topology S^2 which has both, positive and negative Gauss curvature ball-regions, separated by a closed loop where the Gauss curvature vanishes. An example of such an embedding is shown in Fig. 1 [7].

The surface geometry of a charged rotating black hole and its isometric embedding in \mathbb{E}^3 was studied long time ago by Smarr [8]. He showed that when the dimensionless rotation parameter $\alpha = J/M^2$ is sufficiently large, there are two regions near poles of the horizon surface where the Gauss curvature becomes negative. Smarr proved that these regions cannot be isometrically embedded (even locally) in \mathbb{E}^3 as a revolution surface, but such local embedding is possible in a 3D Minkowsky space. More recently different aspects of the embedding of a surface of a rotating

black hole and its ergosphere in \mathbb{E}^3 were discussed in [9,10]. A numerical scheme for construction of the isometric embedding for surfaces with spherical topology was proposed in [10]. The surface geometry of a rotating black hole in an external magnetic field and its embedding in \mathbb{E}^3 was studied in [11–13].

The purpose of this paper is to obtain the global isometric embedding of a surface of a rapidly rotating black hole in \mathbb{E}^4 . In Sec. II we discuss general properties of 2D axisymmetric metrics and prove that if the Gauss curvature is negative at the fixed points of the rotation group it is impossible to isometrically embed a region containing such a fixed point in E^3 . In Section III we demonstrate that such surfaces can be globally embedded in $E⁴$. We obtain the embedding of surfaces of rapidly rotating black holes in \mathbb{E}^4 in an explicit form in Sec. IV. Section V contains a brief summary and discussions.

II. GEOMETRY OF 2D AXISYMMETRIC DISTORTED SPHERES

Let us consider an axisymmetric deformation *S* of a unit sphere S^2 . Its metric can be written in the form

$$
dl^2 = h(x)dx^2 + f(x)d\phi^2.
$$
 (1)

Here $\xi = \partial_{\phi}$ is a Killing vector field with closed trajectories. Introducing a new coordinate $\mu = \int dx \sqrt{hf}$ one can rewrite (1) in the form

$$
dl^2 = f(\mu)^{-1} d\mu^2 + f(\mu) d\phi^2.
$$
 (2)

FIG. 1. This picture shows the ''croissant'' surface. A solid line separates two regions with opposite signs of the Gauss curvature. Each of these regions has the topology of a 2D ball. *Electronic address: frolov@phys.ualberta.ca The Gauss curvature is negative in the upper ball-region.

We assume that the function *f* is positive inside the interval (μ_0, μ_1) and vanishes at its ends. We choose $\mu_0 = -1$. The surface area of *S* is $2\pi(\mu_1 + 1)$. By multiplying the metric (1) by a constant scale factor $(\mu_1 + 1)^{-1/2}$ one can always put $\mu_1 = 1$, We shall use this choice, for which the surface area of *S* is 4π and the fixed points of ξ are located at $\mu = \pm 1$.

The metric (2) is regular (no conical singularities) at the points $\mu = \pm 1$ (where $r = 0$) if $f'(\pm 1) = \pm 2$. (Here and later $(\ldots)' = d(\ldots)/dz$.) The Gaussian curvature for the metric (2) is

$$
K = -\frac{1}{2}f''.
$$

Let us introduce a new coordinate $r = \sqrt{f(\mu)}$. The metric (2) in these coordinates is

$$
dl^2 = V(r)dr^2 + r^2d\phi^2, \qquad V = \frac{4}{f'^2}.
$$
 (4)

We denote by K_0 the value of K at a fixed point of rotations. Then in the vicinity of this point one has

$$
V \approx 1 + \frac{1}{2}K_0 r^2 + \dots
$$
 (5)

For $K_0 < 0$ the region in the vicinity of the fixed point cannot be embedded as a revolution surface in a Euclidean space \mathbb{E}^n for any $n \geq 3$. Indeed, consider a space \mathbb{E}^n with the metric

$$
dS^2 = dX^2 + dY^2 + \sum_{i=3}^{n} dZ_i^2.
$$
 (6)

For the surface of revolution $X = r \cos \phi$, $Y = r \sin \phi$, $Z_i = Z_i(r)$ the induced metric is

$$
dl^{2} = V(r)dr^{2} + r^{2}d\phi^{2}, \qquad V(r) = 1 + \sum_{i=3}^{n} (dZ_{i}/dr)^{2}.
$$
\n(7)

For a regular surface $V(0) = 1$ and $V(r) \ge 1$ in the vicinity of $r = 0$. According to (5) this is impossible when $K_0 < 0$.

We show now that if $K_0 < 0$ then a ball-region near the fixed point p_0 of axisymmetric 2D geometry cannot be isometrically embedded in \mathbb{E}^3 . Let us assume that such an embedding (not necessarily as a revolution surface) exists. One can choose coordinates (X^1, X^2, Z) in \mathbb{E}^3 so that $X^1 =$ $X^2 = 0$ at p_0 , and in its vicinity

$$
Z = \frac{1}{2}(k_1 X^{12} + k_2 X^{22}) + \dots,
$$
 (8)

where k_a ($a = 1, 2$) are principal curvatures at p_0 . Here and later ''dots'' denote omitted higher order terms. The metric on this surface induced by its embedding is

$$
dl^{2} = (1 + k_{1}^{2}X^{12})dX^{12} + (1 + k_{2}^{2}X^{22})dX^{22} + 2k_{1}k_{2}X^{1}X^{2}dX^{1}dX^{2} + \dots
$$
\n(9)

In the vicinity of p_0 the Killing vector ξ generating rotations has the form

$$
\xi = p^a \partial_a,\tag{10}
$$

where p^a ($a = 1, 2$) are regular functions of (X^1, X^2) vanishing at $(0, 0)$. Their expansion near p_0 has the form

$$
p^a = P_b^a X^b + P_{bc}^a X^b X^c + P_{bcd}^a X^b X^c X^d + \dots \qquad (11)
$$

Consider the Taylor expansion near p_0 of the Killing equation

$$
\xi_{a:b} = \xi_{a,b} - \Gamma_{ab}{}^c \xi_c = 0 \tag{12}
$$

in the metric (9). Since the expansion of both Γ^c_{ab} and ξ_c starts with a linear in X^a terms, the Eq. (12) can be used to obtain restrictions on the coefficients P_b^a , P_{bc}^a , and P_{bcd}^a in (11). Simple calculations give

$$
P_1^1 = P_2^2 = 0, \qquad P_2^1 = -P_1^2 = q, \qquad P_{bc}^a = P_{bcd}^a = 0,
$$
\n(13)

$$
qk_1(k_1 - k_2) = qk_2(k_1 - k_2) = 0.
$$
 (14)

If the Killing vector does not vanish identically then $q \neq 0$ and the Eqs. (14) imply that $k_1 = k_2$. This contradicts to the assumption of the existence of the embedding with $K_0 = k_1 k_2 < 0.$

III. EMBEDDING OF A 2D SURFACE WITH $K_0 < 0$ IN E^4

Increasing the number of dimensions of the flat space from 3 to 4 makes it possible to find an isometric embedding of 2D manifolds with $K_0 < 0$. Denote by (X, Y, Z, R) Cartesian coordinates in \mathbb{E}^4 and determine the embedding by equations

$$
X = \frac{r}{\Phi_0} \xi(\psi), \qquad Y = \frac{r}{\Phi_0} \eta(\psi), \qquad Z = \frac{r}{\Phi_0} \zeta(\psi), \tag{15}
$$

$$
R = R(r), \tag{16}
$$

where $0 \le \psi \le 2\pi$, and functions ξ , η and ζ obey the condition

$$
\xi^2(\psi) + \eta^2(\psi) + \zeta^2(\psi) = 1.
$$
 (17)

In other words, $\mathbf{n} = (\xi, \eta, \zeta)$ as a function of ψ is a line on a unit sphere S^2 . We require that this line is a smooth closed loop $(n(0) = n(2\pi))$ without self-intersections. Since a loop on a unit sphere allows continuous deformations preserving its length, there is an ambiguity in the choice of functions (ξ, η, ζ) .

We denote $\Phi = (\xi_{,\psi}^2 + \eta_{,\psi}^2 + \zeta_{,\psi}^2)^{1/2}$ then

$$
2\pi\Phi_0 = \int_0^{2\pi} d\psi \Phi(\psi). \tag{18}
$$

is the length of the loop. Instead of the coordinate ψ it is convenient to use a new angle coordinate ϕ which is proportional to the proper length of a curve $r =$ const

$$
\phi = \Phi_0^{-1} \int_0^{\psi} d\psi' \Phi(\psi'). \tag{19}
$$

The coordinate ϕ is a monotonic function of ψ and for ψ = 0 and $\psi = 2\pi$ it takes values 0 and 2π , respectively.

Eqs. (15) give the embedding in \mathbb{E}^3 of a linear surface formed by straight lines passing through $r = 0$. This surface has $K = 0$ outside the point $r = 0$ where, in a general case, it has a conelike singularity with the angle deficit $2\pi(1-\Phi_0).$

We shall use the embedding (15) and (16) for the case when the angle deficit is negative. In this case one can use, for example, the following set of functions

$$
\xi = \cos\psi/F,
$$
 $\eta = \sin\psi/F,$ $\zeta = a\sin(2\psi)/F,$ (20)

$$
F = \sqrt{1 + a^2 x^2}, \qquad x = \sin^2(2\psi). \tag{21}
$$

This embedding for the functions (ξ, η, ζ) defined by (20) and (21) is shown in Fig. 2.

For this choice

$$
\Phi = (1 + 4a^2 - 3a^2x)^{1/2}(a^2x + 1)^{-1}, \tag{22}
$$

$$
\Phi_0 = \frac{1}{\pi} \int_0^1 \frac{dx (1 + 4a^2 - 3a^2 x)^{1/2}}{\sqrt{x(1 - x)} (a^2 x + 1)}.
$$
 (23)

Calculations give

$$
\Phi_0 = \frac{8}{\pi\sqrt{1+4a^2}}[(1+a^2)\Pi(-a^2,k) - 3/4K(k)], (24)
$$

FIG. 2 (color online). The surface shown at this picture is formed by straight lines passing through a point $r = 0$. Its Gauss curvature vanishes. The surface has a cone singularity at $r = 0$ with a negative angle deficit.

$$
k = \sqrt{3}a/(1 + 4a^2). \tag{25}
$$

Here $K(k)$ and $\Pi(\nu, k)$ are complete elliptic integrals of the first and third kind, respectively. The function Φ_0 monotonically increases from 1 (at $a = 0$) to 2 (at $a \rightarrow \infty$) (see Fig. 3).

The induced metric for the embedded 2D surface defined by (15) and (16) is

$$
dl^2 = \left[\Phi_0^{-2} + (dR/dr)^2\right]dr^2 + r^2d\phi^2. \tag{26}
$$

If the angle deficit is positive ($\Phi_0 < 1$), the pole point $r =$ 0 in the metric (15) remains a cone singular point for any $R(r)$. For $\Phi > 1$ (the negative angle deficit), the pole-point $r = 0$ in the metric (26) is regular if $\left(\frac{dR}{dr} \right)_{0}^{2} = 1 - \Phi_{0}^{2}$. By comparing (4) and (26) one obtains

$$
r = f^{1/2}, \qquad (dR/dr)^2 = (V - \Phi_0^{-2}). \tag{27}
$$

This relation gives the following equation relating $R(\mu)$ with $f(\mu)$

$$
R' = (1 - f'^2 / (4\Phi_0^2))^{1/2} f^{-1/2}.
$$
 (28)

It is easy to check that $R'' = 0$ at points where $f' = 0$. In order $R¹$ to be real, the following condition must be valid $\Phi_0 \geq \frac{1}{2} \max_{\mu \in (-1,1)} |f'(\mu)|$. At a point where $|f'|$ reaches its maximum the quantity $f'' = -2K$ vanishes. Thus it is sufficient to require that Φ_0 is greater or equal to the values of $|f'|$ calculated at the points separating regions with the positive and negative Gauss curvature.

IV. EMBEDDING OF THE SURFACE OF THE KERR-NEWMAN HORIZON IN E**⁴**

The surface geometry of the Kerr-Newman black hole is described by the metric $ds^2 = N^2 dl^2$, where

$$
dl2 = (1 - \beta2 sin2 \theta) d\theta2 + sin2 \theta [1 - \beta2 sin2 \theta]^{-1} d\phi2,
$$
\n(29)

$$
N = (r_+^2 + a^2)^{1/2}, \qquad \beta = a(r_+^2 + a^2)^{-1/2}.
$$
 (30)

Here $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$. The metric dl^2 is normalized so that the area of the surface with this metric

FIG. 4. Plot for *R* as a function of μ for $\beta = 0.7$.

is 4π . In the coordinates $\mu = \cos\theta$ the metric (29) takes the form (2) with

$$
f(\mu) = (1 - \mu^2)[1 - \beta^2(1 - \mu^2)]^{-1}.
$$
 (31)

For the black hole with mass *M*, charge *Q* and the angular momentum $J = Ma$

$$
r_{+} = M - (M^{2} - a^{2} - Q^{2})^{1/2}.
$$
 (32)

The rotation parameter *a* and mass *M* can be written in terms of the distortion parameter β as follows

$$
a = \beta N
$$
, $M = \frac{1}{2}N(1 - \beta^2)^{-1/2}(1 + Q^2/N^2)$. (33)

The condition $M^2 \ge a^2 + Q^2$ for given parameters *N* and β requires that [8]

$$
0 \le Q \le N(1 - \beta^2)^{1/2},\tag{34}
$$

$$
\frac{1}{2}N(1 - \beta^2)^{-1/2} \le M \le N(1 - \beta^2)^{1/2}.\tag{35}
$$

The distortion parameter has its maximal value $\beta_{\text{max}} =$ The distortion parameter has its maximal value $\beta_{\text{max}} = 1/\sqrt{2}$ for $Q = 0$. The Gauss curvature of the surface with the metric (29) is

$$
K = [1 - \beta^2 (1 + 3\mu^2)][1 - \beta^2 (1 - \mu^2)]^{-3}.
$$
 (36)

FIG. 5. Plot for *R* as a function of *r* (curve 1) and ρ (curve 2) for $\beta = 0.7$.

FIG. 6. By gluing these two figures along their edges one obtains a 2D surface without angle deficits and isometric to the surface of a rotating black hole ($\beta = 0.7$.)

For $\frac{1}{2} < \beta \le \frac{1}{\sqrt{2}}$ the Gauss curvature is negative in the vicinity of poles in the region $\mu_c \leq |\mu| \leq 1$

$$
\mu_c = (1 - \beta^2)^{1/2} (\sqrt{3}\beta)^{-1}.
$$
 (37)

At $|\mu| = \mu_c$ the Gauss curvature vanishes. As it was shown earlier, at this point $|f'|$ has its maximum

$$
|f'|_{\text{max}} = |f'|_{\mu_c} = \frac{3\sqrt{3}}{8\beta(1 - \beta^2)^{3/2}},\tag{38}
$$

and one must choose the parameter Φ_0 so that $\Phi_0 \ge$ $\frac{1}{2}$ | f' |_{max}. Simplest possible choice is

$$
\Phi_0 = \frac{1}{2} |f'|_{\mu_c}.\tag{39}
$$

Using (39) and integrating the Eq. (28) one determines *R* as a function of μ . A plot of this function for $\beta = 0.7$ is shown in Fig. 4. Plot 1 at Fig. 5 shows *R* as a function of *r* for the same values of β .

The metric (26) can also be written in the form

$$
dl^2 = [1 + (dR/d\rho)^2]d\rho^2 + \Phi_0^2 \rho^2 d\phi^2, \qquad (40)
$$

where $\rho = r/\Phi_0$. Plot 2 at Fig. 5 shows *R* as a function of ρ for $\beta = 0.7$. The metric (40) coincides locally with the metric on the revolution surface determined by the equation $R = R(\rho)$ in \mathbb{E}^3 . This does not give a global isometric embedding since the period of the angle coordinate is $2\pi\Phi_0$. This surface can be obtained by gluing two figures shown in Fig. 6 along their edges. For the left figure ϕ changes from 0 to π , while for the right one it changes from π to $2\pi\Phi_0$.

V. CONCLUDING REMARKS

We demonstrated that a surface of a rapidly rotating black hole, which cannot be isometrically embedded in \mathbb{E}^3 , allows such a global embedding in \mathbb{E}^4 . To construct this embedding one considers first a 2D surface in \mathbb{E}^3 formed by straight lines passing through one point $(r = 0)$ which has a cone singularity at $r = 0$ with negative angle deficit. Its Gauss curvature outside $r = 0$ vanishes. Next element of the construction is finding a function $R(r)$. The revolution

EMBEDDING OF THE KERR-NEWMAN BLACK HOLE ... PHYSICAL REVIEW D **73,** 064021 (2006)

surface for this function in \mathbb{E}^3 has a positive angle deficit at $r = 0$. By combining these two maps in such a way that positive and negative angle deficits cancel one another, one obtains a regular global embedding in $E⁴$. This construction can easily be used to find the embedding in $E⁴$ of surfaces of rapidly rotating stationary black holes distorted by an action of external forces or fields, provided the axial symmetry of the spacetime is preserved. An interesting example is a case of a rotating black hole in a homogeneous

- [1] M. Janet, Ann. Soc. Polon. Math. **5**, 38 (1926).
- [2] E. Cartan, Ann. Soc. Polon. Math. **6**, 1 (1927).
- [3] J. Nash, Ann. Math. (N.Y.) **63**, 20 (1956).
- [4] M. Berger, *A Panoramic View of Riemannian Geometry* (Springer-Verlag, Berlin-Heidelberg-New York, 2003).
- [5] A. V. Pogorelov, Dokl. Akad. Nauk SSSR **198**, 42 (1971); [Soviet Math. Dokl. **12**, 729 (1971)].
- [6] N. Nadirashvili and Y. Yuan, math.dg/0208127.
- [7] This example demonstrates that the Proposition 4.1 of the paper [14] is wrong.
- [8] L. Smarr, Phys. Rev. D **7**, 289 (1973).

at infinity magnetic field directed along the axis of the rotation (see e.g. [11–13].

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada and by the Killam Trust.

- [9] N. Pelavas, N. Neary, and K. Lake, Class. Quant. Grav. **18**, 1319 (2001).
- [10] M. Bondarescu, M. Alcubierre, and E. Seidel, Class. Quant. Grav. **19**, 375 (2002).
- [11] W. J. Wild and R. M. Kerns, Phys. Rev. D **21**, 332 (1980).
- [12] W. J. Wild, R. M. Kerns, and W. F. Drish, Jr., Phys. Rev. D **23**, 829 (1981).
- [13] R. Kulkarni and N. Dadhich, Phys. Rev. D **33**, 2780 (1986).
- [14] J. Stryla, Class. Quant. Grav. **15**, 2303 (1998).