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Computational techniques which establish the stability of an evolution-boundary algorithm for a model
wave equation with shift are incorporated into a well-posed version of the initial-boundary value problem
for gravitational theory in harmonic coordinates. The resulting algorithm is implemented as a 3-
dimensional numerical code which we demonstrate to provide stable, convergent Cauchy evolution in
gauge wave and shifted gauge wave testbeds. Code performance is compared for Dirichlet, Neumann, and
Sommerfeld boundary conditions and for boundary conditions which explicitly incorporate constraint
preservation. The results are used to assess strategies for obtaining physically realistic boundary data by
means of Cauchy-characteristic matching.
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I. INTRODUCTION

The ability to compute the details of the gravitational
radiation produced by compact astrophysical sources, such
as coalescing black holes, is of major importance to the
success of gravitational wave astronomy. The simulation of
such systems by the numerical evolution of solutions to
Einstein’s equations requires a valid treatment of the outer
boundary. This involves the mathematical issue of proper
boundary conditions which ensure a well-posed initial-
boundary value problem (IBVP), the computational issues
of the consistency, accuracy, and stability of the finite
difference approximation, and the physical issue of pre-
scribing boundary data which is free of spurious incoming
radiation. The physical issue can be solved by locating the
outer boundary at future null infinity I� in a conformally
compactified space-time [1]. Since no light rays can enter
the space-time through I�, no boundary data are needed to
evolve the interior space-time. In addition, the waveform
and polarization of the outgoing radiation can be unambig-
uously calculated at I� in terms of the Bondi news func-
tion. This global approach has been applied to single black
hole space-times using Cauchy evolution on hyperboloidal
time slices (see [2,3] for reviews) and using characteristic
evolution on null hypersurfaces (see [4] for a review).
However, most current computational work on the binary
black hole problem involves Cauchy evolution in a domain
whose outer boundary is a finite timelike worldtube. This
approach could be justified physically if the boundary data
were supplied by matching to an exterior solution extend-
ing to I�. The present work is part of a Cauchy-
characteristic matching (CCM) project [5,6] to achieve
this by matching the interior Cauchy evolution to an ex-
terior characteristic evolution. The success of CCM de-
pends upon the proper mathematical and computational
treatment of the Cauchy IBVP. A key issue, on which we
focus in this paper, is the accurate preservation of the
constraints in the treatment of the Cauchy boundary. The
results have important bearing on the matching problem.
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Early computational work in general relativity focused
on the initial value problem in which data on a spacelike
hypersurface S determines the evolution in its domain of
dependence. However, in the simulation of an isolated
system, such as a neutron star or black hole, S typically
has an outer timelike boundary B, coincident with the
boundary of the computational grid. The initial-boundary
value problem addresses the extension of the evolution into
the domain of dependence of S [B. The IBVP for
Einstein’s equations is still not well understood due to
complications arising from the constraint equations. See
[7] for a review of the mathematical aspects. Well-
posedness of the mathematical problem, which guarantees
the existence and uniqueness of a solution with continuous
dependence on the Cauchy and boundary data, is a neces-
sary condition for computational success. A well-posed
IBVP for a linearization of the Einstein equations was first
presented by Stewart [8], and the first well-posed version
for the full nonlinear theory was established by Friedrich
and Nagy [9]. These works have influenced numerous
investigations of the implementation of boundary condi-
tions in numerical relativity [6,10–24]. However, the com-
bined mathematical and computational aspects of the IBVP
still present a major impasse in carrying out the long term
simulations necessary to compute useful waveforms from
the inspiral and merger of black holes.

The IBVP for general relativity takes on one of its
simplest forms in a harmonic gauge, in which the well-
posedness of the Cauchy problem was first established
[25]. In previous work, we formulated a well-posed
constraint-preserving version of the harmonic IBVP and
implemented it as a numerical code [6], the Abigel code.
The IBVP was demonstrated to be well posed for homoge-
neous boundary data (or for small boundary data in the
sense of linearization off homogeneous data) and the code
was shown to be stable and convergent. Nevertheless,
numerical evolution was limited by the excitation of ex-
ponential instabilities of an analytic origin. Insight into the
nature of these unstable modes and mathematical and
-1 © 2006 The American Physical Society
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computational techniques for dealing with them have been
developed in a study of the evolution problem in the
absence of boundaries. These studies were carried out on
toroidal spatial manifolds, equivalent to the imposition of
periodic boundary conditions. In this paper, we apply the
techniques which were successful in the periodic case to
the general harmonic IBVP. Although our applications here
are limited to test problems, we expect the techniques will
be of benefit in furthering recent progress in the simulation
of black holes by harmonic evolution [24,26,27].

Our previous work on the IBVP [6] was based upon a
reduced form of the harmonic system due to Fock [28]. We
present our results here in the more standard form [7,29]
used in most analytic work. We have described and tested a
finite difference evolution code based upon this standard
harmonic formulation in [30]. In Sec. II, we summarize the
main analytic and computational features of this evolution
code. The formalism includes harmonic gauge forcing
terms and constraint adjustments. In principle, gauge forc-
ing terms [31] allow the simulation of any nonsingular
space-time region. Gauge forcing not only allows the
flexibility to ‘‘steer’’ around pathologies that might other-
wise arise in standard harmonic coordinates but it also
allows universal adaptability to carry out standardized tests
for code performance, such as the AppleswithApples
(AwA) tests [32]. The formalism also includes constraint
adjustments which modify the nonlinear terms in the stan-
dard harmonic equations by mixing in the harmonic con-
straints. Such constraint adjustments have proved to be
important in harmonic evolution in suppressing instabil-
ities in a shifted version of the AwA gauge wave test [30]
and in simulating black holes [26,27].

Constraint adjustments, when combined with a flux
conservative form of the equations, can lead to conserved
quantities which suppress exponentially growing error
modes. As a dramatic example, the AwA gauge wave tests
for the Abigel harmonic code show an increase in error of
more than 12 orders of magnitude, after 100 grid crossing
times, if flux conservation is not employed [16]. The error
arises from exponentially growing solutions to the reduced
equations which have long wavelength and satisfy the
constraints, so that it is unaffected by either numerical
dissipation or constraint adjustment. The underlying con-
servation laws only apply to the principle part of the
system. They are effective when the nonlinear terms cor-
responding to the unstable modes are small, or can be
adjusted to be small by mixing in the constraints. This is
the case with the AwA gauge wave. However, as we discuss
in Sec. II, a shifted version of the gauge wave test excites a
different type of exponential instability which does not
satisfy the constraints and whose suppression requires
constraint adjustment in addition to flux conservation.
This raises the caveat that the identification of the non-
linear instabilities in the system is critical to the effective-
ness of constraint adjustment and conservative techniques.
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In Secs. III and IV, we describe how our earlier proof [6]
of the well posedness of the harmonic IBVP for Einstein’s
equations extends to the generalized formulation consid-
ered here. Constraint preservation imposes requirements
coupling the intrinsic metric and extrinsic curvature of the
boundary, analogous to the momentum constraint on
Cauchy data. However, the boundary data has fewer de-
grees of freedom than the corresponding Cauchy data, as
for a scalar field where either the field or its normal
derivative, but not both, can be specified on the boundary.
This couples the evolution to the specification of
constraint-preserving boundary data in a way that the
standard theorems used to establish well posedness only
apply to boundary data linearized off homogeneous bound-
ary data. In the case of large boundary data, one is only
assured that the solution, if it exists, does satisfy the
constraints.

In Sec. V, we present the techniques used to implement
the formalism as a finite difference evolution-boundary
algorithm. Since the preliminary testing of the Abigel
code, considerable improvement has been made in the
numerical techniques. The long term performance of the
evolution algorithm in the AwA gauge wave test with
periodic boundaries has been improved by use of semi-
discrete conservation laws [16]. The study of a model
nonlinear scalar wave [33] shows how these semidiscrete
conservation laws can be used to formulate stable algo-
rithms for more general boundary conditions.

In Sec. VI, we demonstrate the stability and second
order convergence of the code for periodic, Neumann,
Dirichlet, and Sommerfeld boundary conditions. These
tests are performed using gauge wave and shifted gauge
wave metrics for which the exact solutions provide the
correct boundary data. In principle, the knowledge of the
exact boundary data avoids the need for constraint-
preserving boundary conditions. However, numerical noise
can generate constraint violating error. This is investigated
by comparing these constraint free boundary algorithms
against the constraint-preserving algorithm discussed in
Secs. III and IV. In order to eliminate the complication of
sharp boundary points, the tests are carried out by opening
up the 3-torus (periodic boundary) into a 2-torus times a
line, with two smooth 2-toroidal boundaries.

Just as the ‘‘3� 1’’ decomposition x� � �t; xi� is useful
in describing the geometry of a spacelike Cauchy hyper-
surface S at t � 0, the decomposition x� � �xa; x�, with
xa � �t; y; z� is useful in describing the geometry of a
timelike boundary B at x � 0. We distinguish between
these decompositions by using indices i; j; k; . . . near the
middle of the alphabet or indices a; b; c; . . . at the begin-
ning of the alphabet. In order to avoid excessive notation
we indicate the corresponding intrinsic 3-metrics by hij
and hab, with inverses hij and hab. Where this might cause
confusion, we introduce subscripts, e.g. hS � det�hij� and
hB � det�hab�. Curvature conventions follow [29]. This
-2
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introduces some sign changes from the treatment in [6]
which was based upon the conventions in [28]. We use the
shorthand notation @�f � f;� where confusion does not
arise.

II. THE GENERALIZED HARMONIC CAUCHY
PROBLEM

We summarize here the treatment of the generalized
harmonic Cauchy problem on which the evolution code
described in [30] is based. Generalized harmonic coordi-
nates x� � �t; xi� � �t; x; y; z� are functionally indepen-
dent solutions of the curved space scalar wave equation,

�x� �
1�������
�g
p @�

� �������
�g
p

g��@�x�
�
� ��̂�; (2.1)

where the gauge source terms �̂��x�; g��� can have func-
tional dependence on the coordinates and the metric [31].
In terms of the connection ����, these harmonic conditions
take the form

C � :� �� � �̂� � 0; (2.2)

where

�� � g������ � �
1�������
�g
p @���� (2.3)

and ��� �
�������
�g
p

g��. The standard harmonic reduction of
the Einstein tensor (see e.g. [29,31]) is

E�� :� G�� �r����� � 1
2g
��r���; (2.4)

where �� is treated formally as a vector in constructing the
‘‘covariant’’ derivatives r���. Explicitly in terms of the
metric,

2
�������
�g
p

E�� � @��g
��@��

��� � 2
�������
�g
p

g��g����������

�
�������
�g
p

�@�g���@�g��

�
1�������
�g
p g���@�g�@�g��

�
1

2
g��

�
1

2g
�������
�g
p g���@�g�@�g

�
�������
�g
p

����@�g
�� �

1�������
�g
p �@�g�@�g

��
�
:

(2.5)

Thus the standard harmonic evolution equations are quasi-
linear wave equations E�� � 0 for the components of the
densitized metric ���. The principle part of (2.5) has been
expressed in the flux conservative form

@��g
��@��

���: (2.6)

In the particular case of the AwA gauge wave, the vanish-
ing of the nonlinear source terms then leads to the exact
conservation laws for the quantities
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Q�� � �
Z
V
gt�@��

��dV: (2.7)

The semidiscrete version of these conservation laws sup-
presses instabilities in the AwA gauge wave test. (See [30]
for details.)

This standard treatment of the Cauchy problem in har-
monic coordinates generalizes in a straightforward way to
include harmonic gauge source terms and constraint ad-
justments of the form

A�� � C�A��� �x�; g��; @�g
���: (2.8)

The reduced equations then become

~E�� :� G�� �r��C�� � 1
2g
��r�C

� � A��

� E�� �r���̂�� � 1
2g
��r��̂� � A�� � 0: (2.9)

Since the gauge source terms and constraint adjustments do
not enter the principle part, (2.9) also constitutes a system
of quasilinear wave equations with a well-posed Cauchy
problem.

The solutions of the generalized harmonic evolution
system (2.9) are solutions of the Einstein equations pro-
vided the harmonic constraints

C � :� �� � �̂� � 0 (2.10)

are satisfied. The Bianchi identities, applied to (2.9), imply
that these constraints obey the homogeneous wave equa-
tions

r�r�C
� � R�� C� � 2r��C

�A��� � � 0; (2.11)

where via (2.9) the Ricci tensor reduces to

R�� � r��C�� � C��A��� � 1
2g
��g��A

��
� �: (2.12)

The well posedness of the Cauchy problem for (2.11)
implies the unique solution C� � 0 in the domain of
dependence of the initial Cauchy hypersurface S provided
the Cauchy data ���jS and @t���jS satisfy C�jS �
@tC

�jS � 0 via (2.9). It is straightforward to verify that
Cauchy data on S which satisfy the Hamiltonian and
momentum constraints Gt

� � 0 and the initial condition
C� � 0 also satisfy @tC� � 0 on S by virtue of the reduced
harmonic equations (2.9). In addition to the standard
Cauchy data for the 3� 1 decomposition, i.e. the intrinsic
metric and extrinsic curvature of S subject to the
Hamiltonian and momentum constraints, the only other
free data are the initial choices of �t�, equivalent to the
initial choices of lapse and shift.

The standard harmonic reduction (2.4) differs from
Fock’s [28] harmonic formulation adopted in [6] by the
adjustment

A�� �
1

2g
C��g���@�g�

1

4g
g��C�@�g: (2.13)

In the tests of the boundary algorithms in Sec. VI, we have
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MARIA C. BABIUC, BÉLA SZILÁGYI, AND JEFFREY WINICOUR PHYSICAL REVIEW D 73, 064017 (2006)
examined the effects of the adjustments

A�� � �
a1�������
�g
p C�@��

�������
�g
p

g���; (2.14)

A�� �
a2C

�r�t
e��C�C�

C�C�; (2.15)

A�� � �
a3����������
�gtt

p C��r��t; (2.16)

where the ai > 0 are positive adjustable parameters and

e�� � g�� �
2

gtt
�r�t�r�t (2.17)

is the natural metric of signature (����) associated
with the Cauchy slicing. The adjustments (2.14) and (2.15)
were effective in suppressing instabilities in the shifted
gauge wave tests without boundaries [30]. (For numerical
purposes, the limit as C� ! 0 in (2.15) can be regularized
by a small positive addition to the denominator.) The
adjustment (2.16) leads to constraint damping [34] in the
linear regime and has been used effectively in black hole
simulations [27] but was not effective in the nonlinear
shifted gauge wave test.
III. WELL POSEDNESS OF THE HOMOGENEOUS
INITIAL-BOUNDARY VALUE PROBLEM

In prior work [6] we showed how the well posedness of
the Cauchy problem for the standard harmonic formulation
of Einstein’s equations extends to the IBVP with homoge-
neous boundary data. Here we show how the well posed-
ness of the IBVP extends to include harmonic gauge
forcing terms and constraint adjustments. Our approach
is based upon a theorem of Secchi [35] for first order,
quasilinear, symmetric hyperbolic systems. For that pur-
pose, we recast the reduced system (2.9) in first order form
in terms of the 50-dimensional column vector u �
T����;T ��;X��;Y��;Z��� (the transpose of the row
vector Tu) where T �� � @t�

��, X�� � @x�
��, Y�� �

@y���, and Z�� � @z���. Equation (2.9) then has the
quasilinear, symmetric hyperbolic form

A t@tu�Ai@iu � S; (3.1)

where At and Ai are 50-dimensional symmetric matrices,
with At positive definite, and S is a 50-dimensional column
vector, all depending only on the components of u. For
explicit values of the matrices At and Ai see Appendix A.

Consider the IBVP for the reduced Einstein equations
for the generalized harmonic system in the domain t � 0,
x � 0, with timelike boundary B at x � 0. (Any boundary
can be constructed by patching together such pieces.)
Secchi’s theorem establishes well posedness of the IBVP
for (3.1) under weak regularity assumptions by imposing a
homogeneous boundary condition based upon the energy
064017
norm

E �
1

2

Z T
uudxdydz (3.2)

and the associated local energy flux across the boundary

F x � 1
2
TuAxu: (3.3)

The chief requirement for a well-posed IBVP is that the
boundary condition be maximally dissipative, which al-
lows energy estimates to be established. Explicitly, the
requirements at x � 0 are

(i) that the kernel of the boundary matrix Ax must have
constant dimension,

(ii) that the boundary condition must take the matrix
form Mu � 0 for homogeneous boundary data,
where M is independent of u and has maximal
dimension consistent with the system of equations,

(iii) and, for all u satisfying the boundary condition,
that the boundary flux satisfy the inequality

F x � 0: (3.4)

In addition, compatibility conditions between the Cauchy
and boundary data at t � x � 0 must be satisfied.

As a result of reducing the harmonic Einstein equations
to first order symmetric hyperbolic form, there are varia-
bles associated with characteristics which propagate tan-
gential to the boundary. Secchi’s theorem applies to this
case of a characteristic boundary in which the matrix Ax is
degenerate. The matrix M can depend explicitly on the
coordinates but not upon the evolution variables u. The
maximal dimension of M is directly related to how many
variables propagate toward the boundary from the exterior.
Variables in the kernel of Ax, which propagate tangential to
the boundary, and variables which propagate from the
interior toward the boundary require no boundary condi-
tion. The possible choices of matrix M correspond to
the nature of the boundary condition, e.g. Dirichlet,
Sommerfeld, or Neumann.

We now formulate such maximally dissipative boundary
conditions for the reduced harmonic system. The principal
part consists of the term g��@�@����, which represents a
wave operator acting on the 10 components ���. As a
result, the energy flux F x equals the sum of 10 individual
fluxes, each of which corresponds to the standard energy
flux constructed from the stress-energy tensor obtained by
treating each component of ��� as a massless scalar field.
Thus we can pattern our analysis of the IBVP on the scalar
wave equation

g��@�@�� � 0; (3.5)

which is discussed in Appendix A. When � is regarded as
an independent scalar field rather than as a component
of ���, the linearity of (3.5) implies well posedness for
any of the dissipative boundary conditions discussed in
-4
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Appendix A, e.g. generalized Dirichlet, Neumann, or
Sommerfeld boundary conditions.

We can decompose the boundary conditions for the full
gravitational problem into the five 10-dimensional subspa-
ces corresponding to ���, T ��, X��, Y��, and Z��. The
subspace corresponding to ��� lies in the kernel of Ax and
requires no boundary condition, i.e. the boundary values of
��� are determined by boundary values of the other var-
iables. The remaining four subspaces require boundary
conditions analogous to the scalar field case. The extra
complications in the quasilinear gravitational case are to
check that the constraints are satisfied and that the linear
subspace Mu � 0 is specified independent of u.

For that purpose, we adapt the harmonic coordinate
system to the boundary. In doing so, we use the 3� 1
decomposition natural to the boundary at x � 0 and write
x� � �xa; x�, where xa � �t; y; z�. Our approach is moti-
vated by the observation that the initial value problem is
well posed so that reflection symmetric Cauchy data in the
neighborhood �� < x < � produces a solution with even
parity. From the point of view of the IBVP in the region
x � 0, this solution induces homogeneous boundary data
of either the Neumann or Dirichlet type on each metric
component, depending upon how that component trans-
forms under reflection.

A. The boundary gauge

Local to the boundary B, it is always possible to choose
Gaussian normal coordinates (~xa, ~x) so that the boundary is
given by ~x � 0 and g~x ~a � 0 vanishes at the boundary. Now
consider a coordinate transformation to generalized har-
monic coordinates (xa, x) satisfying �x� � ��̂�. Since
g~x ~a � 0, the analysis in Appendix A shows that it is
possible to solve this wave equation with either the homo-
geneous Dirichlet condition � � 0 or the homogeneous
Neumann condition @x� � 0. For the harmonic coordinate
x, we choose the Dirichlet condition xjB � 0, so that
B remains located at x � 0; and for the remaining har-
monic coordinates, we choose the Neumann condition
@~xx

ajB � 0.
These choices exhaust the boundary freedom in con-

structing generalized harmonic coordinates. After trans-
forming to these harmonic coordinates, the metric satisfies

�xajB � 0: (3.6)

We enforce this as the dissipative Dirichlet boundary con-
dition

T xajB � 0; (3.7)

subject to initial data satisfying (3.6).
In this boundary gauge, the results of Appendix A imply

that the homogeneous Neumann boundary conditions

X xxjB �XabjB � 0; (3.8)

are also dissipative, as well as the Sommerfeld-like con-
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ditions

�T xx �Xxx�jB � �T
ab �Xab�jB � 0: (3.9)

Given that the boundary-gauge condition (3.6) is satis-
fied, any combination of Dirichlet, Sommerfeld-like, and
Neumann boundary conditions on the remaining compo-
nents leads to a well-posed IBVP for the reduced general-
ized harmonic system (2.9). Note, however, that a
Sommerfeld condition corresponding to the null direction
defined by normal to the boundary,�
T xx �

����������
�gtt
p �������
gxx
p Xxx

���������B
�

�
T ab �

����������
�gtt
p �������
gxx
p Xab

���������B
� 0;

(3.10)

does not satisfy the technical condition in Secchi’s theorem
that M be independent of u.

B. The homogeneous constraint-preserving boundary
condition

The constraints C� � �� � �̂� satisfy the homogene-
ous wave equation (2.11), which can be reduced to sym-
metric hyperbolic form. Consequently, we can force them
to vanish by choosing boundary conditions for the reduced
system which force C� to satisfy a maximally dissipative
homogeneous boundary condition. In doing so, we shall
require that the normal components of the gauge source
function and constraint adjustment vanish on the boundary,
i.e.

�̂ xjB � 0; AaxjB � 0: (3.11)

These requirements are a consequence of the reflection
properties of the boundary in the homogeneous case.

We proceed by imposing boundary conditions on the
evolution system consisting of the Dirichlet boundary-
gauge conditions (3.6) and the Neumann conditions (3.8),
which imply

�axjB � @x�
xxjB � @x�

abjB � @xgjB � 0: (3.12)

As we shall show, (3.6) and (3.12) further imply that the
constraints obey the maximally dissipative homogeneous
boundary conditions

@tCxjB � 0; (3.13)

@xC
ajB � 0: (3.14)

Note that (3.13) and (3.14) are satisfied by any geometry
which has local reflection symmetry with respect to the
boundary if the gauge source functions �̂� share this
symmetry (as a vector). In order to verify (3.13), we note
that

@tC
x � �@t

�
1�������
�g
p �@x�

xx � @a�
xa� � �̂x

�
(3.15)
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vanishes on the boundary as a consequence of (3.11) and
(3.12).

Similarly, in order to verify (3.14), we note that

@xC
a � �@x

�
1�������
�g
p �@x�

ax � @b�
ab� � �̂a

�
(3.16)

reduces on the boundary to

@xCajB � �
�

1�������
�g
p @2

x�ax � @x�̂
a
�
jB: (3.17)

Now we use the ~Eax � 0 component of the evolution
equation to eliminate @2

x�
ax. Substitution of the assumed

boundary conditions into (2.5) gives

EaxjB �
gxx

2
�������
�g
p @2

x�
axjB: (3.18)

Then (2.9) gives

0 � ~EaxjB �
gxx

2

�
1�������
�g
p @2

x�
ax � @x�̂

a
�
jB � A

axjB;

(3.19)

which, together with (3.11) and (3.17), establishes (3.14).
In summary, the maximally dissipative boundary con-

ditions (3.6) and (3.8) for the evolution variables u imply
the maximally dissipative homogeneous boundary condi-
tions (3.13) and (3.14) for the constraints. This establishes
the boundary data necessary to show that the harmonic
constraints C� � 0 propagate if the initial Cauchy data
satisfy the Hamiltonian and momentum constraints.

The remaining ingredient necessary for a well-posed
initial-boundary problem is the consistency between the
initial Cauchy data and the boundary data. The order of
consistency determines the order of differentiability of the
solution. The simplest case to analyze is prescription of
initial data with locally smooth reflection symmetry at the
boundary, e.g. Cauchy data �ab�0; x; y; z� for x � 0 whose
extension to x � 0 by reflection would yield a C1 function
in the neighborhood of x � 0. Such data are automatically
consistent with the homogeneous boundary conditions
given above.

We could also have established the boundary conditions
(3.14) for the constraints indirectly, but with a more geo-
metric argument, by noting that the boundary conditions
(3.12) for the metric imply that the extrinsic curvature of
the boundary vanishes, which in turn implies that the Gax

components of the Einstein tensor vanish at the boundary
(see Appendix B). Thus, along with the evolution equation
~Eax � 0, (2.9) implies

�r�aCx� � 1
2g
axr�C

� � Aax � 0: (3.20)

This, combined with (3.11), (3.12), and (3.13), now gives
(3.14). We take this geometrical approach in the next
section in analyzing the difficulties underlying extending
these results to include inhomogeneous boundary data.
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IV. INHOMOGENEOUS BOUNDARY DATA

In the preceding section we showed that the generalized
harmonic evolution system ~E�� � 0 gives rise to a well-
posed constraint-preserving IBVP with a variety of maxi-
mally dissipative homogeneous boundary conditions. The
well posedness of this IBVP for the reduced system ex-
tends by standard arguments to include inhomogeneous
data. However, only for special choices of the boundary
data is the solution guaranteed to satisfy the constraints.
For example, in the simulation of a known analytic solution
to Einstein’s equations, when the initial data and boundary
data are supplied by their analytic values, the well posed-
ness of the IBVP guarantees a unique and therefore
constraint-preserving solution. This example is important
in code development for carrying out tests of the type
reported in Sec. VI. Similarly, when an exterior solution
of the Einstein equations is supplied in another patch over-
lapping the boundary, the induced boundary data are con-
straint preserving. This possibility arises in Cauchy-
characteristic matching. Except for such examples, the
specification of free boundary data for the reduced system
does not in general lead to a solution of the Einstein
equations.

We now formulate conditions on the inhomogeneous
boundary data which are sufficient to guarantee that the
IBVP for the generalized harmonic system leads to a
solution that satisfies the constraints. However, because
the matrix M used in formulating these constraint-
preserving boundary conditions depends on the evolution
variables u, the well posedness of the resulting IBVP
follows from Secchi’s theorems only for ‘‘small’’ boundary
data, in the sense of linearization about a solution with
homogeneous data. Well posedness for ‘‘large’’ boundary
data remains an open question.

As in the homogeneous case, we consider the IBVP in
the domain t � 0, x � 0. We first generalize the boundary-
gauge condition (3.6). Given harmonic coordinates x� such
that �xajB � 0 at x � 0, consider the effect of a harmonic
coordinate transformation ~x��x�� satisfying �~x� � ��̂�.
For simplicity, we assign initial Cauchy data ~x� � x� and
@t~x

� � @tx
� at t � 0 and require that the boundary remain

located at ~x � 0. By uniqueness of solutions to the IBVP
for the wave equation, this Dirichlet boundary data for ~x
determines that ~x � x everywhere in the evolution domain
so that ~x� � �~xa; x�. The coordinates ~xa are uniquely de-
termined by the Neumann boundary data qa � @x~xajB,
which can be assigned freely. Under this transformation,
�~x ~a � qa�~x ~x at the boundary, so that �~x ~a=�~x ~x can be
freely specified as boundary data qa�xb�. (Consistency
conditions would require that qa � 0 at t � x � 0.
However, the initial value of qa can be freed up by a
deformation of the initial Cauchy hypersurface in the
neighborhood of the boundary.) In the remainder of this
section, we assume that this transformation has been made
and that the ~x��x�� coordinates have been relabeled x�.
-6
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Thus, in this coordinate system,

qa�xb� �
�xa

�xx
jB (4.1)

is free boundary data representing the choice of boundary
gauge at x � 0.

Although it might seem that such a gauge transformation
would not disturb the well-posed nature of the IBVP prob-
lem for the reduced system, already (4.1) introduces the
complication that Dirichlet boundary data for �xa cannot
be determined from qa unless �xx is known on the bound-
ary. But the boundary condition (3.12) for �xx is of
Neumann type so that �xxjB can only be determined after
carrying out the evolution and, in particular, depends on the
initial Cauchy data. This is the first source of the
u-dependence of the matrix M expressing the boundary
condition. It would seem that this problem might be
avoided by using �xa=�xx as an evolution variable but, as
will become apparent, more complicated (differential)
problems of this type arise in introducing inhomogeneous
constraint-preserving boundary data for the remaining
variables.

The complete set of free boundary data for the general-
ized harmonic system, which in the inhomogeneous case
replaces the maximally dissipative homogeneous boundary
conditions (3.6) and (3.12), consist of

q � �qa; qxx; qab� � �qa; q�@��xx; q�@��ab�jB; (4.2)

where, in accord with (4.1),

q� � �qa; 1� �
1

gxx
r�x �

1�������
gxx
p n�; (4.3)

with n� the unit outward normal to the boundary.
Note that a dissipative Neumann condition must be

formulated in terms of the normal derivative q�@� and
not the @x derivative used in the previous section where
qa � 0. For this purpose, it is useful to introduce the
projection tensor into the tangent space of the boundary,

h�� � 	�� � n�n
�: (4.4)

The extrinsic curvature tensor of the boundary is given by

K�� � h��h��r
�n�: (4.5)

Its explicit expression in terms of the harmonic variables
used here is given in Appendix B.

The inhomogeneous boundary data q must be con-
strained if the Einstein equations are to be satisfied. The
subsidiary system of equations which governs the con-
straints requires a slightly more complicated treatment
than in the previous section. For its analysis, we represent
the constraints by C � �Cx; Ca � ga�C

��. Since C� �
�Cxnx � Cana�n� � Caga�, it is clear that C � 0 is
equivalent to C� � 0. It is straightforward to show, begin-
ning with (2.11), that C satisfies a wave equation of the
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homogeneous form

g��@�@�C� P�@�C�QC � 0; (4.6)

where the elements of the square matrices P� and Q
depend algebraically on the evolution variables u. This
system can be converted to symmetric hyperbolic first
order form. Uniqueness of the solution to the IBVP then
ensures that the generalized harmonic constraints are sat-
isfied in the evolution domain provided the initial Cauchy
data satisfy C� � @tC� � 0 and that C satisfies a maxi-
mally dissipative homogeneous boundary condition.

A. The boundary system

We choose as the maximally dissipative homogeneous
boundary condition for C�������

gxx
p

n�C
�jB � CxjB � 0; (4.7)

1�������
gxx
p h�an

�@�C�jB � q�@�CajB � 0: (4.8)

Referring to (A16), the resulting boundary flux associated
with each component of C satisfies the dissipative condi-
tion F x � 0. These boundary conditions, along with the
constraints on the initial Cauchy data, guarantee that solu-
tions of the reduced system satisfy Einstein’s equations.
For simplicity in working out their consequence, we re-
quire the gauge source terms to satisfy

n��̂�jB � 0; (4.9)

as in (3.11) for the homogeneous case, but we make no
assumption about the behavior of the constraint adjustment
at the boundary.

The boundary condition (4.7), together with (4.9), then
implies �x � �̂x � 0 so that @a�xa � @x�xx � 0. Using
(4.1) and (4.2), this reduces to

qxx � ��xxjB@aq
a; (4.10)

which provides the constrained Neumann boundary data
qxx.

The boundary condition (4.8) contains the term @2
x�

xa,
which must be eliminated by using the reduced equations.
We proceed by using (4.7) to obtain, at the boundary,

h��n��r�C
� �r�C�� � �h

�
�C

�r�n� � h
�
�n

�r�C�
(4.11)

� �K��C� � h��LnC� � h��C�r�n� (4.12)

� �2K��C� � h��LnC�; (4.13)

where K�� is the extrinsic curvature introduced in (4.5). In
the xa-coordinates of the boundary, this implies
-7
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�raCx �rxCa� � �2
�������
gxx

p
KabCb � gxxq�@�Ca

� gxxCb@aq
b: (4.14)

Assuming that the reduced Eqs. (2.9) are satisfied, the
boundary constraint (4.8) can then be reexpressed as

h�an�G
�
� �

1�������
gxx
p Gx

a

� �KabC
b �

1

2

�������
gxx

p
Cb@aq

b �
1�������
gxx
p Axa;

(4.15)

which contains no second x-derivatives of the metric. Here
h�an�G

�
� is the ‘‘boundary momentum’’ (B9) so that this

equation can be reexpressed as�
Db�Kb

a � 	baK� � KabCb �

�������
gxx
p

2
Cb@aqb �

1�������
gxx
p Axa

���������B

� 0: (4.16)

This is a system of equations intrinsic to the boundary
which provides the means for prescribing constraint-
preserving values for the boundary data qab.

B. Constraint-preserving boundary data

The boundary system (4.16) can be recast as a symmet-
ric hyperbolic system which determines constrained values
of the Neumann data qab in terms of the free (boundary-
gauge) data qa and the boundary values of the other
evolution variables U :� ��ab; �xx; @x�

xa�	B which can-
not be freely specified. In doing so, there is considerable
algebra in expressing (4.16) in terms of the evolution
variables and boundary data.

First, the covariant derivative has to be explicitly worked
out, as in (B10) where we now set Sab � Kab � habK.
From (4.16), we then find (on the boundary)

@b

� �����������
�hB

p
Sab

�
� Pa; (4.17)

where

Pa � �
�����������
�hB

p �
hacSbd �

1

2
hadSbc

�
@dhbc �

�����������
�hB

p
KabCb

�
1

2

�����������������
�gxxhB

p
habCd@bqd �

�����������
�hB
gxx

s
habAxb: (4.18)

Here

habAxb � Aax � qaAxx: (4.19)

For the adjustment (2.14),

habAxb � �a1g
xxCb@bq

a: (4.20)

For the adjustment (2.15), habAxb � 0. For the adjustment
(2.16),
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habAxb � �
a3g

xx

2
����������
�gtt

p Caqt: (4.21)

For Fock’s adjustment (2.13),

habAxb �
1

4g
gxxCaq�@�g: (4.22)

From (B7), the individual terms constituting Sab are

Sab �

�������
gxx
p

2
�hac@cqb � hbc@cqa � 2hab@cqc�

�
gxx

2
�����������
�hB
p

�
qab �

�
hab

gxx
� qaqb

�
qxx � qaq
@
�

xb

� qbq
@
�xa
�
; (4.23)

where it is assumed that qxx is replaced by its constrained
value (4.10). We write

�����������
�hB

p
Sab �

gxx

2
��qab � Tab�; (4.24)

where

Tab �
�������
�g
p

�hac@cqb � hbc@cqa � 2hab@cqc�

�

�
hab

gxx
� qaqb

�
qxx � qaq
@
�

xb � qbq
@
�
xa

(4.25)

does not contain qab. Substitution of these pieces into
(4.17) gives

@bq
ab � Va; (4.26)

where

Va �
1

gxx
��qab@bgxx � @b�gxxTab� � 2Pa�: (4.27)

This system of partial differential equations, with principle
part @bqab, governs the boundary data qab in terms of the
quantities U and qa. Here Ca (which appears in Pa) must
be expressed in terms of evolution variables according to

Ca � �
1�������
�g
p �@b�

ab � @x�
ax� � �̂a: (4.28)

We formulate a symmetric hyperbolic system by setting

qab �Qab � 1
2�

ab�cdQcd; (4.29)

where �ab is the auxiliary Minkowski metric associated
with the coordinates of the boundary. Equation (4.26) then
becomes

@bQab � 1
2�

ab@b��cdQcd� � Va: (4.30)

Next we introduce the ‘‘2� 1’’ decomposition of the
boundary xa � �t; xA� � �t; y; z� and the quantities � �
1
2Q

tt and QA �QtA. Then (4.30) gives the symmetric
-8
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hyperbolic system

@t�� @BQB � Vt � 1
2@t�	CDQ

CD	;

@tQA � 	AB@B� � VA � 1
2	

AB@B�	CDQCD	 � @BQAB

(4.31)

for the variables � and QA. Assuming that the boundary
values of U are known, (4.31) determines the constrained
boundary values of� and QA in terms of the free boundary
data (qa, QAB).

Constraint-preserving boundary data q for the reduced
system is determined from the free data (qa, QAB), with
qxx obtained from (4.10) and qab obtained from (4.29) and
(4.31). This data q leads to the maximally dissipative
homogeneous boundary data (4.7) and (4.8) for the subsid-
iary system (4.6) which governs the constraints. Con-
sequently, any solution of the IBVP for the reduced equa-
tions with this boundary data is also a solution of the
Einstein equations (assuming that the initial Cauchy data
satisfies the constraints).

In the case of the homogeneous boundary data q � 0
treated in Sec. III, (4.10) and (4.16) are automatically
satisfied and the IBVP is well posed. The appearance of
the quantities U in (4.10) and (4.16) prevent application of
Secchi’s theorem to prove the well posedness of the in-
homogeneous IBVP. However, these theorems do imply a
well-posed IBVP for boundary data 	q linearized off a
solution with homogeneous data, which provides back-
ground values of U. From the analytical point of view,
such linearized results often provide the first step in an
iterative argument to show that the full system is well
posed. From a numerical point of view, which is our prime
interest here, it suggests that the evolution code should be
structured so that the values of U are updated before
updating the values of q in an attempt to force U into
such a background role.
V. FINITE DIFFERENCE IMPLEMENTATION

A first differential order formalism is useful for applying
the theory of symmetric hyperbolic systems but in a nu-
merical code it would introduce extra variables and the
associated nonphysical constraints. For this reason, we
base our code on the natural second order form of the
quasilinear wave equations which comprise the reduced
harmonic system (2.9). They are finite differenced in the
flux conservative form

2
�������
�g
p ~E � @��g��@����� � ~S�� � 0; (5.1)

where ~S�� is comprised of (nonlinear) first derivative terms
in (2.9) that do not enter the principle part.

Numerical evolution is implemented on a spatial grid
�xI; yJ; zK� � �Ih; Jh; Kh�, 0 � �I; J; K� � N, with uni-
form spacing h, on which a field f�t; xi� is represented by
its grid values f�I;J;K	�t� � f�t; xI; yJ; zK�. The time inte-
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gration is carried out by the method of lines using a 4th
order Runge-Kutta method. We introduce the standard
finite difference operators D0i and D
i according to the
examples

D0xfI;J �
1

2h
�fI�1;J � fI�1;J�;

D�xfI;J �
1

h
�fI�1;J � fI;J�;

D�yfI;J �
1

h
�fI;J � fI;J�1�;

the translation operators T
i according to the example

T
xfI;J � fI
1;J; (5.2)

and the averaging operators A
i and A0i, according to the
examples

A
xfI;J �
1
2�T
x � 1�fI;J;

A0xfI;J �
1
2�T�x � T�x�fI;J:

Standard centered differences D0i are used to approximate
the first derivative terms in (5.1) comprising ~S��, except at
boundary points where one-sided derivatives are used
when necessary.

We will describe the finite difference techniques for the
principle part of (5.1) in terms of the scalar wave equation

@��g��@��� � 0: (5.3)

The principle part of the linearization of (5.1) gives rise to
(5.3) for each component of ���. The nonvanishing shift
introduces mixed space-time derivatives @t@i which
complicates the use of standard explicit algorithms for
the wave equation. This problem has been addressed in
[23,33,36,37]. Here we base our work on evolution-
boundary algorithms shown to be stable for a model 1-
dimensional wave equation with shift [33]. The algorithms
have the summation by parts (SBP) property that gives rise
to an energy estimate for (5.3) provided the metric gij is
positive definite, as is the case when the shift is subluminal
(i.e. when the evolution direction t�@� � @t is timelike).
Alternative explicit finite difference algorithms are avail-
able which are stable for a superluminal shift [33,37].
Although such superluminal algorithms have importance
in treating the region inside a black hole, they have awk-
ward properties at a timelike boundary and are not em-
ployed in the test cases treated here.

The algorithm we use is designed to obey the semi-
discrete versions of two conservation laws of the contin-
uum system (5.3). These govern the monopole quantity

Q � �
Z
V
gt��;�dV (5.4)

and the energy
-9
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E �
1

2

Z
V
��gtt�2

;t � gij�;i�;j�dV; (5.5)

where dV � dxdydz. By assumption, the t � const
Cauchy hypersurfaces are spacelike so that �gtt > 0. We
also assume in the following that gij is positive definite
(subluminal shift) so that E provides a norm. Note that in
the gravitational case there are 10 quantities Q�� corre-
sponding to (5.4), which have monopole, dipole, or quad-
rupole transformation properties depending on the choice
of indices.

For periodic boundary conditions (or in the absence of a
boundary), (5.3) implies strict monopole conservation
Q;t � 0; and, when the coefficients of the wave operator
are frozen in time, i.e. when @tg�� � 0, (5.3) implies strict
energy conservation E;t � 0. In the time-dependent,
boundary-free case,

E;t �
1

2

Z
V
�g��;t �;��;��dV; (5.6)

which readily provides an estimate of the form

E;t < kE (5.7)

for some k independent of the initial data for �. Thus the
norm is bounded relative to its initial value at t � 0 by

E< E0e
kt: (5.8)

More generally, these conservation laws include flux
contributions from the boundary,

Q;t �
I
@V
Nig

i��;�dS; (5.9)

and

E;t � �
I
@V

FdS; (5.10)

where

F � ��;tg
i�Ni�;� (5.11)

and where the surface area element dS and the unit out-
ward normal Ni � are normalized with the Euclidean
metric 	ij. The monopole flux vanishes for the homoge-
neous Neumann boundary condition

gi�Ni�;� � 0: (5.12)

The energy flux is dissipative for boundary conditions such
that F � 0, e.g. a homogeneous Neumann boundary con-
dition or a homogeneous Dirichlet boundary condition
�;t � 0 or superpositions gi�Ni�;� � k�;t � 0 with
k > 0.
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It is sufficient to confine the description of the finite
difference techniques to the (x, y) plane and, for brevity, we
present the evolution and boundary algorithms in terms of
the 2-dimensional version of (5.3).

A. The evolution algorithm

We now discuss the evolution algorithm in the 2-
dimensional case with periodic boundary conditions f0;J �
fN;J and fI;0 � fI;N . We define the semidiscrete versions of
(5.4) and (5.5) as

Q � h2
XN
�I;J��1

��gtt�;t � gtiD0i�� (5.13)

and

E � h2
XN
�I;J��1

E; (5.14)

where

E � �1
2g
tt�2

;t �
1
4�A�xg

xx��D�x��2 �
1
4�A�xg

xx��D�x��2

� 1
4�A�yg

yy��D�y��2 �
1
4�A�yg

yy��D�y��2

� gxy�D0x��D0y�: (5.15)

The energy E provides a norm on the discretized system,
i.e. E � 0 implies �;t � D
i� � 0 (provided gij is posi-
tive definite and the grid spacing is sufficiently small to
justify the continuum inequalities resulting from positive-
definiteness).

The simplest second order approximation to (5.3) which
reduces in the 1-dimensional case to the SBP algorithm
presented in [33] is

W :� �@t�g
tt@t�� � @t�g

tiD0i�� �D0i�g
it@t��

�D2
g� � 0; (5.16)

where

D2
g�� 1

2D�x��A�xg
xx�D�x���

1
2D�x��A�xg

xx�D�x��

� 1
2D�y��A�yg

yy�D�y���
1
2D�y��A�yg

yy�D�y��

�D0x�g
xyD0y���D0y�g

xyD0x��: (5.17)

The semidiscrete conservation law Q;t � 0 for the case of
periodic boundary conditions follows immediately from
the flux conservative form of W. In order to establish the
SBP property we consider the frozen coefficient case
@tg�� � 0. Then a straightforward calculation gives
-10
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E;t ��;tW �
1
2D�i�g

ti�;tT�i�;t ��;tT�i�g
ti�;t�� �

1
2D�x��A�xg

xx��D�x��T�x�t� �
1
2D�x��A�xg

xx��D�x��T�x�t�

� 1
2D�y��A�yg

yy��D�y��T�y�;t� �
1
2D�y��A�yg

yy��D�y��T�y�;t� �
1
2D�x��tT�x�gxyD0y��

� gxy�D0y��T�x�;t� �
1
2D�y��tT�y�gxyD0x�� � gxy�D0x��T�y�;t�: (5.18)

Because each term in (5.18) is a total D
i, the semidiscrete conservation law E;t � 0 follows (for periodic boundary
conditions) when the evolution algorithm W � 0 is satisfied. When the coefficients of the wave operator are time
dependent, an energy estimate can be established analogous to (5.8) for the continuum case.

We also consider a modification of the algorithm (5.8) by introducing extra averaging operators according to

Ŵ :� �@t�gtt@t�� � @t�gtiD0i�� �D�i��A�igit��A�i@t��� �D2
g� � 0; (5.19)

with

D2
g� � 1

2D�x��A�xg
xx�D�x�� �

1
2D�x��A�xg

xx�D�x�� �
1
2D�y��A�yg

yy�D�y�� �
1
2D�y��A�yg

yy�D�y��

�D�x��A�xg
xy��A�xD0y��� �D�y��A�yg

xy��A�yD0x��: (5.20)
It is easy to verify that Ŵ � W �O�h2� and that both are
constructed from the same stencil of points. Although Ŵ
does not obey the exact SBP property with respect to the
energy (5.15), the experiments in [30] show that it leads to
significantly better performance than W for gauge wave
tests with periodic boundary conditions.

For the time discretization, we apply the method of lines
to the large system of ordinary differential equations

� ;tt �
1

h
A�;t �

1

h2 B� (5.21)

obtained from the spatial discretization. Introducing

� ;t �
1

h
T; (5.22)

we obtain the first order system

T

�

 !
;t �

1

h
B A
I 0

� �
T
V

� �
: (5.23)

We solve this system numerically using a 4th order Runge-
Kutta time integrator.

B. The boundary algorithm

Again it suffices to describe the algorithm in the 2-
dimensional case. In the absence of periodic symmetry,
we modify the definitions of the monopole quantity (5.13)
and the energy (5.14) to include contributions from the
cells at the edges � f�0; J�; �N; J�; �I; 0�; �I; N�g and
corners � f�0; 0�; �N; 0�; �0; N�; �N;N�g of the rectangular
grid:

Q � h2
XN�1

�I;J��1

��gtt�t � gtiD0i�� �
X

edges

Qedges

�
X

corners

Qcorner; (5.24)
064017
and

E � h2
XN�1

�I;J��1

E �
X

edges

Eedges �
X

corners

Ecorners; (5.25)

with E given again by (5.15). We carry out the analysis of
the semidiscrete conservation laws using the W-algorithm
(5.16).

We can isolate the contributions from the edges by
retaining periodicity in the y-direction, so that the bound-
ary consists of two circular edges (with no corners) at I �
0 and I � N. We assign the contribution

QI�N �
h2

2

XN
J�1

��gtt�t � g
txD�x�� g

tyD0y�� (5.26)

to (5.24) from the I � N boundary, with the analogous
contribution from I � 0. Assuming that W � 0 at all in-
terior points, a straightforward calculation yields

Q;t � h
XN
J�1

�
h
2
W0;J �N 0;J �

h
2
WN;J �N N;J

�
; (5.27)

where

N �
1

2
��A�xg

xx�D�x�� �A�xg
xx�D�x�

� �A�xg
tx�T�x�t � �A�xg

tx�T�x�t � g
xyD0y�

� A0x�g
xyD0y��� �

h2

4
�D0y�g

xyD�xD�x��

� �@tg
tx�D�xD�x��: (5.28)

Here, N N � 0 is a second order accurate approxima-
tion to the Neumann condition (5.12), evaluated at the
I � N boundary. Because N N involves ghost points out-
side the computational grid, the Neumann boundary con-
dition must be implemented in the form
-11
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h
2
WN;J �N N;J � 0;

h
2
W0;J �N 0;J � 0; (5.29)

which, by the above construction, involve only interior and
boundary points. (This is why the termD0y�g

xyD�xD�x��,
which integrates to 0 on the boundary, is included in
(5.28).) After reducing (5.29) to first order in time form
as in (5.23), it provides the Neumann update algorithm for
the boundary points when the interior is evolved using the
W algorithm (5.17). Correspondingly, when applying the
Ŵ algorithm (5.19) to the IBVP, we update the boundary
using

h
2
ŴN;J � N̂ N;J � 0;

h
2
Ŵ0;J � N̂ 0;J � 0; (5.30)

where now

N̂ �
1

2

�
�A�xg

xx�D�x�� �A�xg
xx�D�x�

�
1

2
�gtx � A�xgtx�T�x�t �

1

2
�gtx � A�xgtx�T�x�t

� �A�xgxy�A�xD0y�� �A�xgxy�A�xD0y�
�

�
h2

4

�
D�y��A�ygxy�A�yD�xD�x�	

� �@tg
tx�D�xD�x��

1

2
�D�xD�xg

tx��t

�
: (5.31)

In the case of inhomogeneous Neumann boundary data
q, (5.29) takes the form

h
2
WN;J �N N;J � gxxqN;

h
2
W0;J �N 0;J � �g

xxq0:

(5.32)

We assign the contribution to the energy from the I � N
boundary to be

EI�N �
h2

2

XN
J�1

�
�

1

2
gtt�2

t �
1

2
�A�xg

xx��D�x��
2

�
1

4
�A�ygyy��D�y��2 �

1

4
�A�ygyy��D�y��2

� gxy�D�x��D0y�
�
; (5.33)

with the analogous contribution from I � 0. Assuming that
W � 0 at all interior points and that the coefficients of the
wave operator are time independent, this leads to the
discrete energy-flux conservation law

E;t � �h
XN
J�1

�F 0;J �F N;J� (5.34)

with
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F N;J � �

�
�t

�
h
2
W �N

��
N;J

(5.35)

and

F 0;J �

�
�t

�
h
2
W �N

��
0;J
: (5.36)

Any discrete boundary conditions such that F 0;J and F N;J

are non-negative retain the SBP property of the
W-algorithm. In particular, this holds for the Dirichlet or
Neumann boundary conditions, for which F � 0 in the
homogeneous case. We also consider the Sommerfeld-type
algorithm (with Sommerfeld data q),

�
h
2
W �N �

����������
gxx

�gtt

s
�t

�
N;J
� qN;

�
h
2
W �N �

����������
gxx

�gtt

s
�t

�
0;J
� q0;

(5.37)

for which F is strictly positive in the case of homogeneous
data.

The algorithm for the corners follow from the same SBP
approach. Since we restrict our applications in Sec. VI to
tests with smooth boundaries, we will not present the
details.

C. Dissipation

It is simplest to add dissipation by using the Euclidean
Laplacian with the centered approximation

D 2
e � D�xD�x �D�yD�y �D�zD�z: (5.38)

Then, for the 2-dimensional case with periodic boundary
conditions, the modification

W ! W � �h3D2
eD

2
e�;t (5.39)

of the W evolution algorithm (5.16) dissipates the energy
(5.14) according to

E;t ! E;t � �h5
XN
�I;J��1

�D2
e�;t�

2: (5.40)

The dissipation (5.40) leaves undisturbed the semidis-
crete energy estimate governing the stability of the W
evolution algorithm. We present a similar SBP result for
the boundary algorithm. It suffices to illustrate the ap-
proach in the 1-dimensional case. It is the semidiscrete
analogue of adding a dissipative term to the wave equation,
in the half-plane 0 � x, in the symbolic form

@t��gtt�;t� ! @t��gtt�;t� � �f@4
x�;t � 	�x�@3

x�;t

� @x�	�x�@2
x�;t�g (5.41)

so that the Dirac delta function terms 	�x� cancel the
boundary contributions at x � 0 to give
-12
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Z 1
0
dx�;t@t��g

tt�;t� !
Z 1

0
dx��;t@t��g

tt�;t�

� ��@2
x�;t�

2�: (5.42)

As a result, the energy dissipates according to

@tE! @tE� �
Z 1

0
dx�@2

x�;t�
2: (5.43)

In order to model this dissipation at the finite difference
level, we use summation by parts techniques. A compre-

HARMONIC INITIAL-BOUNDARY EVOLUTION IN . . .
064017
hensive discussion has been given in [22]. For the second
order accurate approximation to the wave equation consid-
ered here, the following treatment suffices.

On the interval 0 � xI � Ih � 1 � Nhwe use the iden-
tity

h
XN�2

2

ffD�g� �D�f�ggI � fN�1gN�2 � f2g1 (5.44)

to obtain
h
XN�2

2

ff�D�D��
2fgI � �h

XN�2

2

f�D�f�D
2
�D�fgI � �D

2
�D�f�N�1fN�2 � �D

2
�D�f�2f1

� h
XN�2

2

f�D�D�f�
2gI � �D�f�N�1�D�D�f�N�2 � �D�f�2�D�D�f�1 � �D

2
�D�f�N�1fN�2

� �D2
�D�f�2f1

� h
XN�2

2

f�D�D�f�2gI �
1

h
�fN�2D�D�fN�1 � fN�1D�D�fN�2 � f2D�D�f1 � f1D�D�f2�:

(5.45)

Thus we are led to the finite difference analogue of (5.41)

f@t��g
tt@t��gI ! @t��g

tt@t��I � �h
3�D�D��

2@t�I; 3 � I � N � 3

! @t��g
tt@t��I � �fh

3�D�D��
2@t�N�2 � hD

2
�@t�N�2g; I � N � 2

! @t��g
tt@t��I � �hD

2
�@t�N�1g; I � N � 1

! @t��g
tt@t��I; I � N; I � 0

! @t��gtt@t��I � �fh3�D�D��2@t�2 � hD2
�@t�2g; I � 2

! @t��gtt@t��I � �hD2
�@t�1; I � 1: (5.46)

This dissipation implies (in the 1D case where E � h
P

E)

E;t ! E;t � �h
4
XN�2

2

�D�D�@t�I�
2: (5.47)

Alternatively, we can extend the algorithm by one more point:

f@t��gtt@t��gI ! @t��gtt@t��I � �h3�D�D��2@t�I; 2 � I � N � 2

! @t��gtt@t��I � �fh3�D�D��2@t�N�1 � hD2
�@t�N�1g; I � N � 1

! @t��gtt@t��I � �hD2
�@t�Ng; I � N

! @t��g
tt@t��I � �fh

3�D�D��
2@t�1 � hD

2
�@t�1g; I � 1

! @t��g
tt@t��I � �hD

2
�@t�0; I � 0; (5.48)
with the dissipation now implying (in the 1D case)

E;t ! E;t � �h4
XN�1

1

�D�D�@t�I�
2: (5.49)
Additional dissipation can be added at the boundary by
using the identities

h�D�fN�
2 � fND�fN � fN�1D�fN�1 (5.50)

and
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h�D�f0�
2 � �f0D�f0 � f1D�f1 (5.51)

to augment the dissipative terms in (5.46) by

f@t��g
tt@t��gI ! @t��g

tt@t��I � �BhD�@t�N�1; I � N � 1

! @t��g
tt@t��I � �BhD�@t�N; I � N

! @t��g
tt@t��I � �BhD�@t�1; I � 1

! @t��gtt@t��I � �BhD�@t�0; I � 0: (5.52)
This results in the dissipative effect on the energy (in the
1D case)

E;t ! E;t � �Bh2�D�@t�0�
2 � �Bh2�D�@t�N�

2: (5.53)
D. Implementing the constraint-preserving boundary
system

For a boundary located at x � const, we have shown that
the evolution-boundary algorithm is constraint preserving
if the boundary data (4.2) are provided and the remaining
boundary values are updated as follows:

(1) The Dirichlet boundary data qa � �xa=�xx is freely
prescribed.

(2) The Neumann boundary data qxx � q�@��
xx is

determined by (4.10).
(3) The Neumann boundary data qab � q�@��ab is

computed in terms of three free functions from the
boundary system (4.16), recast in the symmetric
hyperbolic form (4.31).

(4) @t��� is updated on the boundary using the con-
strained boundary data; then ��� is updated.

The first two items involve minimal computation. The
update algorithm ensures that the components �xx and �ab

are known at the current time level. Then the Dirichlet data
qa determines the remaining components �ax (by item 1)
and the Neumann data qxx (by item 2).

In describing the implementation of the third and fourth
items, we consider for the present purposes a smooth
boundary consisting of two toroidal faces at x � 0 and x �
1 (periodic boundary conditions in the y and z directions).
Again, the grid points are labeled by 0 � �I; J; K� � N.
The updates of the boundary values �xx and �ab in terms of
their Neumann boundary data is based upon the general-
ization of the scalar update scheme (5.32) to include the
nonprinciple-part terms of the gravitational equations. For
example, the component of (5.32) corresponding to �ab

generalizes at the I � N boundary to�
�h

�������
�g
p ~Eab �N ab � gxxqab

�
�N;J;K�

� 0; (5.54)

where
�������
�g
p ~Eab is finite differenced according to the rules

given in Sec. VA and where
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N ab �
1

2
��A�xg

xx�D�x�
ab � �A�xg

xx�D�x�
ab

� �A�xgtx�T�x�ab;t � �A�xgtx�T�x�ab;t

� gxyD0y�
ab � A0x�g

xyD0y�
ab� � gxzD0z�

ab

� A0x�g
xzD0z�

ab�� �
h2

4
�D0y�g

xyD�xD�x�
ab�

�D0z�gxzD�xD�x�ab� � �@tgtx�D�xD�x�ab�;

(5.55)

as in (5.28).
The constrained Neumann data qab is obtained from the

first order symmetric hyperbolic boundary system (4.31),
which is solved by the method of lines using centered
spatial differences and a 4th order Runge-Kutta time in-
tegrator. The required data QAB for this system (where
xA � �y; z�) is related to the boundary data qab by (4.29), or
its inverse

Q ab � qab � �ab�cdqcd: (5.56)

This gives

Qzz �Qyy � qzz � qyy;

Qyz � qyz;

Qzz �Qyy � 2qtt � �qzz � qyy�:

(5.57)

Integration of (4.31) then determines the constrained data

� � 1
2Q

tt � 1
2�q

zz � qyy�;

Qy �Qty � qty;

Qz �Qtz � qtz:

(5.58)

In the update of the Neumann components �ab via
(5.54), the inhomogeneous term gxxqab introduces numeri-
cal error (from the evolution of gxx) which affects the exact
nature of the semidiscrete multipole conservation laws
satisfied by the principle part of the system. We avoid
this source of error for the components corresponding to
QAB by prescribing data for gzzQAB (rather than QAB);
similarly, we prescribe gzzqzz. In this way, the principle
part of the system obeys exact inhomogeneous versions of
the semidiscrete conservation laws for the components
corresponding to QAB.
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VI. TESTS OF THE EVOLUTION-BOUNDARY
ALGORITHMS

We compare the performance of various versions of the
evolution-boundary algorithm using the AppleswithApples
gauge wave metric

ds2 � �1�H���dt2 � dx2� � dy2 � dz2; (6.1)

and a shifted version given by the Kerr-Schild metric

ds2 � �dt2 � dx2 � dy2 � dz2 �Hk�k�dx�dx�; (6.2)

where, in both cases,

H � H�x� t� � A sin
�
2
�x� t�

d

�
; (6.3)

and

k� � @��x� t� � ��1; 1; 0; 0�: (6.4)

These metrics describe sinusoidal gauge waves of ampli-
tude A propagating along the x-axis. In order to test 2-
dimensional features, we rotate the coordinates according
to

x �
1���
2
p �x0 � y0�; y �

1���
2
p �x0 � y0�; (6.5)
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which produces a gauge wave propagating along the
diagonal.

The results of these gauge wave tests for periodic
boundaries, i.e. a 3-torus T3 without boundary, have been
reported and discussed in [30]. In the periodic case, it was
found that the 1D tests were very discriminating in reveal-
ing problems. The 2D tests were essential for designing
algorithms for handling the mixed second derivatives in the
Laplacian operator but they introduced no new instabilities
of an analytic origin. As a result, in the 1D tests, numerical
error is channeled more effectively into exciting nonlinear
instabilities of the analytic problem.

Here we open up the x-axis of the 3-torus to form a
manifold with T2 boundaries at x � 
:5. Most of our tests
are run, in both axis-aligned and diagonal form, with
amplitude A � 0:5. We have found that the smaller ampli-
tudes, A � :01 and A � :1, of the original AwA specifica-
tions are not as efficient for revealing problems. Larger
amplitudes can trigger gauge pathologies more quickly,
e.g. gtt � 0 (breakdown of the spacelike nature of the
Cauchy hypersurfaces). Otherwise, the tests are carried
out with the original AwA specifications. We choose wave-
length d � 1 in the axis-aligned simulation and wave-
length d0 �

���
2
p

in the diagonal simulation and make the
following choices for the computational grid:

(i) Simulation domain:
1D: x 2 ��0:5;�0:5	; y � 0; z � 0; d � 1;

diagonal: x 2 ��0; 5;�0:5	; y 2 ��0:5;�0:5	; z � 0; d0 �
���
2
p

(ii) Grid: xn � �0:5� ndx, n � 0; 1 . . . 50�, dx �
dy � dz � 1=�50��, � � 1; 2; 4, 2, 4

(iii) Time step: dt � dx=4 � 0:005=�.

The grids have N � 50� � �50 100 200� zones. (At least
50 zones are required to lead to reasonable simulations for
more than 10 crossing times.) The 1D tests are carried out
for t � 1000 crossing times, i.e. 2� 105� time steps (or
until the code crashes) and the 2D tests for 100 crossing
times.

For the case without periodic boundaries in the
x-direction, the boundary data are provided at x � 
:5.
For example, in the 1D simulation, for a formulation with a
Sommerfeld boundary condition on the metric component
gtt the correct boundary data are

�@t � @x�gttjx��:5 � 2@tH��:5� t�; (6.6)

�@t � @x�gttjx�:5 � 0: (6.7)

With this inhomogeneous Sommerfeld data, the wave en-
ters through the boundary at x � �:5, propagates across
the grid and exits through the boundary at x � :5.
Inhomogeneous Dirichlet and Neumann data are supplied
in the analogous way. Analytic boundary data are pre-
scribed for all 10 metrics components except for the
constraint-preserving boundary algorithm, where only 6
pieces of analytic data are provided.

The test results reported here are for the Ŵ algorithm
(5.19), which performed significantly better than the W
algorithm in tests in the boundary-free case [30]. Also,
harmonic gauge forcing terms were not found to be effec-
tive in the boundary-free gauge wave tests and we have
not included them in the present tests. (Gauge forcing
is important in space-times where harmonic coordinates
are pathological, e.g. the standard t-coordinate in
Schwarzschild space-time is harmonic but singular at the
horizon.)

We use the ‘1 norm to measure the error

E � jj�� ��anajj1 (6.8)

in a grid function �� with known analytic value �ana. We
measure the convergence rate at time t

r�t� � log2

�
jj�2 ��anajj

jj�4 ��anajj

�
; (6.9)
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using the � � 2 and � � 4 grids (N � 100 and N � 200).
It is also convenient to graph the rescaled error

E � �
�2

16
jj�� ��anajj1; (6.10)

which is normalized to the � � 4 grid.

A. Gauge wave boundary tests

Simulation of the AwA gauge wave without shift (6.1) is
complicated by the related metric [16]

ds2

 � e
t�1�H���dt2 � dx2� � dy2 � dz2: (6.11)

For any value of 
, this is a flat metric which obeys the
harmonic coordinate conditions and represents a harmonic
gauge instability of Minkowski space with periodic bound-
ary conditions. Since (6.11) satisfies the harmonic condi-
tions, constraint adjustments are ineffective in controlling
this instability. Long term harmonic evolutions of the AwA
gauge wave with periodic boundary conditions were
achieved by suppressing this unstable mode by the use of
semidiscrete conservation laws for the principle part of the
system.

These semidiscrete conservation laws have been incor-
porated in Sec. V in the harmonic evolution-boundary
algorithm with a general dissipative boundary condition.
Consequently, good long term performance should con-
tinue to be expected. This is especially true for Dirichlet or
Sommerfeld boundary conditions, which do not allow the
unstable mode (6.11) at the continuum level. However,
Neumann boundary conditions allow this mode so that it
poses a potential problem for the constraint-preserving
boundary algorithm described in Sec. V D, which com-
bines Dirichlet and Neumann boundary conditions.
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FIG. 1 (color online). Plot of the rescaled error E��t� in gxx for
the 1D gauge wave with 10 Dirichlet boundary conditions using
the bare Ŵ algorithm (no constraint adjustment or dissipation)
obtained with N � 50, 100, and 200 grid zones. The horizontal
axis measures crossing time t. The instabilities are kept under
control during the entire 1000 crossing times run.
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Nevertheless, our expectations of good long term
performance are borne out in all our tests of the gauge
wave without shift. No explicit dissipation was added to
the Ŵ-algorithm.

Figs. 1–3 plot the rescaled error E��t� in gxx for tests
with amplitudes A � :5 and either 10 Dirichlet, 10
Neumann, or 10 Sommerfeld boundary conditions. The
plots for the Dirichlet and Neumann boundary conditions
show accuracy comparable to the corresponding tests with
periodic boundary conditions reported in [30]. The con-
vergence rates measured at t � 50 are r10D�50� � 1:876
for the Dirichlet case and r10N�50� � 1:804 for the
Neumann case. The Dirichlet and Neumann boundary
algorithms supply the correct inhomogeneous boundary
data for the gauge wave signal to leave the grid but the
numerical error is reflected at the boundaries and accumu-
lates in the grid. The Sommerfeld boundary condition
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FIG. 3 (color online). Plot of the rescaled error E��t� in gxx for
the 1D gauge wave as in Fig. 1 but with 10 Sommerfeld
boundary conditions. Excellent performance with clean second
order convergence is manifest for 1000 crossing times.

FIG. 2 (color online). Plot of the rescaled error E��t� in gxx for
the 1D gauge wave as in Fig. 1 but with 10 Neumann boundary
conditions.
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FIG. 5 (color online). Log plot of the rescaled error E��t� in
gxx for the 1D gauge wave with shift as in Fig. 4 but with 10
Neumann boundary conditions. Again the runs converge at early
times but now the unstable mode is evident at less than 30
crossing times.
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FIG. 4 (color online). Log plot of the rescaled error E��t� in
gxx for the 1D gauge wave with shift for the bare Ŵ algorithm
with 10 Dirichlet boundary conditions. Although clean second
order convergence is measured at early times, the simulation
goes unstable in less than 100 crossing times.
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allows this numerical error to leave the grid and gives
excellent long term performance, as evidenced by the clear
second order convergence displayed in Fig. 3 throughout
the 1000 crossing time run. The convergence rate
r10S�50� � 2:000 was measured at t � 50.

Test results using 3 Dirichlet boundary conditions (for
the components �xa) and 7 Neumann boundary conditions
(for the components �xx and �ab), with boundary data
supplied by the analytical solution, were practically iden-
tical to results for the 10 Neumann boundary conditions.
When these 7 pieces of Neumann boundary data was
generated by the constraint-preserving boundary system,
as detailed in Sec. V D, practically identical results were
again found. This is because no appreciable constraint
violation is excited in the shift-free gauge wave test. For
the same reason, constraint adjustments have no significant
effect.

Two-dimensional tests of the diagonally propagating
gauge wave were also in line with expectations. The most
important background information for the design of physi-
cally relevant boundary algorithms using CCM comes
from the case of 10 Sommerfeld boundary conditions and
the case of boundary conditions supplied by the constraint-
preserving (CP) boundary algorithm. In 2D tests of these
algorithms, we found the respective convergence rates

r10S�10� � 2:0005; r10S�100� � 2:0004;

rCP�10� � 2:0482; rCP�100� � 1:0338

measured at 10 and 100 crossing times. The Sommerfeld
case maintains clean second order convergence. At 10
crossing times the constraint-preserving system also shows
clean second order convergence but at 100 crossing times
the convergence rate drops to first order due to accumu-
lation of error. The constraint boundary system (4.31)
involves two derivatives of numerically evolved quantities
in order to provide a complete set of Neumann data to the
code. This introduces high frequency error in the Neumann
data. We have not experimented with ways to dissipate this
source of error in the boundary system.

B. Shifted gauge wave boundary tests

Simulation of the shifted gauge wave (6.2) is compli-
cated by the related exponentially growing Kerr-Schild
metric [30]

ds2

 � �dt

2 � dx2 � dy2 � dz2

� �H � 1� e
t̂�k�k�dx�dx�; (6.12)

where

t̂ � t�
Ad
4


cos
�
2
�x� t�

d

�
: (6.13)

Although this metric does not solve Einstein’s equations,
for any value of 
 it satisfies the standard harmonic form
(2.4) of the reduced Einstein equations, i.e. the equations
064017
upon which the numerical evolution is based. Numerical
error in the shifted gauge wave test should be expected to
excite this instability. As a result, in shifted gauge wave
tests with periodic boundary conditions [30], the constraint
adjustment (2.14) or (2.15) was necessary to modify the
form of the reduced system in order to eliminate the
solution (6.12).

Figures 4–6 plot the rescaled error E��t� in gxx for
shifted gauge wave tests with amplitude A � :5 using the
bare Ŵ algorithm (no constraint adjustment or dissipation).
The results in Fig. 4 for 10 Dirichlet boundary conditions
are much less accurate than test results for the bare algo-
rithm reported in [30] for periodic boundary conditions.
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FIG. 7 (color online). Plot of the rescaled error E��t� in gxx for
the 1D shifted gauge wave test with 10 Dirichlet boundary
conditions as in Fig. 4 but when the adjustment (2.15) is used.
The dramatic improvement compared with Fig. 4 is evident.
There is no long term error growth during the 1000 crossing
time run.
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FIG. 8 (color online). Plot of the rescaled error E��t� in gxx for
the 1D shifted gauge wave test with 10 Neumann boundary
conditions as in Fig. 5 but when the adjustment (2.15) is used.
Again, the adjustment leads to dramatic improvement.
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FIG. 6 (color online). Plot of the rescaled error E��t� in gxx for
the 1D gauge wave with shift as in Fig. 4 but with 10
Sommerfeld boundary conditions. The error has only a slow
linear growth in time.
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The periodic tests run about 4 times longer with the com-
parable error. The results for 10 Neumann boundary con-
ditions shown in Fig. 5 are poorer yet by an additional
factor of 4 when compared to the periodic tests. These
results can be attributed to the periodic motion of the
boundary introduced by the shift. As explained in more
detail in [16], the numerical noise can be blueshifted as it is
reflected at the moving boundaries, leading to rapid
buildup of error. The results show second order conver-
gence only at early times. For the 10-Dirichlet test we
measured the convergence rate r10D�10� � 2:077 at 10
crossing times. For the 10-Neumann test, we measured
the convergence rates r10N�1� � 2:013, r10N�5� � 2:760,
and r10N�10� � 3:978, at 1, 5, and 10 crossing times. The
high convergence rate at 10 crossing times is misleading
since instabilities have already dominated theN � 100 run
(the coarser grid in the convergence calculation).

Figure 6 shows that 10 Sommerfeld boundary conditions
give very good long term performance for the bare algo-
rithm. The accuracy after 1000 crossing times is much
better than found in [30] for the bare algorithm with
periodic boundary conditions, as expected since the
Sommerfeld conditions allow numerical error to leave
the grid. We measured the convergence rate

r10S�50� � 2:413 (6.14)

at 50 crossing times.
As we have already pointed out for the case of periodic

boundary conditions, although clear second order conver-
gence was established for short run times, good long term
performance for the shifted gauge wave tests was only
possible when constraint adjustments were used to control
the unstable mode (6.12). The situation is similar in the
presence of boundaries. Figure 7 shows the dramatic im-
provement in performance obtained by using the adjust-
ment (2.15), with a2 � 1, for 1D tests with 10 Dirichlet
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boundary conditions, with no dissipation added. The figure
shows good second order convergence, with only a small,
nongrowing error at 1000 crossing times. The convergence
rate r10D�50� � 2:018 was measured at 50 crossing times.
For the same adjustment, with no dissipation, Fig. 8 shows
the test results for 10 Neumann boundary conditions.
Again there is very good accuracy for 1000 crossing times,
although the error is larger than the Dirichlet case because
the boundary conditions now allow the instability (6.12) to
be excited. The convergence rate r10N�50� � 2:877 was
measured at 50 crossing times.

The 1D tests with 10 Sommerfeld boundary conditions
already gave good results for the bare algorithm which
constraint adjustment or dissipation do not substantially
improve. Figure 9 shows the rescaled error for 2D shifted
-18
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FIG. 9 (color online). Plot of the rescaled error E��t� in gxx
with 10 Sommerfeld boundary conditions as in Fig. 6 but now for
the 2D shifted gauge wave test. As in the 1D test, the error has
only a slow linear growth in time.
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gauge wave tests with the 10-Sommerfeld boundary algo-
rithm. The convergence rates

r10S;2D�10� � 2:096; r10S;2D�100� � 2:680 (6.15)

were measured at 10 and 100 crossing times.
The constraint-preserving boundary algorithm described

in Sec. IV requires 3 Dirichlet boundary conditions (for
�xa) and 7 Neumann boundary conditions (for �xx and
�ab). As shown in Fig. 10, when the 3 Dirichlet and 7
Neumann pieces of boundary data are supplied by the
analytic solution the results for the shifted gauge wave
test are very poor due to the early excitation of an unstable
error mode. The rescaled error plotted in Fig. 10 shows that
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FIG. 10 (color online). Log plot of the rescaled error E��t� in
gxx for the 1D shifted gauge wave test with 7 Neumann and 3
Dirichlet boundary conditions and amplitude A � 0:5. The in-
stabilities which appear in less than 8 crossing times cannot be
controlled by dissipation or by the constraint adjustments con-
sidered here.
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good performance is maintained for less than 8 crossing
times. The constraint adjustments (2.14), (2.15), and (2.16),
as well as other adjustments considered in [30], do not lead
to improvement. In particular, the adjustment (2.15), which
works remarkably well in suppressing instabilities in the 10
Dirichlet and 10 Neumann algorithms, fails to be effective
when these algorithms are mixed. This seems related to the
fact that a Kerr-Schild pulse reflected by 10 Dirichlet or 10
Neumann conditions results in a Kerr-Schild pulse travel-
ing in the opposite direction. When the Dirichlet and
Neumann conditions are mixed, the reflected pulse has
opposite signs for the Neumann and Dirichlet components.
As a result, the reflected pulse no longer has the necessary
Kerr-Schild properties for which the adjustment (2.15) was
designed and a new unstable mode is excited. The effect
arises from the nonlinear coupling between the Dirichlet
and Neumann components and does not arise in the AwA
gauge wave test where the Dirichlet components vanish.
The new unstable mode has long wavelength so it cannot
be controlled by dissipation and it satisfies Q � 0 (see
(5.4)) so that it cannot be controlled by the semidiscrete
conservation law Q;t � 0.

The effect of the constraint-preserving boundary system
on the shifted gauge wave test depends upon the perform-
ance of the underlying 3-Dirichlet, 7-Neumann boundary
algorithm so it also does not lead to good performance for
amplitude A � :5. For smaller amplitudes, the instability
from the Dirichlet-Neumann mixing is weaker. Figures 11
and 12 show how the rescaled error behaves as the ampli-
tude is lowered to A � :1 and A � :01, when the Dirichlet-
Neumann data is supplied analytically. For the N � 200
grid and amplitude A � :01, reasonable performance is
maintained for 500 crossing times.

Only slight improvement is obtained when the
constraint-preserving boundary system is applied to the
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FIG. 11 (color online). Log plot of the rescaled error E��t� in
gxx for the 1D shifted gauge wave test with 7 Neumann and 3
Dirichlet boundary conditions as in Fig. 10 but with amplitude
A � :1.

-19



0 10 20 30 40 50 6010
-4

10
-3

10
-2

10
-1

10
0

FIG. 14 (color online). Log plots of the constraint error E��t�
as in Fig. 13 but for the component Ct. Although the constraint-
preserving boundary system (��� ) leads to much less con-
straint violation, the time scale of the unstable mode is unaf-
fected.
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FIG. 12 (color online). Log plot of the rescaled error E��t� in
gxx for the 1D shifted gauge wave test with 7 Neumann and 3
Dirichlet boundary conditions as in Fig. 10 but with amplitude
A � :01. The rapid attenuation of the growth rate of the insta-
bility with amplitude is evident from comparison with Figs. 10
and 11.
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3-Dirichlet, 7-Neumann algorithm. This is apparently be-
cause the troublesome instability is a constraint-preserving
mode. Figures 13 and 14 compare the ‘1 error norms for
constraint violation with and without the application the
constraint-preserving boundary system for the shifted
gauge wave with amplitude A � :1. The figures show
that both the Cx and Ct components of the harmonic con-
straints are satisfied to much higher accuracy when the
constraint-preserving boundary system is used. However,
the unstable mode still grows on the same time scale and
eventually dominates the simulation.
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FIG. 13 (color online). Log plots of the error E��t� in the
constraint Cx for the 1D shifted gauge wave test with amplitude
A � :1 with 7 Neumann and 3 Dirichlet boundary conditions on
an N � 200 grid. The curve ( 
 
 
 ) is the error when the bound-
ary data is supplied analytically and the curve (��� ) is the
error when the constraint-preserving boundary system is applied.
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VII. SUMMARY AND IMPLICATIONS FOR
CAUCHY-CHARACTERISTIC MATCHING

We have formulated several maximally dissipative
boundary algorithms for well-posed and constraint-
preserving versions of the general harmonic IBVP. The
algorithms incorporate SBP and other semidiscrete conser-
vation laws for the principle part of the system. In bound-
ary tests based upon the AwA gauge wave, we have
demonstrated that these techniques give rise to excellent
long term (1000 crossing times), nonlinear (amplitude A �
:5) performance for all boundary algorithms considered.
This is an especially challenging test. A high amplitude
periodic wave enters one boundary, crosses the computa-
tional domain, and exits the other boundary. The numerical
error modes, which are continuously being excited, are
trapped between the boundaries by the reflecting
Neumann or Dirichlet conditions. However, this causes
no serious problem because the chief unstable mode is
suppressed by the conservation laws and the growth of
error is limited by the dissipation inherent in the system.

The shifted gauge wave boundary test proved even more
challenging, as expected from the blueshifting of the error
resulting from reflection off the oscillating boundaries.
However, 10 Sommerfeld boundary conditions (on the
components of the metric) continued to give excellent
long term, nonlinear performance. Furthermore, with the
use of the constraint adjustment (2.15), 10 Dirichlet or 10
Neumann boundary conditions also continued to give good
long term, nonlinear performance. However, nonlinear in-
stabilities, which did not respond to constraint adjustment,
were excited by the mixture of 3 Dirichlet and 7 Neumann
boundary conditions. This led to much poorer results and
reasonable long term performance required amplitudes
A � :01. When the 3-Dirichlet, 7-Neumann boundary al-
-20
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gorithm was amended to include the constraint-preserving
boundary system, the performance was only slightly im-
proved. The results for this test problem indicate that the
mixing of Dirichlet and Neumann boundary conditions
excites a nonlinear instability of the analytic problem
which cannot be controlled by the numerical techniques
considered here.

The above results focused on the mathematical and
computational issues underlying accurate long term simu-
lation of the IBVP but they also have bearing on the
important physical issue of providing proper boundary
data for waveform extraction by means of CCM. In the
absence of analytic boundary data, as supplied in the gauge
wave testbeds, constraint-preserving boundary data must
be obtained either by using a constraint-preserving bound-
ary system or by matching to an exterior solution which
accurately satisfies the constraints. The inaccuracies which
we have found in applying the constraint-preserving
boundary system would only be tolerable in matching
with a Cauchy boundary in the weak field regime, i.e. far
from the sources. On the other hand, the use of 10
Sommerfeld boundary conditions shows robust long term
accuracy even in the strong field regime and would allow
the economy of a boundary close to the sources. This is a
strong recommendation for a matching algorithm based
upon Sommerfeld boundary conditions, with constraint-
preserving Sommerfeld data supplied by matching to an
exterior characteristic solution.

Constraint preservation with a Sommerfeld boundary
algorithm in CCM is greatly facilitated by using harmonic
evolution. In CCM, there is a Cauchy evolution region with
outer boundary BO and a characteristic evolution region,
extending to I�, with inner boundary BI inside the
Cauchy boundary BO. A global solution is obtained by
injecting the necessary Cauchy boundary data on BO from
the characteristic evolution. In doing so there are two
concerns: (i) injection of the Cauchy data in the correct
gauge and (ii) injection of constraint-preserving Cauchy
data. Harmonic evolution simplifies dealing with both of
these concerns because the gauge conditions and con-
straints reduce to wave equations for the harmonic coor-
dinates x�. By extracting data for x� on the inner
characteristic boundary BI, the harmonic coordinates can
be accurately propagated by characteristic evolution to the
injection worldtube BO as solutions of the wave equation.
This supplies the necessary Jacobian between the charac-
teristic and Cauchy coordinates to ensure that the above
two concerns are properly handled. Furthermore, since
such data is constraint preserving (up to numerical error),
it is possible to inject the data in (inhomogeneous)
Sommerfeld form. As evidenced by the test results in
Sec. VI, this offers a very robust way of injecting boundary
data which obeys all the constraints of the harmonic sys-
tem, while avoiding the computational error introduced by
solving the boundary constraint system. This was part of
064017
the strategy employed in [6] in successfully implementing
long term stable CCM in linearized gravitational theory.
The results of this paper suggest that this is also a prom-
ising approach for carrying out CCM in the nonlinear case.
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APPENDIX A: IBVP FOR A SCALAR FIELD IN A
CURVED BACKGROUND SPACE-TIME

The well posedness of the IBVP for the scalar wave
equation with shift can be established by standard tech-
niques by reducing the evolution system to symmetric
hyperbolic form. We consider the principle part of the
scalar wave equation written in the form

g��@�@�� � 0: (A1)

We reduce this to the first order symmetric hyperbolic
system At@tu� Ai@iu � S, following a treatment in [38],
by introducing the auxiliary variables T � @t�, X �
@x�, Y � @y�, and Z � @z�. Then in terms of the 5-
dimensional column vector u � T��;T ;X;Y;Z�, the
matrices A� are given by

At �
1 0 0
0 �gtt 0
0 0 gjk

0@ 1A; (A2)

Ai �
0 0 0
0 �2gti �gji

0 �gij 0

0@ 1A; (A3)

and S � T�T ; 0; 0; 0; 0�. In this first order form, the Cauchy
data consist of u0 � ujt�0 subject to the constraints

�Cx; Cy; Cz� :� �X;Y;Z� � �@x�; @y�; @z�� � 0: (A4)

The evolution system implies that the constraints propa-
gate according to

@t�Cx; Cy; Cz� � 0: (A5)

The well posedness of the Cauchy problem follows from
the established properties of symmetric hyperbolic
systems.

We now consider the IBVP in the domain t � 0 with
x � 0. The constraints propagate up the timelike boundary
at x � 0 and present no complication. The ‘‘boundary
matrix’’
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Ax �
0 0 0
0 �2gtx �gjx

0 �gxj 0

0@ 1A (A6)

has a 3-dimensional kernel, with a basis corresponding to
the vectors

T�1; 0; 0; 0; 0�; T�0; 0;�gxy; gxx; 0�; and

T�0; 0;�gxz; 0gxx�: (A7)

In addition, there is one positive eigenvalue and one nega-
tive eigenvalue



 � 

� gxt; (A8)

where


 �
������������������������������������
�gxt�2 � 	ijg

xigxj
q

: (A9)

Thus precisely one boundary condition is required. The
corresponding normalized eigenvectors are

u
 �
1�����������������


2



p T�0;�
� gxt; gxx; gxy; gxz�: (A10)

The homogeneous boundary condition Mu � 0 may be
cast in the form that u lies in the linear subspace (u� �
Hu� � u0), where u0 lies in the kernel. In this subspace,
the flux

F x � 1
2
T�u� �Hu� � u0�Ax�u� �Hu� � u0�

� 
� � 
�H2; (A11)

satisfies the dissipative condition F x � 0 provided

H2 � �
�=
�: (A12)

The homogeneous boundary condition corresponding to
a choice of H is

Mu :� T�Hu� � u��u � 0: (A13)

The limiting case H �
��������������������
�
�=
�

p
leads to the homoge-

neous Dirichlet boundary condition

@t� � 0 (A14)

and the limiting case H � �
��������������������
�
�=
�

p
leads to the ho-

mogeneous Neumann boundary condition

g�x@�� � 0: (A15)

As an alternative to this standard eigenvalue analysis of
the maximally dissipative boundary condition, the simplic-
ity of the scalar wave case allows a direct geometrical
approach. A straightforward calculation gives

F x � 1
2
TuAxu � ��@t��gx�@��; (A16)

which is identical to the energy flux obtained from the
stress-energy tensor of a massless scalar field. It immedi-
ately follows that F x � 0 for the above specifications of
homogeneous Dirichlet and Neumann boundary condi-
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tions. More generally, F x > 0 for boundary conditions of
the form (gx�@��� P@t�), with P> 0. An important
case is the choice

P �

������������
�
gxx

gtt

s
(A17)

which leads to the homogeneous Sommerfeld-like bound-
ary condition

L�@�� � gx�@���

������������
�
gxx

gtt

s
@t� � 0; (A18)

where L� lies in the outgoing null direction in the (t�,
r�x) plane.

The well posedness of the IBVP for the scalar wave
equation with any of the above choices of maximally
dissipative boundary condition extends, by Secchi’s theo-
rem [35], to the quasilinear reduced Einstein equa-
tions (5.1). The extension of the homogeneous boundary
condition Mu � 0 to include free boundary data q takes
the form M�u� q� � 0. For example, the Neumann
boundary condition (A15) takes the inhomogeneous form
g�x@�� � q, where the boundary data q can be freely
assigned. The well posedness of the IBVP for the wave
equation with inhomogeneous boundary data follows from
the well posedness of the homogeneous case by a standard
argument.
APPENDIX B: EXTRINSIC CURVATURE

The extrinsic curvature tensor of the boundary at x � 0
(of the domain x � 0) is given by

K�� � h��h��r
�n�; (B1)

where

h�� � 	�� � n�n
� (B2)

is the projection tensor into the tangent space of the bound-
ary and n� � �1=

�������
gxx
p

�r�x is the unit outward normal. In
the 3� 1 decomposition x� � �xa; x�, hab is the intrinsic
metric of the boundary, hx� � 0, h�b � g�b, and hxx �
gxx � �1=g

xx:� Also note that hB � det�hab� � gxxg.
We set n� �

�������
gxx
p

q� �
�������
gxx
p

�qa; 1�, where qa �
�xa=�xx. In terms of the metric,

K�� �

�������
gxx
p

2
h��h���g

��@�q
� � g��@�q

� � q�@�g
���:

(B3)

In expressing this in terms of ���, the identity

@�g � �
�������
�g
p

g��@���� (B4)

is useful. For example,

@xg
�� �

1�������
�g
p

�
@x�

�� �
1

2
g��g��@x�

��
�
: (B5)
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As a result,

K�� �

�������
gxx
p

2
�h��h��@�q

� � h��h��@�q
�� �

gxx

2
�������
�h
p

�

�
h��h��q

�@��
�� �

1

2
h��g
�q

�@��

�
�

(B6)

and

K�� � h��K �

�������
gxx
p

2
�h��h��@�q

� � h��h��@�q�

� 2h��h��@�q
�� �

gxx

2
�������
�h
p

��h��h��q
�@��

�� � h��n�n�q
�@��

���:

(B7)
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The boundary version of the usual momentum constraint
implies

h��n�G
�� � D��K

�� � h��K�; (B8)

where Da is the covariant derivative associated with the
boundary metric hab. We express this ‘‘boundary momen-
tum’’ in the 3-dimensional form of the xa � �t; x; y� coor-
dinates:

ha�n�G�� � Db�Kab � habK� � 0: (B9)

The identity�����������
�hB

p
DbS

b
a � @b�

�����������
�hB

p
Sba� �

1
2

�����������
�hB

p
Sbc@ahbc; (B10)

valid for any symmetric tensor Sbc, is useful in calculating
the covariant derivatives entering the constraint.
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