
PHYSICAL REVIEW D 73, 064009 (2006)
Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method
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We study stationary and axially symmetric two solitonic solutions of five dimensional vacuum Einstein
equations by using the inverse scattering method developed by Belinski and Zakharov. In this generation
of the solutions, we use five dimensional Minkowski spacetime as a seed. It is shown that if we restrict
ourselves to the case of one angular momentum component, the generated solution coincides with a black
ring solution with a rotating two sphere which was found by Mishima and Iguchi recently.
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I. INTRODUCTION

In four dimensional Einstein-Maxwell systems, station-
ary black holes are considerably interesting objects since
we would expect that any black holes formed by gravita-
tional collapse settle down to a stationary state.
Remarkably, stationary black holes are characterized
only by total mass, angular momentum and electric (mag-
netic) charge. This fact is well known as uniqueness the-
orems of black holes [1]. Therefore, a lot of authors have
investigated global and local properties of stationary black
holes as the final state of black hole spacetimes.

Recently, higher dimensional black holes have much
attention since the possibility of higher dimensional black
hole production in a linear collider is predicted in TeV
gravity [2]. However, it is not clear whether black holes
will be formed through the collisions of protons in the
linear collider. Though at first glance it seems that we
cannot expect to obtain a complete description of real
black holes due to the complexity of Einstein equations,
essentially their nonlinearity, the uniqueness theorem of
higher dimensional black holes would let us know the
answer, at least, some information on the final states.
However, it is unlikely that in a higher dimensional sta-
tionary black hole spacetime there exists the uniqueness
theorem in the sense of one in a four dimensional black
hole spacetime, which means that the set of the parameters
of mass, angular momentum and charge fails to determine
a higher dimensional black hole uniquely. In fact, after the
discovery of Myers-Perry solution whose horizon is topo-
logically S3 [3], Emparan and Reall found a five dimen-
sional rotating black ring solution with the horizon
homeomorphic to S1 � S2 [4]. It has been found that there
is a range within which these two solutions have the same
mass and angular momentum. This implies the absence of
the original uniqueness theorem like that of four dimen-
sional black holes. If one restricts the topology of a horizon
to S3, it has been shown that the only asymptotically flat
black hole solution is Myers-Perry solution [5]. We also
comment that in Einstein-Maxwell-Chern-Simon theory,
five dimensional black holes with spherical topology S3

cannot be characterized by only these three physical pa-
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rameters [6], neither can black ring solutions coupled with
form fields [7]. In this view, what kind of black hole
solutions there can exist in five or higher dimensional
spacetimes is an interesting problem, and in order to find
such black hole solutions admitted as possible, we have to
develop generating-techniques of solutions of higher di-
mensional Einstein equations.

In four dimensional Einstein gravity, systematic
generation-techniques of stationary and axisymmetric so-
lutions have been developed by a lot of authors [8].
Recently, Mishima and Iguchi [9] applied one of these
techniques, Castejon-Amenedo-Manko’s method [10], to
five dimensional vacuum spacetimes and derived the
asymptotically flat black ring solution which rotates in
the azimuthal direction of two sphere. This solution is
generated from five dimensional Minkowski spacetime as
a seed. The expression of this solution [11] as a C-metric
coordinate was studied by Figueras [12]. As a solitonic
generation-technique in four dimensional Einstein gravity,
Belinski and Zakharov developed the inverse scattering
method [13]. They generated Kerr-NUT solutions as sim-
ple two solitonic solutions on the Minkowski background.
This technique is also used for the generations of multi-
black hole solutions [8]. We would expect that the appli-
cation of this method to more than four dimensions might
lead to the generation of a lot of physical solutions. In fact,
the static black ring solution [14], the five dimensional
Schwarzschild solution [14] and the Myers-Perry solution
with two angular momentum components were reproduced
by using this technique [15].

In this article, we will apply the inverse scattering
method established by Belinski et al. to five dimensional
stationary and axisymmetric spacetimes, which means that
there are a timelike Killing vector field and two axial
Killing vector fields. We choose five dimensional
Minkowski spacetime as a seed. Mishima-Iguchi’s method
gives solutions with only one angular momentum. On the
other hand, in general, this inverse scattering method gen-
erates solutions with two angular momentum components.
However, such a solution generated from Minkowski seed
is not regular. Therefore, in this article, we focus on the
-1 © 2006 The American Physical Society
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case with a single angular momentum and show that it
coincides with a black ring solution with a rotating two
sphere [9,15].

This article is organized as follows. In Sec. II, we will
review the result of Belinski’s studies, and mention the
normalization when we construct a physical metric, which
satisfies the supplementary condition det g � ��2, from
an unphysical metric. In Sec. III, we will study two soli-
tonic solutions from five dimensional Minkowski space-
time as a seed. The solution with one angular momentum
coincides with a black ring solution with a rotating two
sphere [9,15]. We summarize this article and give a dis-
cussion of related matters in Sec. IV.
II. D DIMENSIONAL n SOLITON SOLUTIONS

In this section, we review the results of Belinski’s
method [13] applied to gravitational fields in general di-
mensions. We begin with D dimensional stationary vac-
uum spacetimes with D� 2 commuting Killing vector
fields �@=@t�; �@=@x2�; � � � ; �@=@xD�2�, where �@=@t� is
the Killing vector field associated with time translation
and �@=@x2�; � � � ; �@=@xD�2� denote the spatial Killing
vectors. From the discussion in Ref. [16], in vacuum space-
times, the two-plane orthogonal to these Killing vector
fields is integrable. In such spacetimes, the metric can be
written in the canonical form [16]:

ds2 � f�d�2 � dz2� � gabdxadxb; (1)

where f � f��; z� and gab � gab��; z��a; b � 1; � � � ; D�
2� are a function and an induced metric on the �D� 2�
dimensional plane, respectively. Both of them depend only
on � and z. The �D� 2� � �D� 2� matrix g � �gab�
satisfies the constraint, det g � ��2. From the vacuum
Einstein equation Rab � 0, the matrix g also satisfies the
solitonic equation,

��g;�g
�1�;� � ��g;zg

�1�;z � 0; (2)

and from the other equations R�� � Rzz � 0 and R�z � 0,
we obtain the equations which determine the function
f��; z� for a given solution of the solitonic Eq. (2),

�lnf�;� � �
1

�
�

1

4�
Tr�U2 � V2�; (3)

�lnf�;z �
1

2�
Tr�UV�; (4)

where the �D� 2� � �D� 2� matrices U��; z� and V��; z�
are defined as

U � �g;�g
�1; V � �g;zg

�1: (5)

The integrability condition with respect to f is automati-
cally satisfied for the solution g of the Eq. (2). Then, the n
solitonic solution, which satisfies the constraint det gab �
��2, can be written as follows,
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g�phys� � ��1�n=�D�2���2n=�D�2�

�Yn
k�1

�2=�D�2�
k

�
g�unphys�;

(6)

where the unphysical metric g�unphys�, which is a solution of
Eq. (2) but does not meet the supplementary condition
det gab � ��2, is given by

g�unphys� � g0 �
Xn
k;l�1

��1
k ��1

l �klm�l�0em
�k�
0f �g0�ca�g0�db

� � �1
0 ��l; �; z�	

ec� �1
0 ��k; �; z�	

fd: (7)

Here g0 is an arbitrary seed solution and the poles �k are

given by �k � wk � z

��������������������������������
�wk � z�

2 � �2
p

together with
arbitrary constants wk�k � 1; � � � ; n� and m�k�0a �k �
1; � � � ; n; a � 1; � � � ; D� 2�. The matrix �kl is the inverse
of �kl, which is given by �kl: � ��

2 ��k�l�
�1 �

m�k�0c � 
�1
0 ��k; �; z�	cam

�l�
0b� 

�1
0 ��l; �; z�	bd�g0�ad. The gen-

erating matrix  0��; �; z� is a solution of the following
equations

D1 0 �
�V0 � �U0

�2 � �2  0; (8)

and

D2 0 �
�U0 � �V0

�2 � �2  0; (9)

where � is a complex parameter independent of the coor-
dinates � and z, and U0 � �g0;�g�1

0 and V0 � �g0;zg�1
0 .

The derivative operators D1 and D2 are defined by

D1 � @z �
2�2

�2 � �2 @�; D2 � @� �
2��

�2 � �2 @�:

(10)

Substituting the physical metric solution g�phys� given by
the Eq. (6) into Eqs. (3) and (4), we obtain a physical value
of f :

f�Cf0���n�n�4�D��=�D�2�det��kl�
Yn
k�1

��2�n�3�D�=�D�2�
k

���2
k��

2��4�D�=�D�2�	 �
Yn
k>l

��k��l�
4=�2�D�; (11)

where C is an arbitrary constant, and f0 is a value of f
corresponding to the seed g0.

A. Five dimensional two solitonic solution

As mentioned in the introduction, we are interested in
two solitonic solutions in five dimensional vacuum space-
times as the simplest case. Therefore, let us putD � 5; n �
2 in the Eqs. (6) and (7). Two soliton solutions are ex-
pressed in the form

g�phys�
ab � ��4=3��1�2�

2=3g�unphys�
ab ; (12)

where g�unphys�
ab is a three dimensional unphysical metric
-2
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which takes the form of

g�unphys� � g0 �
X2

k;l�1

��1
k ��1

l �klm�l�0em
�k�
0f �g0�ca�g0�db

� � �1
0 ��l; �; z�	ec� �1

0 ��k; �; z�	fd: (13)

For simplicity of notation, we hereafter put m�1�01 �

a;m�2�01 � b;m�1�02 � c;m�2�02 � d;m�1�03 � e;m�2�03 � f. The
two poles are given by

�1 � w1 � z

��������������������������������
�w1 � z�2 � �2

q
;

�2 � w2 � z

��������������������������������
�w2 � z�2 � �2

q
:

(14)

Through the below, we put w1 � �w2 � �� and choose
both of signs as �:

�1 � ��� z�
������������������������������
��� z�2 � �2

q
; (15)

�2 � ��� z�
������������������������������
��� z�2 � �2

q
: (16)

Here we comment that in general cases with two angular
momentum components, the solution in general is not
regular on a part of an axis if the seed solution is regular
there. In fact, in a static limit (as such an example we can
choose a � b � c � d � 0; e � 0; f � 0), the solution
becomes

g�phys� � diag
��
�1�2

�2

�
2=3
�g0�11;

�
�1�2

�2

�
2=3

��g0�22;
�
�1�2

�2

�
�4=3
�g0�33

�
: (17)

We find that the solution above is not regular on the part of
the axis z <�� due to the existence of the factors
��1�2=�2�

2
3; ��1�2=�2��

4
3; they behave as ��1�2=�2�

2
3 �

��
4
3; ��1�2=�

2��
4
3 � �

8
3 there. Since we use Minkowski

spacetime as a seed in this paper, we cannot obtain a
solution which is regular everywhere on the axis and has
two angular momentum components. This is why we re-
strict ourselves to only solutions with a single angular
momentum component.

However, we should note that there exists some freedom
when we construct a physical metric with one angular
momentum component from an unphysical metric with
one angular momentum component by multiplying the
normalization factors. In e � f � 0 (or c � d � 0� case,
the three dimensional unphysical metric g�unphys� can be
decomposed into the 2� 1 block matrix,

g�unphys� �

�
g�unphys�
AB 0

0 �g0�33

�
; (18)

where g�unphys�
AB �A;B � 1; 2� is a 2� 2 matrix dependent on

the four parameters a; b; c; d. In this case, in order to
satisfy the constraint det g � ��2, we may choose a nor-
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malization which multiplies g�unphys�
AB by the normalization

factor of 4 dimensions i.e. put D � 4 and n � 2 in Eq. (6).
We leave the remaining component �g0�33 intact, i.e.

g�phys� �

�
� �1�2

�2 g�unphys�
AB 0

0 �g0�33

�
: (19)

We can easily show that if a seed metric satisfies the
condition det g0 � ��

2, the physical metric (19) also
satisfies this condition. (In c � d � 0 case, we can choose
the same normalization which leaves �g0�22 intact and
multiplies the g�unphys�

~A ~B
� ~A; ~B � 1; 3� by � �1�2

�2 .)

B. Static seed solutions

The assumption that seed solutions g0 are static simpli-
fies all analysis since we can assume that the generating
matrix  0 becomes diagonal like  0 � diag� 1;  2;  3�,
where  a�a � 1; 2; 3� are functions which depend on �; �
and z. Then, the partial derivative equations for the gen-
erating matrix  0 are decoupled into each component and
therefore, we can solve each  a�a � 1; 2; 3� indepen-
dently. The unphysical metric (13) becomes

g�unphys�
ab � �g0�ab � �g0�aa�g0�bb

�2 ��1�2

�2
1�

2
2

�ab

�0
; (20)

where the functions �0��; z� and �ab��; z��a; b � 1; 2; 3�
are given by the Eqs. (A2)–(A8) in Appendix A. Since the
expression of the metric is much lengthy, we do not write it
here.

III. SOLUTIONS GENERATED FROM
MINKOWSKI SEED

In four dimensional stationary and axisymmetric space-
times, the solution generated from flat background as a
seed is most interesting, since it was shown that a double
soliton on a Minkowski background gives a Kerr solution,
which is one of physically most important black hole
solutions [13]. Therefore, we can expect that in five di-
mensions, this inverse scattering method might also give us
interesting and important black holes with asymptotic flat-
ness, and great insight into higher dimensional black holes.
In this section, we focus on the simplest case, i.e. a two
solitonic solution on five dimensional flat background
spacetime. As a seed solution g0, we choose Minkowski
spacetime whose metric is given by [16]

ds2 � �dt2 � �1d�
2 � �2d 

2 �
1

2
���������������������������������
�2 � �z� ���2

p
� �d�2 � dz2�; (21)

where

�1 �
���������������������������������
�2 � �z� ���2

q
� �z� ���;

�2 �
���������������������������������
�2 � �z� ���2

q
� �z� ���:

(22)
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In this paper we assume � is a parameter satisfying � � 1.
Here we put x1 � t, x2 � �, x3 �  , and then g0 �
diag��1; �1; �2�. The 3� 3 matrices U0 and V0 corre-
sponding to g0 are expressed in the form

U0 � �g0;�g�1
0 � diag

�
0; 1�

z� �����������������������������������
�2 � �z� ���2

p ;

1�
z� �����������������������������������

�2 � �z� ���2
p

�
; (23)
V0 � �g0;zg�1
0

� diag
�
0;�

����������������������������������
�2 � �z� ���2

p ;
����������������������������������

�2 � �z� ���2
p

�
:

(24)

The generating matrix  0 for the static seed g0 is diago-
nal, i.e.  0��; �; z� �
diag� 1��; �; z�;  2��; �; z�;  3��; �; z��. Its components
are given by

 1��; �; z� � �1;

 2��; �; z� � �1 � � �
���������������������������������
�2 � �z� ���2

q
� z� ��� �;

 3��; �; z� � �2 � � �
���������������������������������
�2 � �z� ���2

q
� z� ��� �

(25)

with  0�� � 0; �; z� � g0. Substituting Eqs. (25), (15),
and (16) into Eq. (20), we obtain the unphysical metric
with eight parameters f�;�; a; b; c; d; e; fg.

A. Single angular momentum case

As mentioned in the previous section, we focus on a
solution with a single angular momentum; this is the case
where the three dimensional metric g is block-diagonalized
as Eqs. (18) and (19). Choosing the parameters as e � f �
0, we study a physical metric which is generated with four
dimensional normalization, as described in the Eq. (19).
The solution can be written in the following form:

g�phys�
11 � �

G11

�1�2�
; g�phys�

12 � ��1
��2 ��1�2�G12

�1�2�
;

g�phys�
22 � ��1

G22

�1�2�
; (26)
g�phys�
33 � �2; g�phys�

23 � g�phys�
13 � 0; (27)

where �1, �2, �1 and �2 are given by Eqs. (15), (16), and
(22). The functions G11; G12; G22 and � are defined as
064009
G11 � �a
2b2��1 ��1�

2��1 ��2�
2��1 ��2�

2�4

� a2d2�1�2
2��

2 ��1�2�
2��1 ��1�

2

� b2c2�1�2
1��

2 ��1�2�
2��1 ��2�

2

� c2d2�2
1�

2
1�

2
2��1 ��2�

2 � 2abcd�1��1 ��1�

� ��1 ��2���2 ��2
1���

2 ��2
2��1�2; (28)

G22�a2b2�2
1�

2
2��1��2�

2��1��1�
2��1��2�

2

�c2d2�2
1��1��2�

2�4�a2d2�1�2
1��1��1�

2

���2��1�2�
2�b2c2�1�2

2��1��2�
2��2��1�2�

2

�2abcd�1�1�2��1��2���1��1���
2��2

1�

���2��2
2�; (29)

G12 � ab
2c�2��1��2���1��2�

2��1��1���
2��2

1�

� acd2�1�2��2��1���1��1���
2��2

1�

� a2bd�1��2��1���1��1�
2��1��2���

2��2
2�

� bc2d�1�1��1��2���
2��2

2���1��2�; (30)

� � a2b2��1 ��1�
2��1 ��2�

2��1 ��2�
2�2

� c2d2�2
1��1 ��2�

2�2 � a2d2�1��1 ��1�
2

� ��2 ��1�2�
2 � c2b2�1��1 ��2�

2��2 ��1�2�
2

� 2abcd�1��1 ��1���1 ��2���2 ��2
1���

2 ��2
2�:

(31)

In order to see relation between the generated solution and
the solution obtained by Mishima and Iguchi, let us con-
sider the coordinate transformation of the physical metric
such that

t! t0 � t�!�; �! �0 � �; (32)

where ! is an arbitrary constant and x1 � t; x2 � �; x3 �
 . We should note that the transformed metric also satisfies
the supplementary condition det g � ��2. Under this
transformation, the physical metric components become

gtt ! gt0t0 � gtt; (33)

gt� ! gt0�0 � gt� �!gtt; (34)

g�� ! g�0�0 � g�� � 2!gt� �!
2gtt: (35)

If we choose the parameters such that

ab � �; (36)

bc � �1=2��� 1�; (37)

ad � ��1=2����� 1�; (38)
-4
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cd � �����2 � 1�; (39)

! � C1; (40)

and use the spherical polar coordinate �x; y� defined as � �

�
����������������������������������
�x2 � 1��1� y2�

p
; z � �xy, then we can make sure that

the transformed metric with components � and � exactly
coincide with the metric (the Eqs. (A17) and (A22) in
Appendix C) of a black ring solution with a rotating two
sphere [9,15]. We should note that our solution coincides
with the original expression of the metric derived by
Mishima and Iguchi( Eq. (6) in Ref. [9]) before we choose
such parameters that closed time like curves vanises [11].
In order to show this coincidence, it is sufficient to calcu-
late only two components gtt and gt� due to the supple-
mentary condition det g � ��2 and the fact that the metric
function f is determined by three dimensional metric g.

IV. SUMMARY AND DISCUSSION

In this article, we studied two solitonic solutions of
vacuum Einstein equations from five dimensional
Minkowski spacetime using the inverse scattering method.
The solution with one angular momentum includes six
parameters fa; b; c; d; �; �g, however, physical parameters
are only four since the only ratios of a=c and b=d appear in
the metric components (26) i.e. the transformations of
parameters which leave these ratios invariant are isome-
tries. As a result, we reproduced a black ring solution with
a rotating two sphere which was obtained by Mishima and
Iguchi. However, we could not obtain a black ring solution
which was found by Emparan and Reall from Minkowski
spacetime with this inverse scattering method, though we
tried to find that solution by restricting the parameters to
c � d � 0.

We also discussed the possibility that one can derive a
black ring solution with two angular momentum compo-
nents from Minkowski seed solution. We found that the
generated solution cannot be regular on the part of an axis
if the seed solution is regular there. Therefore, in order to
obtain regular and asymptotically flat black ring/hole so-
lutions by this inverse scattering method, we may need a

VACUUM SOLUTIONS OF FIVE DIMENSIONAL . . .
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singular seed solution. In this stage, we do not know how to
generate such solutions.
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Note added in proof.—After we submitted this article to
e-prints archives, we noticed a new article [16], which has
a considerable overlap with our article. In [16], the Myers-
Perry solution with one angular momentum was repro-
duced by the inverse scattering method. However, the black
ring solution with a rotating two sphere, which we repro-
duced in this article by the inverse scattering method,
contains the Myers-Perry black hole solution with a single
angular momentum. Therefore, �2; 0� solitonic solution in
Ref. [16] is contained in our result, that is, if in our article
we put � � 1 in Eq. (22), our result exactly coincides with
their solution.
APPENDIX
A. General solutions generated from static seeds

In this section, we describe general solutions generated
from static seed solutions, where we may assume the
generating matrix  0��; �; z� to be diagonal, i.e.  0 �
diag� 1;  2;  3�. The unphysical metric can be written in
the considerably long expression ;

g�unphys�
ab � �g0�ab � �g0�aa�g0�bb

�2 ��1�2

�2
1�

2
2

�ab

�0
; (A1)

where the functions �0��; z�, �ab��; z��a; b � 1; 2; 3� are
defined as
�0 ��a2b2 2��1�
2 2��2�

2 3��1�
2 3��2�

2�g0�
2
11��1��2�

2�2�c2d2 1��1�
2 1��2�

2 3��1�
2

� 3��2�
2�g0�

2
22��1��2�

2�2�e2f2 1��1�
2 1��2�

2 2��1�
2 2��2�

2�g0�
2
33��1��2�

2�2�a2d2 1��2�
2 2��1�

2

� 3��1�
2 3��2�

2�g0�11�g0�22��2��1�2�
2�a2f2 1��2�

2 2��1�
2 2��2�

2 3��1�
2�g0�11�g0�33��2��1�2�

2

�b2c2 1��1�
2 2��2�

2 3��1�
2 3��2�

2�g0�11�g0�22��
2��1�2�

2�c2f2 1��1�
2 1��2�

2 2��2�
2

� 3��1�
2�g0�22�g0�33��

2��1�2�
2�b2e2 1��1�

2 2��1�
2 2��2�

2 3��2�
2�g0�11�g0�33��

2��1�2�
2�d2e2 1��1�

2

� 1��2�
2 2��1�

2 3��2�
2�g0�22�g0�33��

2��1�2�
2�2abcd 1��1� 1��2� 2��1� 2��2� 3��1�

2 3��2�
2�g0�11

��g0�22��
2��2

1���
2��2

2��2abef 1��1� 1��2� 2��1�
2 2��2�

2 3��1� 3��2��g0�11�g0�33��
2��2

1���
2��2

2�

�2cdef 1��1�
2 1��2�

2 2��1� 2��2� 3��1� 3��2��g0�22�g0�33��
2��2

1���
2��2

2�; (A2)
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�11�a
2b2 2��1�

2 2��2�
2 3��1�

2 3��2�
2�g0�11��1��2�

2�2��2��1�2��a
2d2 1��2�

2 2��1�
2 3��1�

2 3��2�
2

��g0�22�2
2��

2��2
1���

2��1�2��a2f2 1��2�
2 2��1�

2 2��2�
2 3��1�

2�g0�33�2
2��

2��2
1���

2��1�2�

�b2c2 1��1�
2 2��2�

2 3��1�
2 3��2�

2�g0�22�2
1��

2��2
2���

2��1�2��b2e2 1��1�
2 2��1�

2 2��2�
2 3��2�

2

��g0�33�2
1��

2��2
2���

2��1�2��2abcd 1��1� 1��2� 2��1� 2��2� 3��1�
2 3��2�

2�g0�22�1�2��2��2
1�

���2��2
2��2abef 1��1� 1��2� 2��1�

2 2��2�
2 3��1� 3��2��g0�33�1�2��2��2

1���
2��2

2�; (A3)
�22�a
2d2 1��2�

2 2��1�
2 3��1�

2 3��2�
2�g0�11�

2
1��

2��2
2���

2��1�2��b
2c2 1��1�

2 2��2�
2 3��1�

2 3��2�
2

��g0�11�2
2��

2��2
1���

2��1�2��c2d2 1��1�
2 1��2�

2 3��1�
2 3��2�

2�g0�22��1��2�
2�2��2��1�2�

�c2f2 1��1�
2 1��2�

2 2��2�
2 3��1�

2�g0�33�2
2��

2��2
1���

2��1�2��d2e2 1��1�
2 1��2�

2 2��1�
2 3��2�

2

��g0�33�2
1��

2��2
2���

2��1�2��2abcd 1��1� 1��2� 2��1� 2��2� 3��1�
2 3��2�

2�g0�22�1�2��2��2
1�

���2��2
2��2cdef 1��1�

2 1��2�
2 2��1� 2��2� 3��1� 3��2��g0�33�1�2��2��2

1���
2��2

2�; (A4)
�33�a2f2 1��2�
2 2��1�

2 2��2�
2 3��1�

2�g0�11�2
1��

2��2
2���

2��1�2��b2e2 1��1�
2 2��1�

2 2��2�
2 3��2�

2

��g0�11�
2
2��

2��2
1���

2��1�2��c
2f2 1��1�

2 1��2�
2 2��2�

2 3��1�
2�g0�22�

2
1��

2��2
2���

2��1�2�

�d2e2 1��1�
2 1��2�

2 2��1�
2 3��2�

2�g0�22�
2
2��

2��2
1���

2��1�2��e
2f2 1��1�

2 1��2�
2 2��1�

2 2��2�
2

��g0�33��1��2�
2�2��2��1�2��2abef 1��1� 1��2� 2��1�

2 2��2�
2 3��1� 3��2��g0�11�1�2��

2��2
1�

���2��2
2��2cdef 1��1�

2 1��2�
2 2��1� 2��2� 3��1� 3��2��g0�22�1�2��

2��2
1���

2��2
2�; (A5)
�12 � ab2c 1��1� 2��1� 2��2�
2 3��1�

2 3��2�
2�g0�11�2��2 ��1���

2 ��2
1��

2

� acd2 1��1� 1��2�
2 2��1� 3��1�

2 3��2�
2�g0�22�2��2 ��1���

2 ��2
1��

2

� a2bd 1��2� 2��1�
2 2��2� 3��1�

2 3��2�
2�g0�11�1��1 ��2���2 ��2

2��
2

� bc2d 1��1�
2 1��2� 2��2� 3��1�

2 3��2�
2�g0�22�1��1 ��2���

2 ��2
2��

2

� acf2 1��1� 1��2�
2 2��1� 2��2�

2 3��1�
2�g0�33�2

2��
2 ��2

1���
2 ��1�2�

� bde2 1��1�
2 1��2� 2��1�

2 2��2� 3��2�
2�g0�33�

2
1��

2 ��2
2���

2 ��1�2�

� adef 1��1� 1��2�
2 2��1�

2 2��2� 3��1� 3��2��g0�33�1�2��2 ��2
1���

2 ��2
2�

� bcef 1��1�
2 1��2� 2��1� 2��2�

2 3��1� 3��2��g0�33�1�2��2 ��2
1���

2 ��2
2�; (A6)
�13 � ab2e 1��1� 2��1�
2 2��2�

2 3��1� 3��2�
2�g0�11�2��2 ��1���2 ��2

1��
2

� aef2 1��1� 1��2�
2 2��1�

2 2��2�
2 3��1��g0�33�2��2 ��1���

2 ��2
1��

2

� a2bf 1��2� 2��1�
2 2��2�

2 3��1�
2 3��2��g0�11�1��1 ��2���2 ��2

2��
2

� be2f 1��1�
2 1��2� 2��1�

2 2��2�
2 3��2��g0�33�1��1 ��2���

2 ��2
2��

2

� ad2e 1��1� 1��2�
2 2��1�

2 3��1� 3��2�
2�g0�22�2

2��
2 ��2

1���
2 ��1�2�

� bc2f 1��1�
2 1��2� 2��1�

2 3��1�
2 3��2��g0�22�2

1��
2 ��2

2���
2 ��1�2�

� acdf 1��1� 1��2�
2 2��1� 2��2� 3��1�

2 3��2��g0�22�1�2��
2 ��2

1���
2 ��2

2�

� bcde 1��1�
2 1��2� 2��1� 2��2� 3��1� 3��2�

2�g0�22�1�2��2 ��2
1���

2 ��2
2�; (A7)
064009-6
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�23 � cd2e 1��1�
2 1��2�

2 2��1� 3��1� 3��2�
2�g0�22�2��2 ��1���

2 ��2
1���

2 ��2
2�

� cef2 1��1�
2 1��2�

2 2��1� 2��2�
2 3��1��g0�33�2��2 ��1���2 ��2

1���
2 ��2

2�

� c2df 1��1�
2 1��2�

2 2��2� 3��1�
2 3��2��g0�22�1��1 ��2���

2 ��2
1���

2 ��2
2�

� de2f 1��1�
2 1��1�

2 2��1�
2 2��2� 3��2��g0�33�1��1 ��2���2 ��2

1���
2 ��2

2�

� b2ce 1��1�
2 2��1�

2 2��2�
2 3��1� 3��2�

2�g0�11�
2
2��

2 ��2
1���

2 ��1�2�

� a2df 1��2�
2 2��1�

2 2��2� 3��1�
2 3��2��g0�11�2

1��
2 ��2

2���
2 ��1�2�

� abcf 1��1� 1��2� 2��1� 2��2�
2 3��1� 3��2�

2�1�2��2 ��2
1���

2 ��2
2�

� abde 1��1� 1��2� 2��1�
2 2��2� 3��1� 3��2�

2�1�2��
2 ��2

1���
2 ��2

2�: (A8)
B. Conformal rescale

Here we study how the generating matrix  transforms
under the transformation of the seed metric. If we perform
the conformal transformation g! ~g � �g for � such that
� � ���; z� is a function dependent on �, z and ln���; z�
is a harmonic function which is the solution of

4 ln� 

�
@2

@�2 �
1

�
@
@�
�
@2

@z2

�
ln� � 0; (A9)

then the generating matrix ~ corresponding to ~g satisfies

D1�ln ~ � �
�V0 � �U0

�2 � �2 �
�2�;z � ���;�

�2 � �2 ; (A10)

and

D2�ln ~ � �
�U0 � �V0

�2 � �2 �
�2�;� � ���;z

�2 � �2 : (A11)

Since these equations are linear, we easily find that the
solution of the Eqs. (A10) and (A11) can be expressed in
the form of ~ �  ��	 �  , where  is the solution of
Eqs. (8) and (9) for the metric g, and  ��	 is the solution
of the equations :

D1�ln ��	� �
�2�;z � ����

�2 � �2 ;

D2�ln ��	� �
�2�;� � ���;z

�2 � �2 :

(A12)
064009
If  ��1	 and  ��2	 are the solutions of (A12) for
harmonic functions �1 and �2, respectively, then we
also find that the solution  ��1�2	 of (A12) for the
function �1�2 satisfies the relation  ��1�2	 �
 ��1	 ��2	. We list the important solutions of the
Eqs. (A12) in our discussion,

 �1	 � 1;  ��1	 � �1 � �;  ��2	 � �2 � �;

 ��1	 � �1 � �;  ��2	 � �2 � �;

 ��2	 � �2 � 2z�� �2:

(A13)

where �1 and �2 are given by Eqs. (22). From these results,
the  corresponding to the seed solution g �
�a

1�
b
2 � � ��

c
1�

d
2�

2eg0 can be expressed in the form

 � � ��1	�
a� ��2	�

b � � � � ��1	�
c� ��2	�

d� ��2	�e 0:

(A14)

C. Black ring solution with a rotating two sphere

We describe the metric of a black ring solution with a
rotating two sphere which was found by Mishima and
Iguchi. Here we use the spherical polar coordinate �x; y�

defined by the equations � � �
����������������������������������
�x2 � 1��1� y2�

p
and z �

�xy, as used in the Ref. [9]. The explicit expression is

gtt ��
�x2� 1��1�FG�2� �1� y2��F�G�2

��x� 1� � �x� 1�FG	2� ��1� y�F� �1� y�G	2
;

(A15)
gt� �
2��

1
2
1

�
�x2 � 1��1� FG���1� y�G� �1� y�F	 � �1� y2��G� F��x� 1� �1� x�FG	

��x� 1� � �x� 1�FG	2 � ��1� y�F� �1� y�G	2

� C1
�x2 � 1��1� FG�2 � �1� y2��F�G�2

��x� 1� � �x� 1�FG	2 � ��1� y�F� �1� y�G	2
; (A16)

g�� �
��2��1

2 � g
2
t�

gtt
; (A17)

where �1 and �2 are given by Eqs. (22). Here the functions F, G and the constant C1 are defined as
-7
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F � �
x� y� �� 1�

�����������������������������������������������������
x2 � y2 � 2�xy� �2 � 1

p
2�xy� ��

�����������������������������������������������������
x2 � y2 � 2�xy� �2 � 1

p
�1=2

;

(A18)

G � �
2�xy� ��

�����������������������������������������������������
x2 � y2 � 2�xy� �2 � 1

p
�1=2

x� y� �� 1�
�����������������������������������������������������
x2 � y2 � 2�xy� �2 � 1

p ;

(A19)

C1 �
2�1=2�
1� ��

: (A20)

Substituting the following equations into (A15)–(A17),

F � �
���� 1��3=2�1=2

1

�
�x� 1��1� y�

 2��2�
;

G � �
��

��� 1��3=2�1=2
1

 2��1�

�x� 1��1� y�
;

(A21)

we obtain the other expression of metric components,

gtt � �
~A
~B
; gt� � 2�1=2�1

~C
~B
� C1

~A
~B
; (A22)
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where the functions ~A; ~B and ~C are defined as

~A � ��2 2��1�
2 2��2�

2�1� y�2

� ��2�2��� 1�2�1 2��1�
2�x� 1�2

� ���� 1�2�1 2��2�
2�x� 1�2

� �2�2��2 � 1�2�2
1�1� y�

2

� 2�����2 � 1��1 2��1� 2��2��x
2 � y2�; (A23)

~B��2 2��1�
2 2��2�

2�1�y�2��2�2��2�1�2�2
1�1�y

2�

���2�2���1�2 2��1�
2�1�x

2�1�

�����1�2 2��2�
2�1�x

2�1�

�2�����2�1��1 2��1� 2��2��x
2�y2�; (A24)

~C � ����� 1� 2��1� 2��2�
2�x� y�

� ��2��� 1� 2��1�
2 2��2��x� y�

� ��2���2 � 1���� 1��1 2��1��x� y�

� ����2 � 1���� 1� 2��2��x� y�: (A25)
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