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The inside story: Quasilocal tachyons and black holes
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We analyze the fate of excitations in regions of closed string tachyon condensate, a question crucial for
understanding unitarity in a class of black holes in string theory. First we introduce a simple new example
of quasilocal tachyon condensation in a globally stable AdS/CFT background, and review tachyons’
appearance in black hole physics. Then we calculate forces on particles and fields in a tachyon phase using
a field theoretic model with spatially localized exponentially growing time-dependent masses. This model
reveals two features, both supporting unitary evolution in the bulk of spacetime. First, the growing energy
of fields sourced by sets of (real and virtual) particles in the tachyon phase yields outward forces on them,
leaving behind only combinations which do not source any fields. Secondly, requiring the consistency of
perturbative string theory imposes cancellation of a BRST anomaly, which also yields a restricted set of
states. Each of these effects supports the notion of a black hole final state arising from string-theoretic
dynamics replacing the black hole singularity.
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I. INTRODUCTION

There has been recent progress in understanding closed
string tachyon condensation and applying it to problems of
gravitational interest (e.g. [1–6]). New applications to
cosmological and black hole singularities motivate further
analysis of the tachyonic phase in order to address basic
questions such as unitarity and the process by which black
holes explode at the end of Hawking evaporation.

As a time-dependent system, a string background con-
taining closed string tachyon condensation has no a priori
preferred vacuum state. A string-theoretic version of a
Euclidean vacuum is the simplest to control in perturbative
string theory [4,7] via its relation to Liouville field theory.
However, in many applications, it is important to under-
stand if other vacua are allowed. In this work we begin a
detailed study of this question, in the process formulating
some simple new examples where tachyon condensation
occurs in globally stable string backgrounds.

Most previous discussions have focused on situations
where the tachyons are either localized to a small region of
space, or occur everywhere at once as in homogeneous
cosmologies. In this paper, we examine the intermediate
case where a closed string tachyon condenses over a finite
region of space. We will refer to this as ‘‘quasilocal tachy-
ons’’. This case is of considerable interest for the following
reason. Analysis of closed string tachyon condensation
yields results indicating that the process smoothly ends
spacetime [1–4]. This suggests a perturbative string-
catalyzed resolution of spacelike singularities, but raises
simple questions about unitarity in string-corrected gravity.
For example, if tachyon condensation starts in a finite
region of space, what happens to a particle sent into this
region? Is the S matrix obtained in the bulk spacetime
unitary? Since tachyon condensation is a process which
can happen in globally stable systems with asymptotic
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supersymmetry, and in gravity duals to self contained field
theories, these are sharp questions arising in a wide class of
backgrounds.

The basic possibilities are twofold:

(1) M
-1
ultiple states exist in the tachyon condensate
phase, entangled with the outside. Since the bulk
spacetime does not include the tachyon condensate,
this would yield a failure of spacetime unitarity. In
the context of AdS/CFT examples, this would mean
that the field theory is dual to a system consisting of
more than the bulk spacetime string background.
(2) O
nly a single state is allowed in the tachyon con-
densate phase in a given system. Evolution in the
bulk spacetime remains unitary.
We will present evidence in favor of the second possibility.
We start by introducing a new example of quasilocal

tachyon condensation, arising from a moving shell of D3-
branes in the gravity dual of gauge theory on a Scherk-
Schwarz circle. In this example, at low energies a three-
dimensional confining theory is induced time dependently.
In the bulk, the region inside the shell is excised by a
tachyon condensation process and the resulting spacetime
is the AdS soliton [8,9] describing the confined phase of
the system. This raises the question of whether information
can get stuck in the tachyon condensate phase which
replaces the region inside the shell. Similarly, in certain
black holes in string theory a tachyon phase replaces the
singularity, and the information loss problem can be trans-
lated into a question of whether the tachyon condensate
phase supports a sector of states entangled with the states
in the bulk spacetime.

In order to gain some intuition for the dynamics of
particles in the tachyon condensate phase, we next set up
and analyze a pure quantum field theory system with some
of the same features. Tachyon condensation is described on
the worldsheet by a timelike Liouville theory with a semi-
© 2006 The American Physical Society
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classical action deformed by the tachyon vertex operatorR
�2Oe2�X0

, where O is an operator of dimension �< 2
and �2 � 2� �. In the analogue quantum field theory
problem, the corresponding deformation of the worldline
action constitutes a space-time-dependent mass squared
which grows exponentially as a function of time. This
suggests that tachyon condensation lifts closed string
modes and ultimately spacetime itself, and indeed basic
amplitudes in the perturbative string theory are smoothed
out by the tachyon term and produce explicit results similar
to those of the corresponding field theory analogue [4,7].

In ordinary quantum field theory in Minkowski space,
there are two asymptotic regions (in the massless case, past
and future null infinity J�). As we will see in detail,
quantum field theory with a localized region where the
particle masses increase sufficiently rapidly with time (and
homogeneously in space) yields a new candidate asymp-
totic region in which free classical particles can get stuck
and quantum mechanical wavepackets stop expanding.

This by itself raises the possibility of nontrivial states in
the tachyon phase. However, there are two important fea-
tures of the physics (also captured in the QFT model)
which suggest that this is not the case. First, would-be
trapped particles generically source other fields. These
sourced fields become heavy in the tachyon phase, leading
to outward forces on such configurations. This may lead to
evacuation of any configurations of (real or virtual) parti-
cles in the tachyon phase which source any components of
the string field. Secondly, imposing perturbative BRST
invariance forces correlations among members of the set
of (real or virtual) particles surviving in the tachyon phase
(related to the analysis in [10]). Both of these effects are
reminiscent of the suggestion [11] for resolving the appar-
ent contradiction between semiclassical calculations and
unitarity of black hole evaporation; moreover the former
may provide a dynamical mechanism for satisfying the
latter.

As a simple illustration, consider a particle inside the
shell of D3-branes. It is clear that the particle cannot
simply remain inside when the tachyon condenses. This
is because the graviton also gets lifted in the tachyon phase
[4,7], screening the energy of the particle. Since the total
AdS energy must be conserved, the particle must either be
forced out classically or quantum mechanically (by pairing
up with the negative energy partner of a particle creation
event).

In the next section we describe the shell example in
some detail, and also review the appearance of tachyons
inside black holes in both asymptotically flat and asymp-
totically AdS spacetimes. In section three we introduce our
quantum field theory model for the dynamics of particles
and fields in the tachyon phase (which is a generalization
of [10,12]) and analyze in detail the behavior of excitations
in this model. We note the appearance of a BRST anomaly
in the worldline description, which plausibly generalizes to
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a nontrivial consistency condition in perturbative string
theory. The last section contains a discussion of applying
these ideas to more realistic black holes such as
Schwarzschild, and also some open questions.
II. EXAMPLES OF QUASILOCAL TACHYONS

The first example of quasilocal tachyon condensation
appeared in [1]. There, a winding tachyon condensation
process splits a Scherk-Schwarz cylinder in two. This can
yield decay of handles on Riemann surface target spaces,
as well as processes where the surface disconnects into
multiple components. Although the discussion in [1] fo-
cused on the topology change process in the bulk of space-
time, the fact that the spatial derivatives were required to
be small means that the tachyon condensation was impor-
tant over a finite region of space. Hence this is an example
of quasilocal tachyons. However, in this example, it turns
out that small inhomogeneities in the tachyon field alone
serves to repel most particles from the region.

In this section we introduce several more examples,
including ones where the tachyon gradient alone would
permit free particles to get trapped inside the tachyonic
region. In the next section we will analyze the dynamics of
modes sent into the tachyon phase in this class of
examples.

A. Shell of D3-branes

Our next example provides a setup where tachyon con-
densation effects a time-dependent transition between the
gravity dual of a compactified field theory on its Coulomb
branch and the gravity dual of a confining field theory. The
tachyon condensate replaces the region of the spacetime
which would correspond to the deep infrared limit of the
field theory.

Consider a spherical shell of D3 branes, i.e., the branes
are arranged in an S5 in the six dimensional space trans-
verse to all the branes. One can consider either the asymp-
totically flat, or asymptotically AdS versions of this
example. To use the insights from the AdS/CFT correspon-
dence, we will focus on the asymptotically AdS case.
Configurations like this have been discussed in, e.g.,
[13,14] (see also [15] for a different type of shell). The
static metric is AdS5 � S5 outside the shell, and ten di-
mensional flat space inside. Explicitly:

ds2 � h�1�r���dt2 � dxidxi	 � h�r��dr2 � r2d�5	

(2.1)

where i � 1; 2; 3 and

h�r� �
‘2

r2 �r > R�; h�r� �
‘2

R2 �r < R� (2.2)

As usual, the AdS radius ‘ is related to the number of
branes N and string coupling g via ‘4 � �4�gN�l4s . The
constant R is the coordinate radial position of the shell, but
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FIG. 1. A shell of D3-branes slowly contracts. The spacetime
outside is approx- imately AdS5 � S

5, while the spacetime in-
side is approximately flat. The branes are wrapped around a
Sherk-Schwarz circle, and when this circle reaches the string
scale, the winding tachyons condense. The exterior geometry
becomes a bubble which settles down to the AdS soliton (cross
S5). We will be interested in the fate of excitations in the hTi
region.
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the above geometry is in fact independent of R. The proper
radius of the shell is always ‘. We now compactify one of
the xi with period L and put antiperiodic boundary con-
ditions for fermions. This identification causes the geome-
try to depend on R, as this enters into the size of the circle
for small radius. In fact this size grows to infinity at the
boundary, decreases linearly as r decreases toward R, and
is constant at LR=‘ everywhere inside the shell r < R.

Now imagine that we add a little kinetic energy so the
shell slowly contracts. To leading order in small velocities,
the metric is given by (2.1) and (2.2) with R a slowly
decreasing function of time. Ignoring tachyons, we would
eventually form a slightly nonextremal black 3-brane. But
the horizon only arises at a very small radius depending the
energy we add. Long before this, the radius of the circle
reaches the string scale inside and on the shell. This occurs
when

LR
‘
� ls (2.3)

Just outside the shell the winding tachyon instability
should cause the circle to pinch off [1]. This removes the
shell, and everything inside. The result is a ‘‘bubble of
nothing’’. Unlike the bubble proposed by Witten to de-
scribe the decay of the Kaluza-Klein vacuum [16], these
bubbles can have nonzero mass and be static, rather than
expanding. Inside the shell there is a region of tachyon
condensation along a spacelike surface (Fig. 1). The simi-
larity to spacetimes describing black hole evaporation is
striking. This example allows us to address questions about
how information gets out in a simpler setting, without the
complications of Hawking radiation and large curvature.
Note that even though the low energy spacetime descrip-
tion is a ‘‘bubble of nothing’’, in string theory the interior
should really be thought of as the tachyon condensate.

There is a natural candidate to describe the spacetime
after the bubble settles down. This is the product of S5 and
the static AdS soliton [8,9]:

ds2 �
r2

‘2 ��dt
2 � fd�2 � dyidyi	 �

‘2

r2f
dr2 (2.4)

where

f�r� � 1�
r4

0

r4 (2.5)

and i � 1; 2. The radial coordinate satisfies r 
 r0 and r �
r0 is the bubble. Regularity at the bubble requires � to be
periodic with period

L � �‘2=r0 (2.6)

The mass of (2.4) was computed in [9] and found to be
negative:

Esol � �
�3‘3V2

16G5L
3 � �

�2

8

N2V2

L3 (2.7)
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where V2 is the volume of yi. This negative energy agrees
(up to a factor of 3=4) with the Casimir energy of a weakly
coupled N � 4 super Yang-Mills theory compactified on
a circle of radius L with antiperiodic fermions, though as
we will discuss further below, the field theory is expected
to confine in the infrared. Since the original spacetime had
essentially zero energy, the transition to the bubble pro-
duces radiation in the AdS soliton background.

Most of this radiation is not produced immediately when
the tachyon condenses. Instead, one first produces a non-
static bubble, with energy close to zero, which expands out
and eventually settles down to the AdS soliton plus radia-
tion. To see this, let us ask what is the size of the � circle
just before it starts to pinch off in the AdS soliton. This is
given by the radius of the circle when r is a few times larger
than r0, which is of order r0L=‘� ‘. In other words, the
AdS soliton (2.4) describes a bubble in which the circle
pinches off at the AdS radius rather than the string scale.

It is easy to write down time symmetric initial data to
describe bubbles where the circle pinches off at various
radii. Assuming the same spatial symmetries as the AdS
soliton, a general four dimensional metric can be written in
-3



GARY T. HOROWITZ AND EVA SILVERSTEIN PHYSICAL REVIEW D 73, 064016 (2006)
the form

ds2 � U�r�d�2 �
dr2

U�r�F�r�
�
r2

‘2 dyidy
i (2.8)

Since the extrinsic curvature is assumed to vanish, the only
restriction is the Hamiltonian constraint:

R � �F0
�
2U
r
�
U0

2

�
� F

�
2U

r2 �
4U0

r
�U00

�
� �

12

‘2

(2.9)

One can pick U�r� arbitrarily and solve for F�r�. Since we
want U to vanish at r0 and asymptotically be r2=‘2, we can
choose for example

U�r� �
r2

‘2 �
r4

0

‘2r2 (2.10)

The solution for F turns out to be

F�r� � 1�
b

3r4 � r4
0

(2.11)

where b is an arbitrary constant. If b � 0, this corresponds
to a static slice in the AdS soliton.

Regularity at r � r0 requires that � be periodically
identified with period

L � �‘2

�
r2

0 �
b

2r2
0

�
�1=2

(2.12)

Using the freedom in b, we can obtain initial data for any L
and bubble location r0. From (2.12), we simply choose

b � 2r2
0

�
�2‘4

L2 � r
2
0

�
(2.13)

The total energy of this initial data is easily computed with
the result

E �
V2

16G5‘L

�
r4

0L
2

�‘4 � 2�r2
0

�
(2.14)

Imagine fixing L and varying r0. For small r0 this energy is
negative and decreases quadratically in r0. It reaches a
minimum when r0 � �‘2=L and then increases, becoming
positive and arbitrarily large at large r0. The minimum
corresponds to b � 0, consistent with the conjecture that
the AdS soliton is the minimum energy solution with these
boundary conditions [9].

In our collapsing shell example, the circle pinches off
when it reaches the string scale, which corresponds to r0 �
‘ls=L. So its energy is only slightly negative. It will
probably evolve out, oscillate around the AdS soliton and
eventually settle down.1
1Even though the bubble will probably be momentarily at rest
when it first forms, it need not have exactly the form of U chosen
in (2.10). The initial data above is simply illustrative of the
general behavior.
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Inside the shell, the geometry is similar to a spatially flat
collapsing Robertson-Walker universe. However, it is not
exactly this, due to retardation effects. Let us specify that
the system starts in the ground state in the interior, and we
evolve by moving the shell of branes first. Then along a
spatially flat surface, the size of the S1 will be slightly
larger at the origin than near the shell. In terms of proper
time � and proper radius � inside the shell, the size of the
circle is L � LR��� �� ‘�=‘. So along a constant �
surface

dL
d�
�
L
‘
dR
d�

(2.15)

We now make some comments about the dual CFT. With
supersymmetric boundary conditions, the initial shell
would be described by a point on the Coulomb branch of
D � 4, N � 4 SYM. However, since the theory is com-
pactified on a circle (of length L) with antiperiodic fermi-
ons, the fermions get masses of order 1=L at tree level, and
since supersymmetry is broken the scalar masses are un-
protected. The Coulomb branch is lifted, and the shell
cannot stay static. However, the potential on the
Coulomb branch is a small effect in our system if we
tune the bulk string coupling very small. We are interested
in a time-dependent evolution (obtained by tuning parame-
ters and initial conditions as necessary) in which the ve-
locity is small as the circle crosses the string scale in proper
size. At very low energies, the theory enters a confining
phase of bosonic D � 3 Yang-Mills. This is the dual of the
AdS soliton; the tachyon condensation excises the would-
be IR region of the geometry, reflecting the mass gap.
Glueball masses computed from the gravity side are of
order 1=L [17].

Regarding other tunable parameters in our system: in-
stead of simply changing the shell radius, one can also
induce a tachyon transition by making the radius of the
circle on which the CFT is compactified decrease with
time. In this case, the CFT is living on a time-dependent
spacetime (which can be chosen supersymmetric in the far
past, for example). If we start in the ground state in the
bulk, the information of the changing radius propagates
from the boundary to the interior, so that again the Scherk-
Schwarz circle in the bulk shrinks later near r � 0. This
again means that the tachyon turns on first near the shell
and later near the origin, which will be important in our
analysis of the forces in the problem in Sec. III.

Similar shell examples could be constructed out of D1-
D5 branes, or M2 and M5 branes. However, rather than
describe these in detail, we move on to examples involving
black holes.

B. Asymptotically flat black holes

As discussed in [2], exactly the same type of Scherk-
Schwarz winding tachyons appear inside some extended
black holes. If a black p-brane carrying RR charge is
-4



2This does not contradict the condition used in [2] that the area
of the static bubble should agree with the area of the spherical
cross-section of the horizon. That corresponds to the fact that the
S5 does not change during the evolution of the bubble in the shell
example.
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wrapped around a circle, the size of the circle goes to zero
at the singularity. Suppose one takes a collection of D-
branes and collapses them together to form a charged black
brane. We will assume that the branes are wrapped around
a circle with antiperiodic boundary conditions. If the initial
kinetic energy is very small, the situation will be similar to
the shell discussed above. The tachyon instability will set
in outside the branes before the horizon is formed, and
produce a Kaluza-Klein bubble. Let us assume the initial
kinetic energy is large enough to form a horizon. Then the
tachyon instability occurs inside the horizon along a space-
like surface. This can happen when the curvature is still
small so �0 corrections are negligible, and the geometry is
slowly varying so string creation effects are small. Past this
point, the evolution is dominated by the physics of tachyon
condensation and no longer given by supergravity. Outside
the horizon, Hawking radiation causes the black brane to
approach extremality and the size of the circle at the
horizon to shrink. When the circle reaches the string scale,
tachyon condensation will cause it to pinch off, again
producing a bubble. So Hawking radiation eventually
causes all (RR charged) black branes to turn into bubbles.

As a specific example, consider the black three-brane

ds2 � H�1=2��fdt2 � dxidxi	 �H1=2�f�1dr2 � r2d�5	

(2.16)

where

H�r� � 1�
‘4

r4 ; f�r� � 1�
r4

0

r4 (2.17)

If we periodically identify one of the directions along the
brane with period L and put antiperiodic boundary con-
ditions, then the tachyon instability arises at a radius ri
whenH�ri��1=4L � ls which can lie inside the horizon. We
now show that this can also arise when the curvature is
small and the geometry is slowly changing. Since we want
L� ls, H�ri� � 1, so near r � ri, H  ‘4=r4 and the
geometry is a product of S5 with radius ‘ and a five
dimensional black brane. The circle will reach the string
scale when (cf (2.3)) ri � ‘ls=L. The Ricci curvature is of
order 1=‘2, but the Weyl curvature is larger inside the
horizon and of order

Cabcd �
r4

0

r4‘2 (2.18)

So at the point where the tachyon instability arises, the
curvature is of order r4

0L
4=l4s‘

6. For any horizon radius r0,
this can clearly be made small by taking ‘� L. The unit
timelike normal to the constant r surfaces is
�f1=2H�1=4@=@r. So the rate of change of the size of the
circle is

_L S1 � �f1=2H�1=4L
@
@r
H�1=4 � �

�r4
0 � r

4�1=2L

r‘2

(2.19)
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At the point where the tachyon instability begins, this gives
j _LS1 j< r2

0L
2=ls‘

3 which is again small whenever ‘� L.
It was shown in [2] that to end up with a static, asymp-

totically flat bubble there is a restriction on the total charge
and L which essentially reduces to ‘ < L. Thus the condi-
tion to get tachyon condensation inside the horizon with
small curvature and slow time derivatives (‘� L) is in-
compatible with forming a static bubble outside the hori-
zon. When these black branes evaporate to the point where
the circle at the horizon reaches the string scale, the
resulting bubble must expand. Even when a static bubble
exists as the final endstate, there will be evolution in the
bubble before it settles down, just as we saw for the shell
above.2

C. Asymptotically AdS black holes

Simply dropping the one in the definition of H (2.17)
converts the asymptotically flat black brane above into an
asymptotically AdS5 � S5 solution. However there is an
important difference between the asymptotically flat and
asymptotically AdS cases. As we have said, in the asymp-
totically flat case, Hawking radiation will always cause the
size of the circle to shrink at the horizon, so one always
evolves to a bubble on the outside. In contrast, AdS acts
like a confining box, so a typical black hole will evaporate
a small fraction of its mass and quickly come into thermal
equilibrium with its own Hawking radiation. Since tachyon
condensation can still occur inside, these are examples of
eternal black holes with tachyon condensates inside.

Even if one lowers the temperature of the external AdS,
one cannot always induce a tachyon transition outside the
horizon. For example, the Hawking temperature of the
black three-brane is T � r0=‘

2, and its energy is Ebb �
N2T4V2L. The circle reaches the string scale at the horizon
when Lr0=‘ � ls. This corresponds to a temperature

T �
ls
‘

1

L
�

1

�gN�1=4

1

L
�

1

L
(2.20)

This is a very low temperature. As discussed in [18], if we
lower the temperature of the external AdS, there is a first
order phase transition which in the CFT corresponds to a
confining/deconfining transition. In the gravity side, the
transition is between the AdS soliton and the black brane:
One nucleates bubbles of the soliton on the brane. This
happens when the free energy of the black brane is equal to
the free energy of a gas in the soliton with the same total
energy. This occurs when Ebb � jEsolj which implies (2.7)

N2T4V2L�
N2V2

L3 (2.21)
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That is, when T � 1=L, which is much higher than the
tachyon transition.

As another example, consider the BTZ black hole

ds2 � �

�
r2 � r2

0

‘2

�
dt2 �

�
‘2

r2 � r2
0

�
dr2 � r2d’2 (2.22)

Since global AdS3 has antiperiodic fermions around the ’
circle, any black hole formed from collapse in AdS3 must
have this property. The curvature is constant and set by ‘ so
there are no large curvature effects provided ‘� ls. The
rate of change of the ’ circles with respect to proper time
inside the horizon is _r  �r0=‘ so provided ls � r0 � ‘
there are no large time derivatives and string creation
effects are negligible. Tachyon condensation will occur
inside the horizon along the surface r� ls. If the black
hole can evaporate down to r0 � ls, then tachyon conden-
sation at the horizon will cause the circle to pinch off and
one is left with radiation in global AdS3. However, as we
have already mentioned, it is very unlikely that the BTZ
black hole will evaporate down this far.

The existence of the equilibrium configuration for black
holes in AdS provides a useful simplified version of the
problem of Hawking evaporation. If we throw a small
amount of energy into the black hole, it radiates a small
amount of Hawking radiation and returns to equilibrium.
Hence, this can be viewed as an intermediate case between
the shell example (with no Hawking radiation) and the
asymptotically flat black holes (with large amounts of
Hawking radiation).

D. AdS/CFT and unitarity

The examples we have discussed which are embedded in
asymptotically AdS geometry benefit from the dual field
theory perspective. This guarantees that the full system is
unitary. This alone does not guarantee that the unitarity is
maintained exclusively in the bulk spacetime; a priori it is
possible that the tachyon phase supports excitations dual to
field theoretic ones. The field theory also guarantees that
energy is conserved, and that global symmetries are re-
spected. These quantities are determined by graviton and
gauge field behavior at the boundary of AdS. In this work
we will focus on the direct gravity-side physics of the
tachyon phase, but will return to these constraints from
AdS/CFT after some further analysis.
III. PARTICLE AND FIELD DYNAMICS IN THE hTi
PHASE

In this section, we will gain some intuition for the
dynamics of objects sent into the tachyon phase by study-
ing a field theory analogue. As discussed, for example, in
[4,7], the tachyon contribution to the semiclassical world-
sheet action behaves in some ways like a spacetime-
dependent mass squared term for particles in the tachyon
background. Full perturbative string computations of the
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partition function and of the number of pairs of string
produced in the time-dependent background yield results
identical to those of a field theory with spacetime-
dependent masses. This suggests that the corresponding
field theory model is a good guide to the dynamics, and we
will analyze the forces on particles in the presence of fields
with a spacetime-dependent mass. To start, we will discuss
free particles, and then generalize to the case of more direct
interest in which the particles source fields which are
themselves becoming heavy in a spacetime-dependent
way.

Consider a scalar field theory on d-dimensional
Minkowski space with a spacetime-dependent mass. Its
Lagrangian density is

L � ����2 �m2� ~x; x0��2 �Linteraction (3.1)

We will be interested in the case where the mass is of the
following form, and constant except in a finite region of
space

m2�x0; ~x� � M2�x0�f�r� �m2
0 (3.2)

where f has support in a finite region r < ~L, and M ! 1
as x0 ! 1. A case of particular interest will be one in-
spired by tachyon condensation, where

M2
T�x

0� � �2e2�x0
(3.3)

but we will consider the problem in more generality.
Several important features will depend on whether M�x0�
grows to infinity faster or slower than linearly in x0.

We will consider both the second quantized description
of this system via (3.1) and a first quantized description via
the worldline action

S wl �
Z
d�

�������
g00
p 1

2
��g00� _x0�2 � g00� _~x�2 �m2�x0; ~x��

(3.4)

which is a functional of the embedding coordinates x����
and the worldline metric g00���. Integrating over the world-
line metric yields the equivalent form

~S wl �
Z
dx0m� ~x; x0�

������������������������
1�

�
d~x

dx0

�
2

s
(3.5)

which is useful classically. In the quantum theory, we may
employ a BRST quantization to obtain an action

S BRST �
Z
d�
�
1

2
_x� _x� �

1

2
m2�x0; ~x� � _bc

�
(3.6)

in terms of a standard b� c ghost system.

A. Particle mechanics

Let us start by determining the trajectories of free par-
ticles, focusing on their behavior in the r < ~L region.
Starting from (3.5) we find the equation of motion
-6
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d

dx0

m d~x
dx0��������������������

1� � d~xdx0�
2

q �
m
~x

������������������������
1�

�
d~x

dx0

�
2

s
� 0 (3.7)

To begin, let us take f�r� to be constant in the r < ~L region.
Then in this region the solutions satisfy

m d~x
dx0��������������������

1� � d~xdx0�
2

q � p (3.8)

for constant momentum p. This yields d~x
dx0 �

�p=
������������������������������
m2�x0; ~x� � p2

p
from which we learn that the dis-

tance travelled by a particle of momentum p in the r < ~L
region is

j� ~xj � p
Z t2

t1
dx0 1������������������������������

m2�x0; ~x� � p2
p (3.9)

If m grows faster than linearly with x0 at large x0, then this
distance j� ~xj is finite even if we allow infinite time t2 !
1. Otherwise, the total distance diverges as t2 ! 1 from
the large x0 end of the integral.

In the case of exponential growth (3.3), the distance
travelled within the region r < ~L from time t1 � 0 to t2 �
1 is

j� ~xj �
p
!0�

ArcSinh
�
!0

�

�
(3.10)

where !0 �
������������������
p2 �m2

0

q
. This grows like �1=�� log�!0=��

for large !0. For finite ~L, there is a finite window of
frequency

!0 <!� � � sinh� ~L�!�=
�������������������
!2
� �m

2
0

q
�

��!��m0�
� sinh� ~L�� (3.11)

for which a free particle sent into the r < ~L region at t � 0
stays inside this region.

Near r � ~L, f�r� decreases to zero. The gradient term in
(3.7) is now important since it is amplified by the increase
in theM�t� factor. This prevents particles from entering the
region r < ~L at late time. If f�r� has no local minima in the
massive phase, then even particles which enter this region
at early time are simply repelled out of the massive phase
before x0 � 1. In our quasilocal tachyon problems, the
challenge to unitarity arises in the case that the spatial
dependence of the tachyon terms in the worldsheet action
does not suffice to classically repel all impinging free
particles. For example in the shell discussed in sec. II A,
the retardation effects produce a tachyon gradient propel-
ling the particles deeper into the central region.

So far this was purely classical. In quantum mechanics,
propagation of particles is described by wave packets
which have nontrivial extent in ~x. Since wavepackets typi-
cally spread out in time, one might have thought that the
probability of finding the particle in a finite region ~L at late
064016
time would always go to zero. However this is not the case.
Consider sending in a Gaussian wavepacket into the r < ~L
region at time x0 � 0. At large x0, since the mass is
increasing the particle may be described to good approxi-
mation by nonrelativistic quantum mechanics. A simple
analysis reveals that quantum mechanical wavepackets
stop spreading at late times precisely when m grows faster
than linearly with x0.

We have seen that if m�x0� grows faster than linearly
with x0 at late times, free particles with!0 <!� (3.11) can
get stuck in the r < ~L region. Next we will consider
interactions, in particular, coupling our particles to fields
which are also gaining mass in the central region.

B. Interactions and field energy

Now consider coupling our particle to a field 	 which is
also getting massive:

�L � ���2 �m2� ~x; x0��2 � �	�2 �m2
	� ~x; x

0�	2 � 
	j

(3.12)

where j is a current of � particles. For definiteness we will
consider below the case where 	 couples to the energy
density of � particles. Here

m2
	 � M2

0 � f�r�M
2�x0�: (3.13)

Particles of � source 	 fields. As the particle propagates
into the tachyon phase, it drags its 	 field along, but this
field is getting heavy as well. This contributes to the force
on the configuration and must be taken into account in
determining whether nontrivial states survive in the
tachyon phase.

Let us calculate the energy contained in the 	 field
sourced by a � particle. The field classically is given by
solving

�@2
0 �

~r2
�m2

	�x
0; ~x��	 � 
j�x� (3.14)

with a particle source

j�x� �m� ~x; x0��� ~x� ~vx0�: (3.15)

Let us consider a massive slowly moving particle, and
neglect the velocity ~v here. The energy contained in the
field 	 is given by

E �
Z
d~x� _	2 � � ~r	�2 �m2

		2� (3.16)

This field energy will depend on how far inside the tachyon
phase the particle source sits, and hence will lead to addi-
tional forces beyond those obtained in Sec. III A just from
the particle mass itself.

Before analyzing this problem explicitly, let us indicate
the main point. In the far past, the particle source has a
constant mass m0, and generates a field 	 scaling like
e�M0r=rd�3 as a function of the distance r from the source.
As the time dependence in the masses turn on, the 	 field
-7
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set in place by the source particle finds itself on the side of
a rapidly growing potential hill, and oscillates rapidly
about its minimum at zero. To get an idea for its behavior,
consider for simplicity a long wavelength mode of	which
is away from its minimum at 	 � 0 when the mass begins
to rapidly increase. It solves the equation of motion

�	 � �m2
		 (3.17)

At large x0 this has solutions

	�
1���������������

2M�x0�
p e�i

R
x0
M�t0�dt0 (3.18)

yielding an energy (3.16) scaling like M�x0� at large x0.
In our case of fields sourced by a particle in the massive

phase, this effect will yield a contribution to the energy
which grows rapidly in time and also increases with in-
creasing distance of the particle in the tachyon phase.
Forces resulting from this work to evacuate the tachyon
phase of excitations sourcing fields.

Now let us analyze this more quantitatively. We can
solve (3.14) in terms of the retarded two point Greens
function GR�x; y�. Let us work inside the tachyon phase,
where the masses depend only on x0. Then

	�x� � i

Z
ddyGR� ~x� ~y; x0; y0�j�y�

� i

Z
dy0

�����������������������������
m2

0 ��
2e2�y0

q
GR� ~x; x0; y0� (3.19)

We can write the Greens function GR in terms of a com-
plete basis of mode solutions  �!k

satisfying

�@2
0 �M

2�x0�� �!k
�x0� � �!2

k 
�
!k
�x0� (3.20)

and

 �!k
�x0�0 �!k

�x0� �  �!k
�x0�0 �!k

�x0� � �i (3.21)

where !k �
������������������
k2 �M2

0

q
and these modes reduce to the

standard Fourier modes in the pretachyonic era:

 �!k
�x0� !

x0!�1

1���������
2!k
p e�i!kx0

(3.22)

The retarded Greens function is

GR�x; y� � ��x0 � y0�
Z dd�1 ~k

�2��d�1
ei ~k�� ~x� ~y�� �!k

�x0� �!k
�y0�

�  �!k
�x0� �!k

�y0�� (3.23)

The factor
�����������������������������
m2

0 ��
2e2�y0

q
appearing in (3.19) can be

separated into two parts;
�����������������������������
m2

0 ��
2e2�y0

q
� �e�y

0
�

�
�����������������������������
m2

0 ��
2e2�y0

q
��e�y

0
�. The first term here has no con-

tribution in the far past, while the second term has its main
contribution from the y0 < 0 regime where the source
particle of mass m0 sits generating its background 	 field.
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Let us consider the second piece, since we are interested in
the energy carried by the field generated by the source
particle as the field enters the phase of rapidly growing
mass. This gives an approximate expression for the 	 field

	�x� � i

Z dd�1 ~k

�2��d�1
ei ~k� ~x

��Z 0

�1
dy0m0 

�
!k
�y0�

�
 �!k
�x0�

�

�Z 0

�1
dy0m0 

�
!k
�y0�

�
 �!k
�x0�

�
(3.24)

In the pretachyonic phase y0 < 0, the mode solutions be-
have approximately as Fourier modes (3.22). Plugging this
in and doing the y0 integral reduces our estimate for the
field to

	�x� � 
m0

Z dd�1 ~k

�2��d�1

ei ~k� ~x

!3=2
k

���
2
p � �!k

�x0� �  �!k
�x0��

(3.25)

Now at large x0, the wavefunctions  �!k
scale as in WKB

like

 �!k
�x0� !

x0!1

1���������������
2M�x0�

p e�i
R
x0
M�t0�dt0 (3.26)

Hence the energy in the field (3.16) scales like

E�m2
0


2M�x0�cos2

�Z x0

M�t0�dt0
�Z

dd�1 ~xf�j ~xj�

�

�Z dd�1 ~k

�2��d�1

ei ~k� ~x

!3=2
k

�
2

(3.27)

where in the last step we included the fact that the tachyon
phase is quasilocalized, extending over a finite range pa-
rameterized by a function f�j ~xj� of finite support (3.2).

As anticipated, this energy grows rapidly with x0 and
increases with increasing extent of the source particle
within the tachyon phase. This spatial dependence is par-
ticularly strong for low dimensional examples. Again, this
effect provides forces outward for combinations of parti-
cles which source fields. In the context of string theory, a
similar effect will occur for each string mode sourced by
particles putatively surviving in the tachyon phase. This
may provide a powerful effect pointing toward a full
evacuation of this region, though we have not analyzed
the full evolution of general particle-field configurations
here.

More specifically, an energetically costly configuration
of sources and fields can lower its energy by several
processes. First, there is an outward force on the configu-
ration of particle and field due to the field energy. The field
can redistribute itself to minimize its support in the tachyon
phase. It is tempting to make an analogy to flux tubes and
expulsion of fields from confining dynamics, but so far our
discussion has been purely perturbative. Secondly, quan-
tum mechanically the configuration can also lower its
-8
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energy by producing pairs of virtual particles which source
	 with opposite signs. One member of the pair stays inside
the tachyon phase r < ~L, pairing with the original particle
to form a configuration that does not source 	, and the
other member of the pair exits the region. More generally,
sets of multiple particles which altogether source no fields
might survive in the central region. In the case of a field
like 	 which couples to energy, this requires, as just dis-
cussed, constituent particles which are virtual (carry nega-
tive frequency). In the next subsection we will see that
indeed perturbative virtual particles do not decouple at late
times in the tachyon phase.

Before turning to that, let us make some remarks on the
relation between the field energetics and the AdS/CFT
description of the system. As discussed in sec. II D, the
AdS/CFT correspondence, when applicable, implies that
energy and global symmetry charges are conserved. These
are measured at the boundary by the behavior of the
graviton and bulk gauge fields. The massing up of the
gravitational and gauge fields in the tachyon phase can
lead to screening of these charges. So from the AdS/CFT
point of view, the energy (and conserved global charges)
must end up in the bulk rather than remaining trapped in
the tachyon phase. This has an important consequence: If
the CFT has a nondegenerate ground state, then there can
be no zero energy excitations in the tachyon phase. It must
approach a unique state.

In the example discussed in Sec. II A, the dual field
theory description of the quasilocal tachyon condensation
is a time-dependent transition to a confining dual gauge
theory. Although confinement is not explicitly understood
in Yang-Mills theory, in such a transition one qualitatively
expects the following dynamics. In the confined theory, the
gauge-invariant composite glueballs arise at an energy and
size scale commensurate with the strong coupling scale of
the field theory. In our time-dependent transition, the ex-
citations in the tachyon phase correspond to field theoretic
modes at an energy scale below the mass gap. From the
dual field theory point of view we expect forces from flux
tubes to dynamically force them to shrink toward the size
scale of the glueballs in the confining theory. The forces we
analyzed in this section, which act to force excitations into
the bulk gravitational solution dual to the confining ge-
ometry, may provide a gravity-side manifestation of this
phenomenon. This effect is similar in some ways to the
description of black hole evaporation via hadronization in
[18].

C. A BRST anomaly and other subtleties with the S
matrix

So far we have studied the classical dynamics of parti-
cles and fields in a localized phase of rapidly growing
mass. Next we turn to an interesting subtlety with the S
matrix in such a system, which translates into a perturba-
tive BRST consistency condition on states in the tachyon
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region in the string-theoretic case of interest. We will start
by explaining the main points and then delve into more of
the details.

In the quantum interacting theory, time evolution pro-
duces sets of virtual particles which are not individually on
shell. In ordinary Minkowski space field theory, a pertur-
bative S matrix can be obtained by extracting on shell
perturbative particle poles from Fourier transforms of
Greens functions

R
ddxeip�xG�x; yn� in the regime of inte-

gration where x0 ! �1. If one considers field theory in a
system which lasts for a finite time, the x0 integration only
goes over a finite range, and this quantity has no poles. In
our case of interest with a phase of rapidly growing mass as
x0 ! 1, we will see that the new asymptotic region at
x0 ! 1, r < ~L also does not afford perturbative asymp-
totic particle poles in the S matrix.

A correlated phenomenon is the following. In a world-
line description, by varying the action one can easily show
that the saddle point configuration of the path integral for a
particle sitting in the tachyon phase has the property that
x0��� reaches infinity at a finite worldline time � � ��. In
the string-theoretic generalization, the string worldsheet in
conformal gauge similarly reaches x0 � 1 in finite world-
sheet time � � ��, which means that the worldsheet has a
hole in it.

Worldsheets with holes are not generically BRST invari-
ant; in special circumstances D-brane boundary states
render the holes consistent but such D-branes do not ge-
nerically cancel the anomaly (as the case of the heterotic
string makes particularly clear) [19].

One manifestation of this problem is that the worldsheet
Hamiltonian fails to be Hermitian. (We will see explicitly
below that that the worldline Hamiltonian in our field
theory example is not Hermitian for general states [10].)
The Hermiticity of the worldsheet Hamiltonian can be
restored in the following way (see Fig. 2). On the world-
sheet, unitary evolution persists past time �� if we map
each hole (A) to another hole (A0) by a unitary operator on
the worldsheet, and continue evolving in the direction
indicated in the figure. In real time, this describes pertur-
bative string (a) evolving toward the boundary correlated
with another perturbative string (a0) (of negative fre-
quency). These two states have equal and opposite fre-
quencies, and generically each is individually off shell, but
unitary worldsheet evolution is ensured by the correlation
between the holes (A) and (A0). Note that this correlation
need not be local in space.

This is reminiscent of the black hole final state proposal
[11] for solving the information puzzle. In that approach,
matter and inner Hawking particles impinge on the singu-
larity in a correlated way. Although it was thought that the
final state would be unique, this state was not specified
precisely. The proposal involves an N � N unitary matrix
describing a convolution of the correlations and the bulk
interactions, and any sufficiently random matrix will do.
-9
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FIG. 2 (color online). In a tachyon condensate phase, the
worldsheet of a string sitting in the tachyonic region reaches
x0 � 1 in finite worldsheet time � � ��. This generically leads
to anomalies unless the resulting hole A in the worldsheet is
unitarily mapped to a hole A0, continuing worldsheet evolution in
the directions indicated by the arrows. In more general circum-
stances the hole A0 may be replaced by multiple holes.

GARY T. HOROWITZ AND EVA SILVERSTEIN PHYSICAL REVIEW D 73, 064016 (2006)
Similarly here, imposing cancellation of the BRST anom-
aly does not uniquely specify the correlations, but just
requires some set of correlations described by a unitary
map. The simple linear relation indicated above is too
simple to model the correlations required in a real black
hole, but the same idea may be used to correlate a single
worldsheet hole to multiple worldsheet holes.

We now explain in more detail the problems with
Hermiticity and BRST invariance. Consider first the world-
line description, a framework which also generalizes to the
string theory case. The worldline Hamiltonian constraint

Ĥ wl� � �@�@� �m2�x0; ~x��� � 0 (3.28)

constrains particles to lie on the mass shell.
In the case where m grows faster than linearly in x0, this

Hamiltonian has the following property [10]. In the inner
product

h 1j 2i �
Z
dx0dd�1 ~x �1�x

0; ~x� 2�x0; ~x� (3.29)

Ĥwl is not self-adjoint on the full set of eigenfunctions of
Ĥwl.

3 This inner product (3.29) arises both in the first
quantized BRST description of the relativistic particle,
and in the LSZ prescription for the S matrix.

The failure of Hermiticity arises because of a boundary
term
3This is mathematically similar to ordinary quantum mechan-
ics with a potential falling off faster than �x2, where the
Hamiltonian is again not self-adjoint without extra input [20].
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h 1j
@2

@�x0�2
j 2i � h:c: �

Z
dd�1 ~x� �

1x0 2

�  2x0 �1�jx0�1: (3.30)

which can be seen as follows. The eigenfunctions  ~p;�;�

which satisfy

Ĥ wl ~p;�;� � � ~p;�;� (3.31)

have a WKB form valid at large x0

 p;!0;�jx0!1 �
1���

2
p
���m2�x0��1=4

ei ~p� ~xe�i
R
x0
dt

��������������
��m�t�2
p

(3.32)

Now the combination

h ~p1;�1;�Ĥwlj ~p2;�2;�i � hĤwl ~p1;�1;�j ~p2;�2;�i (3.33)

would vanish if Ĥwl were self-adjoint. It reduces to a
boundary term of the form (3.30), evaluated at the bounda-
ries x0 ! �1. For on shell mode solutions, this boundary
contribution vanishes; on these solutions the Klein-Gordon
inner product is conserved and the contributions from the
future and past boundaries cancel.

The total boundary contribution does not cancel in gen-
eral for modes of different eigenvalue �, as explained in
this context in [10]. To see this we need some regulariza-
tion: the boundary contribution at x0 !�1 is not well
defined for general modes as the wavefunctions oscillate.
Regulating via a rescaling of t by 1� i for a small real ,
or smearing with a highly peaked distribution in � as in
[10], kills the contribution from the ordinary Fourier
modes in the far past but does not kill the boundary con-
tribution in the far future. In the far future, the boundary
contribution (3.30) yields a value of �1 for  j �  ~p;�j;�

respectively. Hence if we consider all the independent
eigenfunctions, the boundary term fails to cancel for this
full collection of modes.

A related point is that in the inner product (3.29), the full
space of solutions  ~p;�;� do not satisfy a completeness
relation:Z

dx0 �~p;�1;�
�x0� ~p;�2;��x

0� � f��1;�2����1 � �2�;

(3.34)

(for any smooth function f);, in particular, this quantity
does not vanish for different eigenvalues �. The problem
can be seen from the WKB form of the wavefunctions
(3.32): for large x0 these modes all approach the same
asymptotic form, leading to a failure of orthogonality in
the inner product (3.29) of modes of different eigenvalues
�. As we will see below, this behavior translates into an
absence of poles in Greens functions as the eigenvalue goes
on shell �! 0.

In the presence of interactions, this causes problems
with worldline BRST invariance. The boundary term
-10
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(3.30) violates the worldline BRST symmetry correspond-
ing to worldline time reparameterization. This BRST sym-
metry is generated by a BRST operator

QB � cĤwl (3.35)

where c is a Faddeev-Poppov ghost. In the first quantized
path integral, the derivation of decoupling of BRST trivial
modes depends on the Hermiticity of Ĥwl in the inner
product (3.29).

The boundary term (3.30) is cancelled in states in which
particles impinge on the boundary r < ~L, x0 ! 1 in cor-
related combinations with equal contributions from posi-
tive and negative frequency. Note that the condition of
cancellation of the boundary term (3.30) is a nonlocal
condition; it does not require the correlated particles at
the boundary to annihilate locally in space. This is consis-
tent with the underlying locality in the field theory, in the
same way that EPR correlations are. As discussed above,
this aspect is crucial for the application to black hole
physics.

Let us discuss this issue from another point of view. In
the LSZ prescription for the S matrix in Minkowski space,
asymptotic particle states are associated with poles in the
Fourier transform of off shell Greens functions with re-
spect to momentum, for example

Z
d4xeip�xhT���x���y��ij

p0!�
�����������
~p2�m2

0

p

!

����
Z
p

�p0�2 � ~p2 �m2
0 � i

(3.36)

in an ordinary quantum field theory (without a rapidly
growing mass as we have here, but instead a constant
mass m0). The poles arise from asymptotic regions x0 !
�1.

The analogue of this in a more general background is the
convolution of the off shell Greens functions with an
eigenfunction of Ĥ � � @2

@�x0�2
� @2

@~x2 �M2�x0� (working

within the region r < ~L): denote such an eigenfunction
F��x

0�ei ~p� ~x where ĤF � �F. On shell modes have � �
0. The new feature of our present case is that no such pole
appears from the x0 ! 1 regime:

Z
d4xF��x�hT���x���y��ij�!0 � finite (3.37)

since in the x0 integration, the region x0 ! 1 is exponen-
tially suppressed. In this way, the system behaves similarly
to a quantum field theory living on a locally truncated
Minkowski space, i.e. a space with time stopped inside
the central region. In the latter problem as well, the world-
line Hamiltonian is also not Hermitian and no perturbative
asymptotic particle states are associated with the central
region. Instead, combinations of virtual particles impinge
upon the r < ~L, x0 ! 1 boundary in generic states.
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Although this technical analysis applies most directly to
the worldline quantum field theory case, similar effects can
be expected in the string theory case. One manifestation of
the problem is the holes appearing in the worldsheet in the
saddle point solutions discussed above. Another is that
unitarity relates imaginary parts in loop diagrams arising
in the regime x0 ! 1 to perturbative asymptotic particle
states. The shutoff of loop amplitudes in the Euclidean
vacuum in the x0 ! 1 tachyon phase suggests that no
imaginary parts will come from this regime. Then as in
field theory, perturbative asymptotic string states do not
arise in the usual way at x0 ! 1 in the tachyon phase. As
discussed above, cancelling the BRST anomaly leads to
intriguing correlations at the would-be singularity reminis-
cent of [11].

D. Perturbativity?

So far we analyzed two perturbative effects following
from the condensation of the perturbative string winding
tachyon. The forces coming from the field energy analyzed
in sec. III B appear perturbatively, and work toward evac-
uating any combinations of particles sourcing any compo-
nents of the string field. Worldsheet BRST invariance is
required for perturbative consistency, and is intimately
connected with spacetime gauge symmetry.

In the Euclidean vacuum studied in [4,7], the first quan-
tized string amplitudes are self-consistently perturbative
and calculate the components of the state in a basis of
weakly coupled multistring states in the bulk. In more
general states, it is not a priori clear if the physics remains
perturbative as combinations of (real and virtual) strings
approach the singularity. In open string tachyon problems,
for example, there are indications of strong coupling phys-
ics (confinement) occurring [21], and it is tempting to
speculate as many have done that an analogue happens in
closed string tachyon condensation. This would provide its
own rationale for evacuating the tachyon phase of generic
excitations. However, loop vacuum diagrams in the
Euclidean vacuum provide concrete evidence for tachyon
condensation effectively massing up closed string modes
[4], which applies, in particular, to fluctuations of the
dilaton. If deformations of the dilaton are indeed massed
up, this might provide a mechanism for the system to
remain perturbative by freezing the dilaton at its bulk
weakly coupled value. Another possible indication of per-
turbativity is that D-brane probes (whose energy scales
inversely with the string coupling in ordinary spacetime
string theory) are repelled from winding tachyon phases as
seen in [22]4 (though in [24] a two-dimensional back-
ground was studied in which nonperturbative objects
were conjectured to penetrate a lightlike tachyon wall).
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In any case, the basic tachyon degree of freedom driving
the system away from the GR singularity is a perturbative
string mode, and as we have seen here a number of im-
portant features of the problem are accessible
perturbatively.5
IV. DISCUSSION

Most work on black holes in string theory, including the
present work, focus on theoretical objects which are proba-
bly not realistic. It is important to understand which tech-
niques apply in the perhaps more physically relevant case
of Schwarzschild black holes. In this section we assess the
prospects for applying our methods in these cases, and
discuss other open problems stimulated by this work.

A. Schwarzschild black holes

The case of Schwarzschild black holes is of great inter-
est. Inside the horizon, cylinders with spherical cross sec-
tions shrink. Topologically stable winding tachyons thus
do not appear. However, as discussed in [4,26], the dynam-
ics generating the mass gap in the two-dimensional sigma
model on a sphere can behave like a superposition of
winding string modes on great circles of the sphere. A
more serious challenge in the Schwarzschild case is the
rapid velocity with which the spheres shrink.

Inside a large Schwarzschild black hole in d dimensions,

ds2 � �

�
1�

�
r0

r

�
d�3

�
dt2 �

�
1�

�
r0

r

�
d�3

�
�1
dr2

� r2d�d�2 (4.1)

there is a (d� 2)-sphere which starts shrinking rapidly
before the spatial curvature of the sphere becomes large.
The change in sphere size r with respect to proper time is

_r � �

���������������������������
r0

r

�
d�3
� 1

s
! �

�
r0

r

�
�d�3�=2

for r� r0

(4.2)

which can become very rapid for r0 � r� ls, i.e. while
the sphere is still large.

Starting from the radius rc at which the d-dimensional
curvature is of order 1=l2s ,

_r2

r2
jrc �

1

l2s
) rc � �rd�3

0 l2s�1=d�1 (4.3)

the time to the crunch is of order string scale. Note that for
a large black hole r0 � ls, the spatial curvature of the
sphere is still small (the sphere is still huge). More gen-
erally, the timescale to the crunch, starting from a given
radius r, is
5Other approaches such as [25] may help determine the degree
to which nonperturbative corrections play a role at the
singularity.
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�Tcrunch �
2

d� 1
r
�
r
r0

�
d�3=2

�
2

d� 1

�
r
rc

�
d�1=2

ls (4.4)

This rapid velocity causes particle and string production:,
in particular, a simple estimate suggests that a Hagedorn
density of strings is produced by the time the sphere has
shrunk to r � rc. The back reaction of this gas of strings
may ultimately behave like a winding tachyon condensate,
as suggested also in [27], but this has yet to be controlled.
More generally, the rapid shrinking of the sphere can lead
to nonadiabaticity for a large class of extended objects,
whose spectrum depends on the internal degrees of free-
dom of the compactification.

This situation is improved considerably in simple mod-
els of black hole evaporation. The fact that the null energy
condition is violated near the horizon (which is required in
order for the area to decrease) causes the spheres to shrink
much more slowly near the horizon. To see this, consider
the Vaidya metric in four dimensions:

ds2 � �

�
1�

2GM�v�
r

�
dv2 � 2dvdr� r2d� (4.5)

This is a solution to Einstein’s equation with a null fluid
source and has frequently been used to model an evaporat-
ing black hole. The unit timelike normal to a constant r
surface inside the horizon is

n �
�
2GM�v�

r
� 1

�
�1=2 @

@v
�

�
2GM�v�

r
� 1

�
1=2 @
@r
(4.6)

So the rate of change of the spheres is

_r � �
�
2GM�v�

r
� 1

�
1=2

(4.7)

The velocity will be less than one on a surface of constant
r, provided r < 2GM�v�< 2r. At infinity, a black hole
loses mass at the rate

dM
dt
��AT4 ���GM��2 (4.8)

So G2M3 � t0 � t. Since v � t� constant along a surface
at large r, we set

M�v� � M0

�
1�

v
v0

�
1=3

(4.9)

It now follows that the proper length of the region over
which the velocity is less than one is r3=G � r�r=lp�

2. So
even when r is the string scale, the distance from the
horizon over which the velocity stays small can be much
greater than the string scale.

Since the velocity stays small near the horizon, the
arguments of [1,4] now suggest that when the horizon
reaches the string scale, it will pinch off, removing the
region of large curvature and the singularity. This provides
further support for the correspondence principle of [28]. It
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processes and in gamma ray bursts; the relation between black
holes and confinement makes it tempting to seek a connection,
although the astrophysical jets are probably accounted for by
effects of angular momentum.

THE INSIDE STORY: QUASILOCAL TACHYONS AND . . . PHYSICAL REVIEW D 73, 064016 (2006)
was argued there that Schwarzschild black holes radiate
until the curvature at the horizon reaches the string scale.
At this point, the black hole makes a transition to an
excited fundamental string. Since the excited string lives
in a space which is essentially flat, the sigma model argu-
ment provides a dynamical mechanism for the transition
from the black hole to the excited string. In order to under-
stand the information flow however, we would need to also
control the region deeper inside the black hole where the
velocity is still large in order to account for excitations that
could putatively be trapped there.

B. Other future directions

1. Cosmological case

In this work we have focused on situations with local-
ized tachyon condensation, or localized regions of expo-
nentially growing mass in the field theory model of particle
and field dynamics in the tachyon phase. In the case of
spatially delocalized tachyon condensation [4,6] the ques-
tion of allowed states is also of interest. Although time
effectively stops in the case of decay to nothing [4], this
alone does not preclude unitarity; ordinary quantum me-
chanics formulated on a finite time interval is unitary. It is
of interest to understand whether multiple states are al-
lowed at a cosmological singularity. The forces we dis-
cussed which help to evacuate the tachyon phase in the
quasilocal case do not serve this role in a situation with
spatially delocalized tachyon condensation. The perturba-
tive BRST anomaly, when applicable, does restrict the
allowed states somewhat. Neither of these effects is as
powerful in the cosmological case as in the quasilocal
case discussed here.

2. Worldsheet analysis

In our analysis we reverted to a field theory model of
some of the dynamics in the tachyon phase (generalizing
that of [12], which has withstood several tests of its appli-
cability in the full perturbative string theory [4,7]). It
would be advantageous to test this quasilocalized version
of the field theory model further using full worldsheet
064016
string calculations. The prescription suggested in Fig. 2
may require techniques such as those suggested in
[19,29,30] which could provide a formalism for describing
the consistent states.

One issue for which a full worldsheet analysis is neces-
sary is the backreaction of the large energy density pro-
duced when the tachyon condenses. A naive supergravity
analysis would indicate that this energy density immedi-
ately produces large curvature. However, since the graviton
is also becoming effectively massive, supergravity is not a
good approximation.

3. Models and constraints

We end with a speculative comment on the possibility of
connection to real-world astrophysics. The phenomena
discussed in [2] show that the endpoint of Hawking evapo-
ration can result in new types of black hole explosions. It is
of interest to translate our growing understanding of string-
corrected gravity and singularities to a theory of black hole
explosions more generally. The production of primordial
black holes small enough to evaporate in our causal past is
at best a model dependent proposition, so new effects in
black hole evaporation will probably simply serve to
mildly constrain model building. Still, it is interesting to
contemplate the possibility of ‘‘fundamental’’ origins for
astrophysically accessible bursts and jets of energy.6
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