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We study the possibility of having a static, asymptotically AdS black hole localized on a braneworld
with matter fields, within the framework of the Randall and Sundrum scenario. We attempt to look for
such a brane black hole configuration by slicing a given bulk spacetime and taking Z2 symmetry about the
slices. We find that such configurations are possible, and as an explicit example, we provide a family of
asymptotically AdS brane black hole solutions for which both the bulk and brane metrics are regular on
and outside the black hole horizon and brane matter fields are realistic in the sense that the dominant
energy condition is satisfied. We also find that our braneworld models exhibit signature change inside the
black hole horizon.
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I. INTRODUCTION

In [1], using the ‘‘squashing’’ effect a negative bulk
cosmological constant has on a four-dimensional hyper-
surface, a brane, Randall and Sundrum (RS) uncovered a
mechanism of dynamical localization of gravity. All di-
mensions, including the one(s) we do not see, could now be
infinitely large and one would still recover, on the brane,
the General Relativistic and Newtonian limits of gravity at
low energies [2,3]. It has also been shown that standard
model matter fields can be constrained on a brane [4] and
observations do not rule out braneworlds as cosmological
models (see [5] for a review). From the astrophysical point
of view, both numerical and analytical models of stars have
been found [6,7].

On the other hand, black holes are not well understood in
the RS braneworld scenario. The first attempt to find a
static black hole solution on the brane was developed in [8]
where the 4D Schwarzschild black hole metric on the brane
was embedded in a 5D bulk containing an extended singu-
larity: a black string. Were our Universe to be a brane in a
higher-dimensional bulk, such a state of affair is not sat-
isfactory: one might indeed expect astrophysical black
holes formed by collapsing matter on the brane to be
localized on (or at least very close to) the brane (see
however [9].) Study of a simple gravitational collapse
model [10] on a RS braneworld indicates the difficulty of
finding a static vacuum black hole solution localized on a
RS braneworld. The difficulties in understanding black
hole solutions arise from the fact that in general, brane
dynamics generate bulk Weyl curvatures, which then back-
react on the brane dynamics. One is then left with the very
hard task of solving equations of motion for the coupled
system of bulk and braneworld with given suitable initial
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data. Such a program has not been answered yet, and even
numerical approaches are still rather approximative [11].
To simplify the problem, the authors of [12] looked for
analytic solutions to the projected Einstein equations on
the brane only and found an exact (Reissner-Nordstrom
looking) black hole solution. Other similar solutions were
subsequently found [13]. These bulks’ geometries are not
known.

Under such circumstances, it is interesting to ask
whether a brane on which a 4D black hole is localized
can be found by looking for a slice that intersects a bulk
black hole. However, generalizing the work of [8], Kodama
showed in [14] that brane solutions with a black hole
geometry cannot be found as a slicing of a bulk with
G�D� 2; k� symmetry, if the brane is vacuum and not
totally geodesic [15]. In other words if, for simplicity,
one wants to keep studying slices of bulks with G�D�
2; k� symmetry to find localized black holes in the RS
braneworld scenario—in which the brane is not totally
geodesic—one has to look for a nonvacuum brane.

Recently, an attempt to find a localized static but non-
vacuum brane black hole solution as a slice of a G�D�
2; k� bulk was made by Seahra [16]. There, the bulk chosen
was the Schwarzschild and Schwarzschild-AdS black hole
with spherical three-dimensional geometry, i.e., G�3; k �
1�, and branes were taken as a planar, asymptotically flat
slice of these bulks. Unfortunately these slicings turned out
to produce naked singularities with respect to the induced
geometry, except when corresponding to the equatorial
plane of a bulk black hole, a special case of a totally
geodesic brane.

The aim of this paper is to find a regular RS braneworld
on which a static, spherically symmetric black hole sur-
rounded by realistic matter is localized, by slicing a fixed
5D black hole bulk spacetime. The choice of slicing we
will use is motivated by the AdS/CFT-inspired ‘‘classical
braneworld black hole’’ vs ‘‘quantum black hole’’ duality
of [17] which states: ‘‘The black hole solutions localized
-1 © 2006 The American Physical Society
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on the brane in the AdSd�1 braneworld which are found by
solving the classical bulk equations in AdSd�1 with the
brane boundary conditions, correspond to quantum-
corrected black holes in d-dimensions, rather than classical
ones’’ (see also [18]). Since due to Hawking radiation,
black holes in asymptotically flat spacetimes are semiclas-
sically unstable, such a duality would explain the impos-
sibility [10] of finding a static exterior to the Oppenheimer-
Snyder collapse of a star in asymptotically flat RS brane-
worlds (see also [19]). However, asymptotically AdS
spacetimes allow (big enough) black holes to be in semi-
classical equilibrium [20] with their Hawking radiation.
That is the main motivation for turning our attention to the
specific slices we study, which are nonvacuum and asymp-
totically AdS (in a weak sense, see IV). Encouraging
results were already obtained in [21]. In this paper we
will indeed show with explicit examples that it is possible
to construct a localized braneworld black hole surrounded
by matter that satisfies the dominant energy condition,
when the braneworld is asymptotically AdS (the case of
an asymptotically AdS brane black hole as a slice of a bulk
black string was studied in [22]).

The plan of the paper is as follows. In the next section,
we show that regular slices that cross a bulk black hole
horizon can be constructed and we point out why the planar
slices of [16] exhibit a curvature singularity there. In
Sec. III, we fix our notations and define a bulk slice which
is an asymptotically AdS braneworld. We then consider a
simple one-parameter family of slices which correspond to
asymptotically vacuum and asymptotically AdS brane-
worlds with black hole horizon, filled with matter satisfy-
ing the dominant energy condition. Under our slicing
ansatz, we find such braneworlds are possible only for
the bulk with three-dimensional spatial geometries corre-
sponding to k � 0 and k � �1. For the bulk spacetimes
with spherical three-dimensional geometry (k � 1), our
slicing defines braneworld with matter violating the domi-
nant energy condition. We also find that some of our
braneworlds exhibit an intriguing property: signature
change inside brane black holes. In the conclusion, we
summarize and discuss our results.
II. SLICES IN G�3; k� BULK

A. Bulk spacetime, slicing, and singularity condition

Bearing the Schwarzschild-AdS bulk metric in mind, we
consider the following type of five-dimensional static met-
rics with G�3; k� spatial symmetry

�5�ds2 � �A�r�dt2 �
dr2

A�r�
�
r2

l2
d�2
�3�; (1)

where d�2
�3� � �ijdx

idxj is the line element of a three-
dimensional space of constant curvature k � 0, 1, or �1,
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d�2
�3� � dw2 � l2

sin2�
���
k
p
w=l����

k
p

2
d�2

�2�; (2)

with d�2
�2� being the metric of unit two sphere. For now, we

do not impose the Einstein equations so that the function
A�r� is arbitrary.

In [14], Kodama has shown that such bulk metrics
cannot embed a vacuum, nontotally geodesic brane which
describes a static black hole. We would like, in the follow-
ing, to relax the vacuum condition, and see whether a
regular black hole can then be constructed on the brane.
As we progress, we will restrict the bulk metric (1) to
obtain an asymptotically AdS braneworld with a horizon
and positive energy-density matter as a slice of such a bulk.
It is useful to introduce a new radial coordinate

� � r
sin�

���
k
p
w=l����
k
p : (3)

Then,

dw
l
�
�
r

d log��=r��������������������������
1� k��=r�2

p ; (4)

and the five-dimensional metric becomes

�5�ds2 � �A�r�dt2 �
�

1

A�r�
�

�2=r2

1� k �
2

r2

�
dr2

� 2
�=r

1� k �
2

r2

drd��
d�2

1� k �
2

r2

� �2d�2
�2�: (5)

Looking for asymptotically AdS branes, we consider slices
r � r��� of the bulk (5). The induced 4D metric on such a
slice becomes

�4�ds2 � �A���dt2 �
�
r02

A���
� B���

�
d�2 � �2d�2

�2�;

(6)

with

B��� �
�1� �

r r
0�2

1� k�2

r2

; (7)

where here and hereafter r0 � dr=d�.
We are interested in slices that cross a bulk event hori-

zon, so we assume the existence of at least a zero of the
function A�r�. Let r0 be such that A�r0� � 0. We will
construct our brane so that there is a �0�>0�which satisfies
r��0� � r0. For simplicity we restrict our bulk (1) to those
for which A�r� is at least C2 except at r � 0, and
dA=drjr0

� 0 (simple zero at r � r0, that is, the horizon
is nondegenerate). Hence, in particular, our bulk space-
times can be singular only at r � 0. It is clear that � � �0

is also a Killing horizon with respect to the brane metric
(6).
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The curvature scalars of the metric (6) are all of the
form:

R�� �
P1

2�2

�
1� k �

2

r2

�
2
�r02 � A���B����2

;

R��R�� �
P2

8�4

�
1� k �

2

r2

�
4
�r02 � A���B����4

;

R����R���� �
P3

8�4

�
1� k �

2

r2

�
4
�r02 � A���B����4

;

(8)

where the numerators Ps are polynomial of A, r, � and
their first and second order derivatives. Therefore, possible
curvature singularities with respect to the brane metric can
happen whenever one of the Ps blows up—which happens
only when A diverges at r � 0—or when the denominator
of (8) becomes zero, that is for instance when

a =
�
1� k

�2

r2

�
�r02 � A���B����2 � 0; (9)

b = � � 0; (10)

c = r��� � 0; if lim
r!0
jA�r�j � 1: (11)

In the slices we will consider below, all the curvature
singularities are of one of the above types (they are not
mutually exclusive). The case c/ corresponds to 5D bulk
singularities. The case b/ would occur even when our bulk
spacetime is nonsingular, due to a nontrivial embedding.
The case a/ also may occur as an embedding singularity,
but we need to consider this case with much more care.
While singularities of types c/ and b/ are shown to be
hidden inside the horizon on the brane � � �0, singular-
ities of type a/ can occur on the brane’s horizon � � �0,
hence can be a naked singularity for braneworld observers.
In fact, from the induced metric (6), one can show that near
the horizon (� � �0) the Ricci scalar on the brane is

R�� ’
dA
dr �r0�B��0�

2r0��0�
3 : (12)

Therefore, in particular, for B such that B��0� � 0, there is
an embedding curvature singularity where the brane
crosses the bulk event horizon if the slice is so that
r0��0� � 0. We will see below that the naked singularities
on the planar slices in [16] are of this type.

It is intriguing to note that although the bulk metric (1)
itself is everywhere Lorentzian, the induced metric (6) can
be Euclidean inside the event horizon, � < �0, if B��� can
take a sufficiently positive large value so that the (�, �)
component of the brane metric, Eq. (6), can be positive,
there. If this is the case, such a brane displays a signature
change on a braneworld [23,24]. It is interesting to notice
064014
that in Sec. IV we find such a signature changing slicing
under our requirements that branes be asymptotically AdS,
regular (at least on and outside the event horizon), and that
matter content satisfy the dominant energy condition.

B. Comparison with earlier results from planar slicing

In [16], Seahra has shown that planar slicing of 5D
Schwarzschild and Schwarzschild-AdS bulks are singular
as soon as the slices cut the bulk horizon (r � r0). We will
now prove that the planar slices examined in [16] corre-
spond to slices for which r0 � 0 on the horizon, therefore
corresponding to singularities of type a/.

To find planar slices, introduce the following variable

R�r� � exp
�Z r

r1

du���������������
u2A�u�

p �
; (13)

where r1 is a fiducial initial distance, and define the cylin-
drical coordinates as

x � R sin�w=l�; y � R cos�w=l�: (14)

The bulk metric is then expressed as

�5�ds2 � �A�r�dt2 �
r2

x2 � y2 �dy
2 � dx2 � x2d�2

�2��;

(15)

where r is now a function of x2 � y2 through Eqs. (13) and
(14). We therefore find that planar slices correspond to y �
const, which we differentiate to obtain an r � r�w� ex-
pression for the slice. (We put aside the special cases where
w is constant, which can always be taken to correspond to
w=l � �=2.) Using Eq. (13), we have

0 �
d
dw
�R�r� cos�w=l��

� R�r�
�
dr=dw��������������
r2A�r�

p cos�w=l� � sin�w=l�
�
: (16)

For nondegenerate horizons (i.e., A has a single zero at r �
r0), this implies

dr
dw
� r

���������
A�r�

p
tan�w=l�; (17)

everywhere. In particular, dr=dwjr0
� 0. On the other

hand, using the coordinate � introduced in Eq. (3), we have

dr
dw
�

�������������������������
1� k��=r�2

p
1� ��=r��dr=d��

r
l
dr
d�

: (18)

If for planar slices, r � � at the horizon, then dr=dwjr0
�

0 implies dr=d�jr0
� 0. We showed above that such slices

possess an embedding singularity at the horizon, singular-
ity which was analyzed in [16]. If � � r, w=l � �=2 (k �
�1) (see Eq. (3)) so that dr=d� � 1 � 0, this corresponds
to a totally geodesic brane, equatorial slicing of a
Schwarzschild or Schwarzschild-AdS bulk black hole.
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III. UNDERSTANDING THE SLICE r��� AS A
BRANE WORLD

In order to establish our notations, we here recall some
basic equations used in the RS braneworld scenario, in
particular, the relation between the extrinsic curvature of
a slicing � and energy-momentum tensor for matter fields
confined on �. For simplicity, we assume that our 5D bulk
metric g�	 obeys the vacuum Einstein equations with a
negative cosmological constant �5. Assigning surface in-
trinsic energy-momentum tensor T�	 and a surface tension
to �, we now think of � as a gravitating brane, hence our
basic equation is

�5�G�	 � ��5g�	 � 
2
5

�
T�	 �

6


2
5

�q�	

�
����; (19)

where 
2
5 denotes 5D gravitational constant, and the con-

stant � is in proportion to the surface tension. Here q�	 is
the projection tensor (also referred to interchangeably as
the induced/brane metric) for � defined in terms of the unit
normal vector n� by q�	 � g�	 � n�n	, and the function
� is introduced to specify the location of � as � � 0 and
n�@�� � const on �.

We define the extrinsic curvature of � by

K�	 � s1
2Lnq�	; (20)

where s � 	1 is introduced for later convenience. Since �
is a codimension one surface, it divides our bulk spacetime
into two regions. The ‘‘orientation‘‘ s decides which side
of the bulk, we will consider as the ambient spacetime of
�. We further assume Z2 symmetry with respect to � and
take the normal n� so that when s � �1, n� is directed
toward inside the Z2 symmetric bulk. Then, integration of
Eq. (19) along � or the junction condition yields

T�	 �
2


2
5

��K�
	 � �K � 3����	 �: (21)

In order to understand the effective gravitational theory
induced on the brane it is useful to consider 4D projected
components of Eq. (19) [3,5],

�4�G�	 � ��4q�	 �T �	; (22)

where �4�G�	 is the four-dimensional Einstein tensor on the
brane and T �	 is the effective energy-momentum tensor
as seen by a brane observer,

T �	 � �
2
5T�	 � 


4
5S�	 � E�	; (23)

where E�	 is the projected 5D Weyl tensor, and

S �	 �
1
12TT�	 �

1
4T��T

�
	 �

1
24q�	�3T��T

�� � T2�;

(24)

�4 �
1
2��5 � 6�2�: (25)

We will denote real energy density and pressures coming
064014
from T�	 in Eq. (21) by

Ttt � ��; Tii � pi; (26)

and the effective energy density and pressures coming from
T �

	 in Eq. (23) by

T t
t � �~�; T i

i � ~pi: (27)
IV. LOCALIZED BRANE BLACK HOLES IN A
SCHWARZSCHILD-ADS BULK

In this section, as our G�3; k� symmetric bulk spacetime
we shall consider 5D Schwarzschild-AdS type metrics (1)
with

A�r� � k�
2Ml

r2 �
r2

l2
; (28)

which are solutions to 5D vacuum Einstein equations with
a negative constant �5 with l2 � 6=j�5j and M is related
to the mass of the bulk black hole. Note also that for
geometries k � 0 and k � �1, the spatial section of bulk
Killing horizons are not compact unless a suitable identi-
fication of points along spacelike directions is made.

We are looking for a regular asymptotically AdS brane
which possesses an event horizon surrounded by matter
satisfying some desirable energy conditions (the dominant
one). In this paper, we call our brane asymptotically AdS if
the asymptotic expansion in � of the first and second
fundamental forms of the brane match, to leading order,
the asymptotic expansion of a pure AdS brane. In terms of
the coordinate system we are employing, our slices are
asymptotically AdS of the above sense as soon as

qtt

�2

L2�O�1�; q��

L2

�2�O
�
L4

�4

�
; �!1; (29)

and �3=L2 � �4, where �4 is defined in Eq. (25). The
condition on the second fundamental form is then imme-
diately satisfied. This asymptotic AdS condition is slightly
different and weaker than the asymptotic AdS conditions
of [25], where the metric is required to have asymptotic
symmetry group SO�2; 3� in 4 dimensions.

A particularly interesting class of slicing that can be
asymptotically AdS in the above sense is given by

r � �� �; (30)

where � is a constant parameter. We assume that � >��0.
In the rest of the paper we focus on braneworlds given by
the above slicing condition (30). The effective cosmologi-
cal constant on such branes will be related to this
parameter.

A. Asymptotic energy conditions and singularities

Now that we know what the condition for our slices not
to be singular where it crosses the bulk horizon is r0��0� �

0, we would like to see what are the asymptotic conditions
-4
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for the slice in order for its matter content not to violate the
dominant energy condition near spatial infinity. The domi-
nant energy condition requires energy density to be posi-
tive and the absolute value of the radial and angular
pressures to be smaller than the energy density.

We first derive an expression for the asymptotic form of
the real energy density � and pressures pi for a braneworld
defined by (30). Defining the unit normal vector to our
slicing r � �� � as

n� � g�	N�@	r� r
0@	��;

where N �
1��������������������������������������������������������������������

A�1� r0�=r�2 � r02�1� k�2=r2�
p ;

(31)

and using the formulae (6), (20), (21), and (26), given in the
previous sections, we can calculate � and pi. Since the
explicit expressions of the extrinsic curvature K�

	 and the
stress-energy tensor T�	 themselves are rather compli-
cated and not so illuminating, we do not present them
here. The results give, asymptotically,

� � �
3�s�� �l

�������������������������������
�2 � l2�1� k�

p
�

l
�������������������������������
�2 � l2�1� k�

p
�

2s��2 � l2�1� k�2�

��2 � l2�1� k��3=2

l
�
�O

�
l2

�2

�
; (32)

p� �
3�s�� �l

�������������������������������
�2 � l2�1� k�

p
�

l
�������������������������������
�2 � l2�1� k�

p
�
s��2�2� k� � 2l2�1� k�2�

��2 � l2�1� k��3=2

l
�
�O

�
l2

�2

�
; (33)

p �
3�s�� �l

�������������������������������
�2 � l2�1� k�

p
�

l
�������������������������������
�2 � l2�1� k�

p
�
s��2�1� k� � l2�1� k��

��2 � l2�1� k��3=2

l
�
�O

�
l2

�2

�
: (34)

It is to be noted that the parameterM, which is proportional
to the mass of bulk black hole, plays no role until the next
order (see for instance Eq. (39) below).

In order to have an asymptotically empty brane, we fine-
tune, à la Randall-Sundrum, the vacuum energy related to
�

� � �0 � �
s�

l
�������������������������������
�2 � l2�1� k�

p : (35)

The constant term in the above expressions then vanishes.
We will keep such a fine-tuning throughout. It is straight-
forward to see that for the choice s � �1, the energy
density is asymptotically positive for k � 	1 and k � 0.
For the energy density to pressures ratios, we asymptoti-
cally find:
064014
�������� �
p�

���������
�������� 2��2 � l2�1� k�2�

�2�2� k� � 2l2�1� k�2

���������O
�
l
�

�
; (36)

�������� �
p

���������
��������0

2��2 � l2�1� k�2�

�2�1� k� � l2�1� k�2

���������O
�
l
�

�
: (37)

So,

�������� �
p�

��������!
>1 for k��1 and�� 0;
�1 for �k�0� or ���0 and k� 0�;

�2=3<1 for k�1:

(38)

For the dominant energy condition to be satisfied asymp-
totically, we thus have to rule out the k � 1 case. It is easy
to see that j�j=jpj> 1, except when � � 0 and k � 1,
which is a totally geodesic brane (K�� � 0). We will not
consider that case any further. The (k � 0) case requires a
next order analysis, and we find�������� �

p�

��������� 1�
2�3M

l2��2 � l2�

l3

�3 �O
�
l4

�4

�
; (39)

so that in the k � 0 case, the dominant energy condition
(DEC) is only satisfied asymptotically if � < 0 (corre-
sponding to a brane with positive vacuum energy).

Recapitulating (and completing) the asymptotic behav-
ior of the real matter, we find (‘‘Yes’’ means DEC satisfied
asymptotically and ‘‘No’’ means DEC violated)

k � �1 k � 0 k � 1
� > 0 Yes No No
� � 0 Yes Yes �

� < 0 Yes Yes No:

(40)

Note that the k � 1, � � 0 case corresponds to a w=l �
�=2, r � � slice. For such a slice, it is straightforward to
obtain the induced metric from (1), and it corresponds to a
totally geodesic brane.

Thus, from the above observations of braneworld stress
energy, physically interesting cases are those in which the
bulk has a spatial geometry of either k � 0 or k � �1, and
a slicing � is given by Eq. (30) with � � 0, and the bulk
orientation is s � �1. We note that for k � 0 and k � �1,
the bulk event horizon is no longer spatially compact. On
the other hand, our spherically symmetric slicing � inter-
sects the bulk event horizon at � � �0, and the region � >
�0 of � always is outside the bulk event horizon. Therefore
� divides the bulk black hole horizon into two parts: (i) a
spatially compact portion, fr � r0, 0 � � � �0g, which is
spherically symmetric, and (ii) its complement, fr � r0,
�0 < �<1g, which is infinitely extended in the bulk.
Then, depending upon the choice of s � 	1 (i.e., which
side of the bulk we discard before taking Z2 symmetry), the
resultant Z2 symmetric bulk will contain either a spatially
compact portion of the bulk event horizon, or an infinitely
extended portion of the bulk horizon. Our choice s � �1 is
-5
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indeed the former case. In fact, noting that the coordinate
components of the normal vector, Eq. (31), are

nr � �NA
��
r
; n� � �NA

�
���

r2 �
1

A

�
1� k

�2

r2

��
;

(41)

one can easily see that n� < nr outside the event horizon
and hence that n� is directed toward the region fr > ��
�g, as depicted in Fig. 1. With the choice s � �1, this
region corresponds to our Z2 symmetric bulk spacetime.
We would like to emphasize that this choice s � �1 is the
case we consider in order to satisfy the energy condition for
real matter. By this construction, the resultant Z2 symmet-
ric 5D spacetime contains a RS brane as a boundary and a
spatially compact portion of the 5D event horizon attached
to the brane. This black hole looks like a compact object
from both the bulk metric and the brane’s intrinsic metric
view points, hence one can interpret this geometry as a
black hole localized on the brane.

Our braneworld may change the signature of its induced
metric, despite the fact that the bulk spacetime is every-
where Lorentzian. In fact, by inspecting B��� of Eq. (7),
we find that for k � �1, 0 whenever � � 0, our brane-
worlds display such a signature change inside the event
horizon. When � � 0, no signature change happens for any
k. (Note that for k � �1, the signature change can occur
inside the horizon if � > 0, but if � < 0, it can occur even
outside the horizon, at large �.) Furthermore, we can see
that the brane’s intrinsic geometry becomes singular at
signature changing points. Such signature changes have
been studied e.g. in [24]. Indeed, we find from Eq. (6) that
r

ρ

r

brane

γ

n, s=+1

0

−

Euc
lid

ea
n

Embedding singularity, γ = 0

bulk singularity

FIG. 1. Schematic representation of the slice r � �� � in the
k � 0;�1 bulk. For s � �1, the upper side of the thick line
(brane) corresponds to our bulk under Z2 symmetry. Our brane
cut off a compact portion from the bulk event horizon (dashed
horizontal line). Note that the two-dimensional subspace
spanned by (r, �) is Riemannian above the line r � r0 but is
Lorentzian below the line.
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in general the braneworld signature change can occur when
qttq�� � �fr

02 � A���B���g changes its sign, where q�	
is the induced metric, Eq. (6). It then immediately follows
from (9) that the associated singularities are of type a/.

B. Black hole on the brane

Here we study the character of the stress energy on our
braneworlds, � and pi, in more detail. As a typical case we
focus on the � < 0 case. The analysis of the dominant
energy condition above restricts us to the k � �1 case.
The induced 4D metric is

�4�ds2 � �

�
�1�

2Ml

��� ��2
�
��� ��2

l2

�
dt2

�

"
1

�1� 2Ml
�����2 �

�����2

l2

�
�2

��� ��2 � �2

#
d�2

� �2d�2
�2�: (42)

One can immediately see that there is an event horizon on
the brane where the brane intersects the bulk event horizon.
We now have a look at what this horizon hides. The general
analysis in Sec. II shows that in the k � �1 case we are
considering here, since r0 � 1 and A��� has no zero outside
the horizon, there can be no curvature singularity outside
the horizon. Indeed, the Ricci, Ricci square, and Riemann
square curvature scalars for the induced metric (42) can be
written as before Eq. (8). Explicitly, curvature singularities
of the 4D metric (42) occur when

a = � 1�
2Ml

��� ��2
�
��� ��2

l2
� �

��� ��2 � �2

�2 ;

(43)

b = � � 0; or; (44)

c = � � ��: (45)

However, since the bulk black hole horizon, from the brane
point of view is located at � � �0, where

�0 �

���������������������������������������������
l2=2�

���������������������
l4 � 8Ml3

p
=2

q
� �; (46)

the curvature singularities on the brane are hidden by the
horizon for all the cases a/, b/, c/.

At infinity, the induced metric can be expanded in �=l,
giving

qtt 
�
�2

l2
; q�� 


l2 � �2=2

�2 : (47)

Rescaling the time coordinate t! l
L t with L ����������������������

l2 � �2=2
p

, one can check that (47) has the same asymp-
totic behavior at the brane’s infinity �! 1 as the AdS4

metric with cosmological constant �4 � �3=L2 corre-
sponding to Eq. (25), that is
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FIG. 3. Values of � � j�=pj at the horizon for � 2
��0:5; 0� for M � 1 . . . 20.
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�4 � �
6

2l2 � �2 : (48)

One can also see the above result from the expansion of the
Ricci scalar

R�� � �
3

L2 �
6��8l2 � �2�

L�2l2 � �2�2
L
�
�O

�
L2

�2

�
: (49)

Although in principle we have all the ingredients to
obtain analytically all the characteristics of these black
hole solutions on the brane, in the case of asymptotic
nontotally geodesic brane � � 0, the expression for the
stress tensor and the curvatures are quite involved. We
therefore verify numerically that many of our slices are
explicit examples of a regular brane localized black hole
with surrounding matter that fulfill the dominant energy
conditions everywhere outside the brane’s Killing horizon.
We here set l � 1 and consider dimensionless variables.

In Fig. 2, the real energy density � can be seen to
be positive at the horizon for a wide range of slices.
It can be shown that the parameter, M /
fthe mass of the 5D bulk black holeg, needs to be above
a threshold M0 � 0:15 for all the negative values of � to
give a positive energy density at the horizon. Unless other-
wise stated, we will only consider such bulks in what
follows. For the dominant energy condition, we find that
at the horizon, j�=p�j � 1, and in Fig. 3, we plot j�=pj for
a few values of M from 1 to 20. For these, the dominant
1

1.5

2

2.5

3

3.5

ε

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2

γ

FIG. 2. Values of the real energy density at the horizon for � 2
��0:5; 0:2� for M � 0 . . . 20. The upmost plot corresponds to
M � 0, the lowest one to M � 20.
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energy condition is satisfied forM small enough at least for
� 2 ��0:15; 0�, as is illustrated by the plots. It can be
shown that for large ��=l, j�=pj< 1 (so the dominant
energy condition is violated).

For clarity, we now consider an explicit example of
slice: M � 2 and � � �0:1. The dominant energy condi-
tion is satisfied everywhere outside the horizon �0 � 1:70,
as is illustrated in Figs. 4–6.

Other values of M and � could have been chosen. For
our particular choice, there is a singularity of type a/ at � �
�a � 0:68, where our brane changes signature. Assuming
the slice can be continued past this first singularity, there is
another curvature singularity (of type c/) at � � �c � 0:1.

To conclude this section we would like to see what
happens asymptotically for the effective stress tensor. We
have

~� �
4���2 � 4l2�

l�2l2 � �2�2
l
�
�O

�
l2

�2

�
; (50)

~p� � �
2���2 � 8l2�

l�2l2 � �2�2
l
�
�O

�
l2

�2

�
; (51)

~p � �
8l2�

l�2l2 � �2�2
l
�
�O

�
l2

�2

�
: (52)

Until now, in order to have a positive vacuum energy on our
brane, we imposed on � to be negative. We here see that
this constrains the effective matter to violate the weak
-7
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energy condition as soon as � is large enough. Had we
chosen our brane to have a negative or null vacuum energy,
the effective matter would have had a positive energy
density asymptotically and it is easy to see that it would
also have satisfied the dominant energy condition. It is to
be noted that particular slices with � > 0 can be found such
that the real matter satisfies the dominant energy condition
everywhere outside the horizon as before. Such an example
is given by (M � 2, � � 0:1). The slice � � 0 for k � �1
or 0 (generalizing the k � 1 ‘‘equatorial slice’’) allows us
to treat the problem analytically, this will be the topic of the
next section.

C. Black hole in asymptotically totally geodesic brane

In this section, we concentrate on the � � 0 case, with
k � 0, which implies � � 0. Since real and effective
matter die off at spatial infinity in the braneworld, the
extrinsic curvature of such a brane vanishes at spatial
infinity. This makes the brane asymptotically totally
geodesic.

When � � 0, the real matter fields (i.e., source term
linear to T�	) are decoupled from the brane gravity (see
Eqs. (22) and (23)). In this case the only source for the
brane gravity through Eq. (22) are S�	 and E�	 tensors
coming, respectively, from the junction conditions and the
projection of the 5D Weyl tensor onto the brane. We
incidentally note that this limit corresponds in the holo-
graphic picture of [17–19,26] to the situation in which our
black hole is surrounded by ‘‘quantum’’ matter only.
-8
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These slices provide explicit analytical examples of
spherically symmetric, localized brane black holes where
the surrounding matter does not violate dominant energy
conditions anywhere outside the horizon. In these black
hole solutions, there is only one singularity which is a
central singularity hidden by a Killing horizon. In fact,
the induced metric on the brane is

�4�ds2 � �

�
k�

2Ml

�2 �
�2

l2

�
dt2 �

d�2

k� 2Ml
�2 �

�2

l2

� �2d�2
�2�; with k � �1; 0: (53)

So, the Killing horizon is located at

�0 �
l
2

������������������������������������������
�2k� 2

���������������������
1� 8M=l

pq
: (54)

The matter content on the brane is

� �
2
������������
1� k
p

�
� �p� � �2p � �2p�;

~� � �1� k�
�2 �Ml

�4 � �~p�;

~p � ~p� � ��1� k�
Ml

�4 ;

(55)

where the ‘‘M’’ contribution comes from the projection of
the Weyl tensor onto the brane and the Einstein tensor is
diagonal.

In the case of big black hole massM l, it is noticeable
that the energy density for the effective matter, although
positive asymptotically, becomes negative when approach-
ing the black hole horizon (when � �

�������
Ml
p

). This is a local
effect, and when we consider the effective matter to cor-
respond to quantum matter [17–19,26], this is reminiscent
of semiclassical considerations in asymptotically flat black
hole spacetimes [27,28]. The holographic interpretation
can be trusted only in this limit [18]. It is easy to calculate
the curvature scalars. They are everywhere regular except
at � � 0. For instance,

R�� � �
12

l2
�

2�1� k�

�2 ; (56)

and R��R�� / ��8, R����R���� / ��8 near � � 0. We
therefore have a central spacelike singularity located at
� � 0, provided M> 0. (When k � �1, even for M< 0
the bulk spacetime possesses an event horizon that hides a
timelike bulk singularity, provided �1< 8M=l.
Accordingly the brane’s singularity also is timelike, which
is hidden inside the brane black hole horizon.)

The zero mass bulk black hole case, M � 0, is special:
In this case, our bulk is locally pure AdS5, hence is regular
everywhere. With the coordinate choice k � �1, AdS5

bulk has a (nondegenerate) Killing horizon at r � 0. Our
brane (53) (with M � 0, k � �1) then describes a black
064014
hole with a Killing horizon at r � � � l. The central
curvature singularity of this brane, due to this nontrivial
embedding, is spacelike and hidden by the Killing horizon.
On the other hand, the choice k � 0 corresponds to the
horospherical coordinates of AdS5 bulk, which now has a
Killing horizon at r � 0 of this coordinate. Our brane in
this case hits this bulk Killing horizon at � � 0, but now
the brane becomes singular on that horizon. The dominant
energy conditions are nowhere violated for both effective
and real matter.
V. CONCLUSION

One of the most important unsolved problems in brane-
world scenario is probably the missing localized black hole
solution on a braneworld. Until now, only negative results
of (vacuum) localized braneworld black holes had been put
forward. Motivated by the conjecture that localized black
hole on a Randall-Sundrum brane holographically corre-
sponds to a semiclassical four-dimensional black hole
[17,18], we tried to find a nonvacuum, asymptotically
AdS black hole solution on such a (nontotally geodesic)
brane.

To achieve this goal, we hunted for possible slices of the
Schwarzschild-AdS bulk which cut the bulk black hole
horizon producing a smooth horizon on the brane. We
showed that this is possible if one introduces suitable
matter on the brane, solely determined by the junction
conditions on the brane itself. Requiring such matter to
be realistic, we looked for slicing corresponding to a brane
filled by matter satisfying the dominant energy conditions.

More explicitly, we studied the simplest one-parameter
family of slices which obeyed these constrains. Although
our parameter turned out to be constrained for our energy
conditions to be satisfied (outside the horizon), we found a
whole range of values for which our slices correspond to a
(regular) localized ‘‘black hole’’ on a brane. In some
particular cases, corresponding to a generalization of the
‘‘equatorial slice’’ of the spherical Schwarzschild-AdS
bulk to hyperbolic and flat three-dimensional geometries,
we found explicit analytical solutions with a horizon hid-
ing a single pointlike singularity at the center. We also
noticed that for nonzero large bulk black hole mass, the
energy conditions for the effective matter are satisfied
outside a spherical region surrounding the black hole hori-
zon. This is reminiscent of semiclassical results obtained in
asymptotically flat black hole spacetimes (see [27,28] and
references therein). For zero mass bulk black hole case,
both the real and effective energy conditions are satisfied
everywhere outside the horizon.

We also showed that it is possible for the part of our
braneworlds that is hidden by the Killing horizon to
undergo a signature change. From the braneworld view
point, the appearance of the Euclidean signature region
might be interpreted in the quantum theoretical context,
such as Euclidean quantum gravity on the braneworld. On
-9
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the other hand, the bulk spacetime is everywhere
Lorentzian, hence one may expect that the braneworld
signature change could entirely be understood in terms of
bulk classical theory. Such an expectation is in accord with
the spirit of a holographic idea in the sense that quantum
phenomena on braneworld have some correspondence to
bulk classical phenomena. However, whether such a sig-
nature changing braneworld can be realized as a solution of
a well-posed initial value problem (e.g., 5D Einstein equa-
tions with suitable initial data) is a nontrivial question.

By construction, our results fit in a Randall-Sundrum
braneworld scenario. We nevertheless believe that our
solutions can be of phenomenological importance beyond
that framework in understanding real astrophysical or mi-
croscopic black holes if extra dimensions are part of an
ultimate theory of gravity.

Finally, from the perspective of the conjecture of
[17,18], we would like to conclude by pointing out that
the brane black hole solutions found in this paper are, to
our knowledge, neither known semiclassical solutions nor
possibly obtained by perturbations thereof (see [21] for
further similar comments). We found that black holes
064014
satisfying energy conditions are possible only in the case
�4 ’ �5. In this regime, four-dimensional gravity is not
localized at least at spatial infinity [29]. Therefore,
although our results apparently contradict the conjecture
of [17,18], it is not clear whether our black hole solutions
can be used for this holographic conjecture [30] as, at least
at spatial infinity, we would expect our black hole solutions
to correspond to a deformed conformal field theory without
gravity [31]. Clarification of this problem is beyond the
scope of the present work.
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