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Embedding of the Kerr-Newman black hole surface in Euclidean space
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We obtain a global embedding of the surface of a rapidly rotating Kerr-Newman black hole in an
Euclidean 4-dimensional space.
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FIG. 1. This picture shows the ‘‘croissant’’ surface. A solid
I. INTRODUCTION

In this paper we discuss the problem of isometric em-
bedding of the surface of a rapidly rotating black hole in a
flat space.

It is well known that intrinsically defined Riemannian
manifolds can be isometrically embedded in a flat space.
According to the Cartan-Janet [1,2] theorem, every ana-
lytic Riemannian manifold of dimension n can be locally
real analytically isometrically embedded into EN with N �
n�n� 1�=2. The so called Fundamental Theorem of
Riemannian geometry (Nash, 1956 [3]) states that every
smooth Riemannian manifold of dimension n can be glob-
ally isometrically embedded in a Euclidean space EN with
N � �n� 2��n� 3�=2.

The problem of isometric embedding of 2D manifolds in
E3 is well studied. It is known that any compact surface
embedded isometrically in E3 has at least one point of
positive Gauss curvature. Any 2D compact surface with
positive Gauss curvature is always isometrically embed-
dable in E3, and this embedding is unique up to rigid
rotations. (For general discussion of these results and for
further references, see e.g. [4]). It is possible to construct
examples when a smooth geometry on a 2D ball with
negative Gauss curvature cannot be isometrically em-
bedded in E3 (see e.g. [5,6]). On the other hand, it is easy
to construct an example of a global smooth isometric
embedding for a surface of the topology S2 which has
both, positive and negative Gauss curvature ball-regions,
separated by a closed loop where the Gauss curvature
vanishes. An example of such an embedding is shown in
Fig. 1 [7].

The surface geometry of a charged rotating black hole
and its isometric embedding in E3 was studied long time
ago by Smarr [8]. He showed that when the dimensionless
rotation parameter � � J=M2 is sufficiently large, there
are two regions near poles of the horizon surface where the
Gauss curvature becomes negative. Smarr proved that
these regions cannot be isometrically embedded (even
locally) in E3 as a revolution surface, but such local embed-
ding is possible in a 3D Minkowsky space. More recently
different aspects of the embedding of a surface of a rotating
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black hole and its ergosphere in E3 were discussed in
[9,10]. A numerical scheme for construction of the iso-
metric embedding for surfaces with spherical topology was
proposed in [10]. The surface geometry of a rotating black
hole in an external magnetic field and its embedding in E3

was studied in [11–13].
The purpose of this paper is to obtain the global iso-

metric embedding of a surface of a rapidly rotating black
hole in E4. In Sec. II we discuss general properties of 2D
axisymmetric metrics and prove that if the Gauss curvature
is negative at the fixed points of the rotation group it is
impossible to isometrically embed a region containing
such a fixed point in E3. In Section III we demonstrate
that such surfaces can be globally embedded in E4. We
obtain the embedding of surfaces of rapidly rotating black
holes in E4 in an explicit form in Sec. IV. Section V
contains a brief summary and discussions.

II. GEOMETRY OF 2D AXISYMMETRIC
DISTORTED SPHERES

Let us consider an axisymmetric deformation S of a unit
sphere S2. Its metric can be written in the form

dl2 � h�x�dx2 � f�x�d�2: (1)

Here � � @� is a Killing vector field with closed trajecto-
ries. Introducing a new coordinate � �

R
dx

������
hf
p

one can
rewrite (1) in the form

dl2 � f����1d�2 � f���d�2: (2)
line separates two regions with opposite signs of the Gauss
curvature. Each of these regions has the topology of a 2D ball.
The Gauss curvature is negative in the upper ball-region.
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We assume that the function f is positive inside the interval
��0; �1� and vanishes at its ends. We choose �0 � �1.
The surface area of S is 2���1 � 1�. By multiplying the
metric (1) by a constant scale factor ��1 � 1��1=2 one can
always put �1 � 1, We shall use this choice, for which the
surface area of S is 4� and the fixed points of � are located
at � � �1.

The metric (2) is regular (no conical singularities) at the
points � � �1 (where r � 0) if f0��1� � �2. (Here and
later �. . .�0 � d�. . .�=dz.) The Gaussian curvature for the
metric (2) is

K � �1
2f
00: (3)

Let us introduce a new coordinate r �
�����������
f���

p
. The

metric (2) in these coordinates is

dl2 � V�r�dr2 � r2d�2; V �
4

f02
: (4)

We denote byK0 the value ofK at a fixed point of rotations.
Then in the vicinity of this point one has

V � 1� 1
2K0r

2 � . . . : (5)

For K0 < 0 the region in the vicinity of the fixed point
cannot be embedded as a revolution surface in a Euclidean
space En for any n 	 3. Indeed, consider a space En with
the metric

dS2 � dX2 � dY2 �
Xn
i�3

dZ2
i : (6)

For the surface of revolution X � r cos�, Y � r sin�,
Zi � Zi�r� the induced metric is

dl2 � V�r�dr2 � r2d�2; V�r� � 1�
Xn
i�3

�dZi=dr�2:

(7)

For a regular surface V�0� � 1 and V�r� 	 1 in the vicinity
of r � 0. According to (5) this is impossible when K0 < 0.

We show now that if K0 < 0 then a ball-region near the
fixed point p0 of axisymmetric 2D geometry cannot be
isometrically embedded in E3. Let us assume that such an
embedding (not necessarily as a revolution surface) exists.
One can choose coordinates �X1; X2; Z� in E3 so that X1 �
X2 � 0 at p0, and in its vicinity

Z � 1
2�k1X12 � k2X22� � . . . ; (8)

where ka �a � 1; 2� are principal curvatures at p0. Here
and later ‘‘dots‘‘ denote omitted higher order terms. The
metric on this surface induced by its embedding is
064021
dl2 � �1� k2
1X

12�dX12 � �1� k2
2X

22�dX22

� 2k1k2X1X2dX1dX2 � . . . : (9)

In the vicinity of p0 the Killing vector � generating rota-
tions has the form

� � pa@a; (10)

where pa �a � 1; 2� are regular functions of �X1; X2� van-
ishing at �0; 0�. Their expansion near p0 has the form

pa � PabX
b � PabcX

bXc � PabcdX
bXcXd � . . . : (11)

Consider the Taylor expansion near p0 of the Killing
equation

�a:b � �a;b � �ab
c�c � 0 (12)

in the metric (9). Since the expansion of both �cab and �c
starts with a linear in Xa terms, the Eq. (12) can be used to
obtain restrictions on the coefficients Pab, Pabc, and Pabcd in
(11). Simple calculations give

P1
1 � P2

2 � 0; P1
2 � �P

2
1 � q; Pabc � Pabcd � 0;

(13)

qk1�k1 � k2� � qk2�k1 � k2� � 0: (14)

If the Killing vector does not vanish identically then q � 0
and the Eqs. (14) imply that k1 � k2. This contradicts to
the assumption of the existence of the embedding with
K0 � k1k2 < 0.

III. EMBEDDING OF A 2D SURFACE WITH K0 < 0
IN E4

Increasing the number of dimensions of the flat space
from 3 to 4 makes it possible to find an isometric embed-
ding of 2D manifolds with K0 < 0. Denote by �X; Y; Z; R�
Cartesian coordinates in E4 and determine the embedding
by equations

X �
r

�0
�� �; Y �

r
�0

�� �; Z �
r

�0
�� �;

(15)

R � R�r�; (16)

where 0 
  
 2�, and functions �, � and � obey the
condition

�2� � � �2� � � �2� � � 1: (17)

In other words, n � ��; �; �� as a function of  is a line on
a unit sphere S2. We require that this line is a smooth closed
loop (n�0� � n�2��) without self-intersections. Since a
loop on a unit sphere allows continuous deformations
-2
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FIG. 3. �0 as a function of the parameter a.
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preserving its length, there is an ambiguity in the choice of
functions ��; �; ��.

We denote � � ��2
; � �

2
; � �

2
; �

1=2 then

2��0 �
Z 2�

0
d �� �: (18)

is the length of the loop. Instead of the coordinate  it is
convenient to use a new angle coordinate � which is
proportional to the proper length of a curve r � const

� � ��1
0

Z  

0
d 0�� 0�: (19)

The coordinate� is a monotonic function of  and for  �
0 and  � 2� it takes values 0 and 2�, respectively.

Eqs. (15) give the embedding in E3 of a linear surface
formed by straight lines passing through r � 0. This sur-
face has K � 0 outside the point r � 0 where, in a general
case, it has a conelike singularity with the angle deficit
2��1��0�.

We shall use the embedding (15) and (16) for the case
when the angle deficit is negative. In this case one can use,
for example, the following set of functions

� � cos =F; � � sin =F; � � a sin�2 �=F;

(20)

F �
�������������������
1� a2x2

p
; x � sin2�2 �: (21)

This embedding for the functions ��; �; �� defined by (20)
and (21) is shown in Fig. 2.

For this choice

� � �1� 4a2 � 3a2x�1=2�a2x� 1��1; (22)

�0 �
1

�

Z 1

0

dx�1� 4a2 � 3a2x�1=2

������������������
x�1� x�

p
�a2x� 1�

: (23)

Calculations give

�0 �
8

�
�����������������
1� 4a2
p ��1� a2����a2; k� � 3=4K�k��; (24)
FIG. 2 (color online). The surface shown at this picture is
formed by straight lines passing through a point r � 0. Its
Gauss curvature vanishes. The surface has a cone singularity
at r � 0 with a negative angle deficit.
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k �
���
3
p
a=�1� 4a2�: (25)

HereK�k� and ���; k� are complete elliptic integrals of the
first and third kind, respectively. The function �0 mono-
tonically increases from 1 (at a � 0) to 2 (at a! 1) (see
Fig. 3).

The induced metric for the embedded 2D surface de-
fined by (15) and (16) is

dl2 � ���2
0 � �dR=dr�

2�dr2 � r2d�2: (26)

If the angle deficit is positive (�0 < 1), the pole point r �
0 in the metric (15) remains a cone singular point for any
R�r�. For �> 1 (the negative angle deficit), the pole-point
r � 0 in the metric (26) is regular if �dR=dr�20 � 1��2

0.
By comparing (4) and (26) one obtains

r � f1=2; �dR=dr�2 � �V ���2
0 �: (27)

This relation gives the following equation relating R���
with f���

R0 � �1� f02=�4�2
0��

1=2f�1=2: (28)

It is easy to check that R00 � 0 at points where f0 � 0. In
order R0 to be real, the following condition must be valid
�0 	

1
2 max�2��1;1�jf0���j. At a point where jf0j reaches

its maximum the quantity f00 � �2K vanishes. Thus it is
sufficient to require that �0 is greater or equal to the values
of jf0j calculated at the points separating regions with the
positive and negative Gauss curvature.

IV. EMBEDDING OF THE SURFACE OF THE
KERR-NEWMAN HORIZON IN E4

The surface geometry of the Kerr-Newman black hole is
described by the metric ds2 � N2dl2, where

dl2 � �1� 	2sin2
�d
2 � sin2
�1� 	2sin2
��1d�2;

(29)

N � �r2
� � a

2�1=2; 	 � a�r2
� � a

2��1=2: (30)

Here 0 
 
 
 � and 0 
 � 
 2�. The metric dl2 is
normalized so that the area of the surface with this metric
-3
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FIG. 4. Plot for R as a function of � for 	 � 0:7.

FIG. 6. By gluing these two figures along their edges one
obtains a 2D surface without angle deficits and isometric to
the surface of a rotating black hole (	 � 0:7.)
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is 4�. In the coordinates � � cos
 the metric (29) takes
the form (2) with

f��� � �1��2��1� 	2�1��2���1: (31)

For the black hole with mass M, charge Q and the
angular momentum J � Ma

r� � M� �M2 � a2 �Q2�1=2: (32)

The rotation parameter a and mass M can be written in
terms of the distortion parameter 	 as follows

a � 	N; M � 1
2N�1� 	

2��1=2�1�Q2=N2�: (33)

The condition M2 	 a2 �Q2 for given parameters N and
	 requires that [8]

0 
 Q 
 N�1� 	2�1=2; (34)

1
2N�1� 	

2��1=2 
 M 
 N�1� 	2�1=2: (35)

The distortion parameter has its maximal value 	max �

1=
���
2
p

for Q � 0. The Gauss curvature of the surface with
the metric (29) is

K � �1� 	2�1� 3�2��1� 	2�1��2���3: (36)
12
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For 1
2 <	 
 1��

2
p the Gauss curvature is negative in the

vicinity of poles in the region �c 
 j�j 
 1

�c � �1� 	
2�1=2�

���
3
p
	��1: (37)

At j�j � �c the Gauss curvature vanishes. As it was
shown earlier, at this point jf0j has its maximum

jf0jmax � jf
0j�c
�

3
���
3
p

8	�1� 	2�3=2
; (38)

and one must choose the parameter �0 so that �0 	
1
2 jf

0jmax. Simplest possible choice is

�0 �
1
2jf
0j�c

: (39)

Using (39) and integrating the Eq. (28) one determines R
as a function of �. A plot of this function for 	 � 0:7 is
shown in Fig. 4. Plot 1 at Fig. 5 shows R as a function of r
for the same values of 	.

The metric (26) can also be written in the form

dl2 � �1� �dR=d��2�d�2 ��2
0�

2d�2; (40)

where � � r=�0. Plot 2 at Fig. 5 shows R as a function of
� for 	 � 0:7. The metric (40) coincides locally with the
metric on the revolution surface determined by the equa-
tion R � R��� in E3. This does not give a global isometric
embedding since the period of the angle coordinate is
2��0. This surface can be obtained by gluing two figures
shown in Fig. 6 along their edges. For the left figure �
changes from 0 to �, while for the right one it changes
from � to 2��0.
V. CONCLUDING REMARKS

We demonstrated that a surface of a rapidly rotating
black hole, which cannot be isometrically embedded in
E3, allows such a global embedding in E4. To construct this
embedding one considers first a 2D surface in E3 formed by
straight lines passing through one point (r � 0) which has
a cone singularity at r � 0 with negative angle deficit. Its
Gauss curvature outside r � 0 vanishes. Next element of
the construction is finding a function R�r�. The revolution
-4
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surface for this function in E3 has a positive angle deficit at
r � 0. By combining these two maps in such a way that
positive and negative angle deficits cancel one another, one
obtains a regular global embedding in E4. This construction
can easily be used to find the embedding in E4 of surfaces
of rapidly rotating stationary black holes distorted by an
action of external forces or fields, provided the axial sym-
metry of the spacetime is preserved. An interesting ex-
ample is a case of a rotating black hole in a homogeneous
064021
at infinity magnetic field directed along the axis of the
rotation (see e.g. [11–13].
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