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Magnetized black holes and black rings in the higher dimensional dilaton gravity
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In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton
gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known
asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit
solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black
holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of
the magnetized objects are calculated. We also discuss some properties of the solutions and their
thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an
explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes.
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I. INTRODUCTION

In recent years the higher dimensional gravity is attract-
ing much interest. Apart from the fact that the higher
dimensional gravity is interesting in its own right, the
increasing amount of works devoted to the study of the
higher dimensional spacetimes is inspired from the string
theory and the brane-world scenario with large extra di-
mensions [1–4]. This scenario suggests a possibility of
unification of the electroweak and Planck scales at the
TeV scale. A striking prediction in this scenario is the
formation of higher dimensional black holes smaller than
the size of the extra dimensions at accelerators [5,6].

Some solutions of the higher dimensional classical
general relativity have been known for some time.
These include the higher dimensional analogs of the
Schwarzschild and Reissner-Nordstrom solution found by
Tangherlini [7] and the higher dimensional generalization
of the Kerr solution found by Myers and Perry [8]. As one
should expect and as it was confirmed by recent investiga-
tions, the gravity in higher dimensions exhibits much
richer dynamics than in four dimensions. An interesting
development in the black hole studies is the discovery of
the black ring solutions of the five-dimensional Einstein
equations by Emparan and Reall [9,10]. These are asymp-
totically flat solutions with an event horizon of topology
S2 � S1 rather than the much more familiar S3 topology.
Moreover, it was shown in [10] that both the black hole and
the black ring can carry the same conserved charges, the
mass and a single angular momentum, and therefore there
is no uniqueness theorem in five dimensions. Since
Emparan and Reall’s discovery many explicit examples
of black ring solutions were found in various gravity
theories [11–21]. Elvang was able to apply the Hassan-
Sen transformation to the solution [10] to find a charged
black ring in the bosonic sector of the truncated heterotic
string theory [11]. A supersymmetric black ring in five-
dimensional minimal supergravity was derived in [12] and
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then generalized to the case of concentric rings in [13,14].
A static black ring solution of the five-dimensional
Einstein-Maxwell gravity was found by Ida and Uchida
in [22]. In [23] Emparan derived ‘‘dipole black rings’’ in
the Einstein-Maxwell-dilaton (EMD) theory in five dimen-
sions. In this work Emparan showed that the black rings
can exhibit a novel feature with respect to the black holes.
Black rings can also carry nonconserved charges which can
be varied continuously without altering the conserved
charges. This fact leads to continuous nonuniqueness.
The thermodynamics of the dipole black rings, within the
quasilocal counterterm method, was discussed by
Astefanesei and Radu [24]. Static and asymptotically flat
black ring solutions in five-dimensional EMD gravity with
arbitrary dilaton coupling parameter � were presented in
[25]. A systematical derivation of the asymptotically flat
static black ring solutions in five-dimensional EMD grav-
ity with an arbitrary dilaton coupling parameter was given
in [26]. In the same paper and in [27], the author system-
atically derived new type static and rotating black ring
solutions which are not asymptotically flat.

In the present paper we study higher dimensional black
holes and black rings immersed in external magnetic fields
within the framework of EMD gravity. The interest in
studying black holes under the influence of external fields
has a long history. In 1976 Ernst [28] applied a Harrison
transformation [29] to the Schwarzschild solution to obtain
a static black hole in the Melvin universe [30,31]. The
Ernst-Schwarzschild solution was subsequently discussed
by many authors [32–38]. The Ernst result was generalized
to more complicated metrics as the Kerr-Newman metrics
[39,40]. The investigation of the magnetized Kerr-
Newman metrics resulted in finding interesting astrophys-
ical effects, such as charge accretion and flux expulsion
from extreme black holes [39,41–45]. The flux expulsion
was also studied in Kaluza-Klein and string theories [46].
Five-dimensional black holes in external electromagnetic
fields were discussed by Aliev and Frolov [47] and by Ida
and Uchida in [22]. In [47] the authors use Wald’s test field
approach [48] while the discussion in [22] is based on exact
-1 © 2006 The American Physical Society
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solutions. Magnetized static and rotating black holes in
arbitrary dimensions as well as magnetized rotating black
rings in five dimensions were recently studied by Ortaggio
in [49] within the D-dimensional Einstein-Maxwell (EM)
gravity. The discussion is based on exact solutions found
by applying a Harrison transformation to known exact
black hole and black ring solutions. In this work
Ortaggio also discussed some properties of the magnetized
black holes and black rings as well as their thermodynam-
ics and gave the ultrarelativistic limit of the magnetized
D-dimensional Schwarzschild solution. Here we general-
ize the results of [49] in the presence of the dilaton field
nonminimally coupled to the electromagnetic field.

The paper is organized as follows. In the first section we
systematically derived the Harrison transformation for the
EMD equations inD-dimensional spacetimes with relevant
symmetries. Then in the subsequent sections we apply the
Harrison transformation to known black hole and black
ring solutions to obtain their magnetized versions. We also
discuss some properties of the magnetized solutions as well
as their thermodynamics. The last section is devoted to a
summary of the results. In Appendix B we present the
explicit expressions of the ultrarelativistic limits of some
of the magnetized solutions.
II. BASIC EQUATIONS AND HARRISON
TRANSFORMATION

The EMD gravity in D-dimensional spacetimes is de-
scribed by the action

S �
1

16�

Z
dDx

�������
�g
p

�R� 2g��@�’@�’

� e�2�’F��F���: (1)

The field equations derived from this action are

R�� � 2@�’@�’� 2e�2�’
�
F��F

�
�

�
g��

2�D� 2�
F��F

��
�
; (2)
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r�r
�’ � �

�
2
e�2�’F��F

��; (3)

r��e�2�’F��� � 0: (4)

We consider spacetimes admitting a spacelike,
hypersurface-orthogonal Killing vector which we denote
by �. In adapted coordinates in which � � @=@y, the
spacetime metric can be written in the form

ds2 � e2udy2 � e�2u=�D�3�hijdx
idxj; (5)

where hij is a �D� 1�-dimensional metric with Lorentz
signature. Both u and hij depend on the coordinates xi only.
The electromagnetic field is taken in the form

F � dAy ^ dy: (6)

The potential Ay depends on xi only. In terms of the
potentials u, Ay, and ’ the field equations read

D iD
iu � �2

D� 3

D� 2
e�2�’�2uhijDiAyDjAy; (7)

D iD
i’ � ��e�2�’�2uhijDiAyDjAy; (8)

D i�e
�2�’�2uDiAy� � 0; (9)

R�h�ij �
D� 2

D� 3
@iu@ju� 2@i’@j’

� 2e�2�’�2u@iAy@jAy: (10)

Here Di and R�h�ij are the coderivative operator and
Ricci tensor with respect to the metric hij. These equations
can be derived from the action

S �
Z
dD�1x

������
jhj

p �
R�h� �

D� 2

D� 3
hij@iu@ju

� 2hij@i’@j’� 2e�2�’�2uhij@iAy@jAy

�
: (11)

In order to unveil the symmetries of the action (11) we
introduce the symmetric matrix
P � e��D�1�ue���D�1�’D
e2u�2�D’D � �1� �2

D��
2
D �

����������������
1� �2

D

q
�D

�
����������������
1� �2

D

q
�D 1

0B@
1CA; (12)
where

�D �

�������������������
D� 2

2�D� 3�

s
�; ’D �

�������������������
2�D� 3�

�D� 2�

s
’;

�D �

�������������������
2�D� 3�

�D� 2�

s
Ay:

(13)
The action (11) can be written in the form of a �-model
action

S �
Z
dD�1x

������
jhj

p �
R�h� �

1

2�1� �2
D�

�
�D� 2�

�D� 3�
hijSp�DiPDjP

�1�

�
: (14)
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Clearly, the action is invariant under the group GL�2; R�
where the natural group action is

P! GPGT: (15)

In fact, the matrix P parametrizes the coset
GL�2; R�=SO�2�. A similar � model was previously dis-
cussed in [50]. However, in [50], the target space is pa-
rametrized by 3� 3 matrices while here we give the target
space parametrization in terms of 2� 2 matrices.

In what follows we will be interested in a particular
subgroup of SL�2; R� 	 GL�2; R� which gives the
Harrison transformation, namely, the subgroup consisting
of the matrices

H �
1 0
b 1

� �
: (16)

The Harrison transformation generates new solutions
from known ones which have the same �D�
1�-dimensional metric hij and the new matrix

P0 � HPHT: (17)

In explicit form the new potentials are given by

e2u0 � ��2=�1��2
D�e2u; (18)

e�2’0D � �2�D=�1��2
D�e�2’D; (19)

�0D � ��1

�
�D �

b����������������
1� �2

D

q �e2u�2�D’D � �1� �2
D��

2
D�

�
;

(20)

where

� � b2e2u�2�D’D � �1� b
����������������
1� �2

D

q
�D�

2: (21)

In other words, the old metric

ds2 � e2udy2 � gijdx
idxj (22)

is transformed to the new one

ds02 � e2u0dy2 ���2=�D�3��1��2
D��gijdx

idxj: (23)

In the particular case � � 0, we obtain the Harrison
transformation in the Einstein-Maxwell gravity discussed
in [49]. For D � 4 we recover the Harrison transformation
in the four-dimensional EMD gravity [51].
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III. DILATON-MELVIN SOLUTION

In this section we derive and briefly comment on the
dilaton-Melvin solution which plays the role of back-
ground for all magnetized objects we consider in this
work. The dilaton-Melvin solution in D dimensions was
first found in [52] by solving the corresponding equations.
In order to derive this solution here we apply the Harrison
transformation to the D-dimensional flat spacetime pre-
sented in appropriate coordinates

ds2 � �dt2 � dz2
1 � dz

2
2 � 
 
 
 � dz

2
D�3 � d�

2

� �2d	2: (24)

The Harrison transformation with respect to the Killing
vector @=@	 then generates the dilaton-Melvin solution

ds2 � ��2=�D�3��1��2
D����dt2 � dz2

1 � dz
2
2

� 
 
 
 dz2
D�3 � d�

2� ���2=�1��2
D��2d	2;

e�2�’ � �2�2
D=�1��

2
D�;

A	 � ��1

�������������������
D� 2

2�D� 3�

s
b����������������

1� �2
D

q �2;

� � 1� b2�2:

(25)

If � � 0 this solution is the D-dimensional EM Melvin
solution, whose properties were discussed in [53] (and in
[54–56] for D � 4). The properties of the D-dimensional
dilaton-Melvin solution are similar. The geometry is a
warped product of a �D� 2�-dimensional Minkowski
spacetime and a noncompact 2-dimensional space M2

with a metric

dl2 � ��2=�D�3��1��2
D��d�2 ���2=�1��2

D��2d	2: (26)

The circumference of the circles � � const at first in-
creases and then monotonically decreases to zero as �!
1. The dilaton field’ is divergent at �! 1, but the scalar
invariants tend to zero for �! 1, for example,

R����R
���� � ��4f��D�3��1��2

D��2�=�D�3��1��2
D�g; (27)

therefore the geometry is well behaved there. Moreover, it
can be checked that the curvature scalars are everywhere
regular. As an example we present the Kretchmann scalar:
R����R
���� �

16b4

�D� 3�2�1� �2
D�

2 ��4f��D�3��1��2
D��1�=�D�3��1��2

D�gK1

�
16b4

�1� �2
D�

2

D� 2

�D� 3�2
��2f��D�3��1��2

D��2�=�D�3��1��2
D�gK2; (28)
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where

K1 �

�
�3D� 8� � �D� 2�

1� �2
D

1� �2
D

b2�2

�
2
; (29)

K2 �
2

�D� 3��1� �2
D�

2

�
b2�2

�

�
2
�

�
1� 2

b2�2

�

�
2

�

�
1�

2

1� �2
D

b2�2

�

�
2
: (30)
IV. DILATON-SCHWARZSCHILD-MELVIN
SPACETIMES

Let us consider the D-dimensional, spherically symmet-
ric Schwarzschild-Tangherlini black hole spacetimes given
by the metric [7]

ds2
D � �
�r�dt

2 �
dr2


�r�
� r2d�2

D�2; (31)

where


�r� � 1�
�

rD�3 (32)

and d�2
D�2 is the line element of the unit �D�

2�-dimensional sphere. The parameter �> 0 is related to
the black hole mass via the relation1

M �
��D� 2�

16�
�D�2: (33)

It is convenient to present the line element d�2
D�2 in the

form

d�2
D�2 � cos2�d�2

D�4 � d�
2 � sin2�d	2 (34)

or

ds2
D � �
�r�dt

2 �
dr2


�r�
� r2 cos2�d�2

D�4 � r
2d�2

� r2 sin2�d	2: (35)

The Killing vector @=@	 is spacelike and hypersurface
orthogonal, and, therefore, we can consider the Harrison
transformation associated with it. Since the Schwarzschild-
Tangherlini is characterized with the trivial dilaton and
electromagnetic field we find

� � 1� b2r2 sin2�: (36)
1��D�2� is the area of the unit �D� 2�-dimensional sphere.
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The new solution generated by the Harrison transforma-
tion is

ds02 � �2=�D�3��1��2
D�

�
�
�r�dt2 �

dr2


�r�

� r2 cos2�d�2
D�4 � r

2d�2

�
���2=�1��2

D�r2 sin2�d	2;

e�2�’0 � �2�2
D=�1��

2
D�;

A0	 � ��1

�������������������
D� 2

2�D� 3�

s
b����������������

1� �2
D

q r2sin2�:

(37)

This solution reduces to that of the EM gravity [49] for
� � 0.

The constant b introduced by the Harrison transforma-
tion parametrizes the strength of the magnetic field. In
order to find the relation between the parameter b and
the asymptotic magnetic field B let us consider the invari-
ant

1

2
F��F�� � 2

�D� 2�

�D� 3�

b2

1� �2
D

�
�r�sin2�� cos2��

���2�D�4�=�D�3��1��2
D���4: (38)

This invariant takes the constant value B2 at the ‘‘axis’’
� � 0

B2 � 2
�D� 2�

�D� 3�

b2

1� �2
D

(39)

which gives the relation between the asymptotic magnetic
field and the parameter b.

The magnetized solution (37) has a single horizon lo-
cated where 
�r� � 0, i.e. rh � �. As in the case of EM
gravity the location of the horizon is not affected by the
value of the dilaton and magnetic field. The horizon is
regular and the spacetime can be extended across the
horizon by the standard techniques. The curvature invari-
ants diverge at r � 0 indicating the presence of a curvature
singularity there. As an illustrative example we may con-
sider the Ricci scalar curvature

R �
4b2

1� �2
D

��2f�1��D�3��1��2
D��=�D�3��1��2

D�g

�

�
D� 2

D� 3

�2
D

1� �2
D

r2 sin2��
D� 4

D� 3

�

�

�
1�

�

rD�3 sin2�
�
: (40)

For r! 1 the solution tends to the D-dimensional
dilaton-Melvin solution (25), which can be obtained by
setting � � 0. The connection between the coordinates of
(25) and those of (37) is given by
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� � r sin�; (41)

�z2
1 � z

2
2 � 
 
 
 � z

2
D�3�

1=2 � r cos�; (42)

d�r cos��2 � �r cos��2d�2
D�4

� dz2
1 � dz

2
2 � 
 
 
 � dz

2
D�3: (43)

The solution (37) can be interpreted as a black hole in
the dilaton-Melvin background (or dilaton-Melvin
Universe). As should be expected, the background deforms
the black hole horizon and its geometry is now different
from that of the round �D� 2�-dimensional sphere of
radius rh. The geometry of the horizon is given by the
line element

ds2
h � �

2=�D�3��1��2
D�

h �r2
h cos2�d�2

D�4 � r
2
hd�

2�

��
�2=�1��2

D�

h r2
h sin2�d	2; (44)

where

�h � 1� b2r2
h sin2�: (45)

A good illustrative measure of the departure form sphe-
ricity is the Ricci scalar curvature of the horizon

Rh �
�
�2=�D�3��1��2

D�

h

r2
h

�
�D� 2��D� 3�

�
4b2r2

h

1� �2
D

��1
h

�D� 3�
�D cos2�� �D� 3�sin2��

�
4b4r4

h

1� �2
D

��2
h

�D� 3�

�
2�

1

1� �2
D

D2 � 5D� 8

D� 3

�

� sin2�cos2�
�
: (46)

As can be seen the Ricci scalar curvature differs from
that of the round �D� 2�-dimensional sphere of radius rh,
RD�2 � �D� 2��D� 3�=r2

h. The background deforms the
horizon but preserves the horizon area since the Harrison
transformation leaves the determinant of the horizon met-
ric invariant. Therefore the horizon area of the magnetized
black hole is that of the Schwarzschild-Tangherlini black
hole

A h � �D�2r
D�2
h : (47)

The horizon temperature can be found by
Euclideanizing the metric and the result is

T �
1

2�
�D� 3��

rD�2
h

�
1

4�
D� 3

rh
(48)

and is the same as for the Schwarzschild-Tangherlini black
hole.
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It is interesting to compute the magnetic flux across a
portion � of the horizon. The flux is found to be

� �
I
@�
A0	 �

B�r2
h sin2�

1� �D�3�
2�D�2� �1� �

2
D�B

2r2
h sin2�

: (49)

For weak magnetic fields the flux is proportional to the
magnetic field strength, while it tends to zero for B! 1.
There is a maximum of the magnetic flux for intermediate
values of B which is a consequence of the concentration of
the magnetic field under its self-gravity.

In order to compute the black hole mass we use the
quasilocal formalism approach (see Appendix A). Fol-
lowing this approach we decompose the metric into the
form

ds02 � �N2dt2 � �ij�dx
i � Nidt��dxj � Njdt�; (50)

where

N2 � �2=�D�3��1��2
D�
�r�; (51)

Ni � 0; (52)

�ijdxidxj � �2=�D�3��1��2
D�

�
dr2


�r�
� r2 cos2�d�2

D�4

� r2d�2

�
���2=�1��2

D�r2 sin2�d	2: (53)

Further we consider the �D� 2�-dimensional surfaces
Srt with the unit spacelike normal nr �

�������
�rr
p @

@r and metric

�abdxaxb � �2=�D�3��1��2
D��r2 cos2�d�2

D�4 � r
2d�2�

���2=�1��2
D�r2 sin2�d	2: (54)

The extrinsic curvature is

k � �
�D� 2�

���������

�r�

p
r

��1=�D�3��1��2
D�

� ��1=�D�3��1��2
D�~k; (55)

where ~k is the extrinsic curvature for the Schwarzschild-
Tangherlini solution.

The natural background is obviously the dilaton-Melvin
spacetime for which

k0 � �
�D� 2�

r
��1=�D�3��1��2

D� � ��1=�D�3��1��2
D�~k0:

(56)

Taking into account that

����
�
p

N �
���������

�r�

p
rD�2�1=�D�3��1��2

D�
�������������������
det�D�2

p
� �1=�D�3��1��2

D�
����
~�
p

~N (57)
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we find

E�r� �
�D� 2��D�2

8�
rD�3

���������

�r�

p
�1�

���������

�r�

p
�: (58)

These explicit calculations show that the contribution of
the background cancels out and as a final result we obtain

M � lim
r!1

E�r� �
��D� 2��D�2

16�
; (59)

which is exactly the Schwarzschild-Tangherlini black hole
mass. In this way we see that the mass of the black hole is
not affected by the background. This a general result for
the mass and angular momentum of black holes in the
dilaton-Melvin background and it is proven in
Appendix A. Moreover, we have shown that all thermody-
namical quantities of the black hole remain the same
independently of the external magnetic field. Moreover,
as shown in Appendix A the physical Euclidean action of
the Schwarzschild-Tangherlini solution and its magnetized
version coincide:

IP � ~IP: (60)

Therefore the black hole thermodynamics is not affected
by the background just as in the four-dimensional case
[57].

V. DILATON-MYERS-PERRY-MELVIN
SPACETIMES

The Myers-Perry black holes [8] are generalizations of
the four-dimensional Kerr solution to higher dimensions.
These solutions are described in different forms depending
on whether the spacetime is even or odd dimensional. Here
we consider the odd dimensional case. The even dimen-
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sional case is treated in the same way. In spacetime with an
odd number of dimensions the Myers-Perry solution with
one of the spin parameters set to zero (say a1 � 0) is given
by

ds2 � �dt2 �
X�D�1�=2

i�2

�r2 � a2
i ��d�

2
i ��

2
i d	

2
i �

�
�r2

�F

 
dt�

X�D�1�=2

i�2

ai�
2
i d	i

!
2

�
�F

���r2 dr
2 � r2d�2

1 � r
2�2

1d	
2
1; (61)

where

F � 1�
X�D�1�=2

i�2

a2
i �

2
i

a2
i ��

2
i

; (62)

� � r2
Y�D�1�=2

i�2

�r2 � a2
i �; (63)

X�D�1�=2

i�1

�2
i � 1: (64)

The Myers-Perry solution (in odd dimensions) admits
�D� 1�=2 commuting spacial Killing vectors @=@	i.
What is important for us is that the Killing vector @=@	1

is hypersurface orthogonal since we have set a1 � 0.
Therefore, we can apply the Harrison transformation asso-
ciated with this Killing vector to the Myers-Perry solution.
Doing so we find
ds02 � �2=�D�3��1��2
D�

"
�dt2 �

X�D�1�=2

i�2

�r2 � a2
i ��d�

2
i ��

2
i d	

2
i � �

�r2

�F

 
dt�

X�D�1�=2

i�2

ai�2
i d	i

!
2

�
�F

���r2 dr
2 � r2d�2

1

#
���2=�1��2

D�r2�2
1d	

2
1;

A0	1
� ��1

�
D� 2

2�D� 3�

�
1=2 b����������������

1� �2
D

q r2�2
1;

e�2�’0 � �2�2
D=�1��

2
D�; (65)
2In general, for even and odd dimensions, we have D � 6.
where

� � 1� b2r2�2
1:

The outer event horizon is determined as the largest
(real) root of grr � 0. In explicit form the equation for
the horizon is given by

���r2 � r2

" Y�D�1�=2

i�2

�r2 � a2
i � ��

#
� 0; (66)
and coincides with that for the Myers-Perry solution. As it
is known this equation has a positive root independent of
the magnitude of ai for2 D � 7, i.e. there exist black holes
with arbitrary angular momentum for D � 7. In five di-
mensions, however, there is an upper bound for the angular
momentum. In the limit r! 1 we obtain the dilaton-
-6
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Melvin background with asymptotic magnetic field

B �
�

2
�D� 2�

�D� 3�

�
1=2 b����������������

1� �2
D

q : (67)

Therefore, the solution can be interpreted as a rotating
black hole in the dilaton-Melvin background.

The geometry of the horizon is described by the line
element

ds2
h � �

2=�D�3��1��2
D�

h

" X�D�1�=2

i�2

�r2
h � a

2
i ��d�

2
i ��

2
i d	

2
i �

�
�r2

h

�hFh

 X�D�1�=2

i�2

ai�2
i d	i

!
2

� r2
hd�

2
1

#

��
�2=�1��2

D�

h r2
h�

2
1d	

2
1; (68)

where the subscript h means that the corresponding quan-
tity is evaluated on the horizon. As in the static case, this
metric describes the distorted �D� 2�-dimensional sphere.
The area of the horizon is

A h � �D�2rh
Y�D�1�=2

i�2

�r2
h � a

2
i � (69)

which coincides with that of the Myers-Perry solution.
This is, as we have already mentioned, a consequence of
the fact that the Harrison transformation preserves the
volume element of the horizon metric.

In order to compute mass and the angular momenta of
the black hole we use the quasilocal formalism given in
Appendix A. The contribution of the background cancels
out and the mass, angular momenta, and horizon angular
velocity are the same as for the Myers-Perry solution:

M �
��D� 2�

16�
�D�2; (70)

Ji �
�ai
8�

�D�2; (71)

!i �
ai

r2
h � a

2
i

: (72)

We also find that the temperature is not affected by the
background and is given by

T �
1

2�

X�D�1�=2

i�2

rh
r2
h � a

2
i

: (73)

The same is true for the Euclidean action, IP � ~IP (see
Appendix A). As in the static case, although the back-
ground deforms the horizon it does not affect the black
hole thermodynamics. This seems to be a consequence of
the fact that the vector potential is parallel to the non-
rotating Killing vector and the magnetic field and the
rotation do not couple. In a more general case when the
064008
Harrison transformation is associated with a rotating
Killing vector one should expect that the external magnetic
field will influence the black hole thermodynamics via the
coupling with the rotation, as in four dimensions [57].
VI. BLACK RINGS IN DILATON-MELVIN
BACKGROUND

The black ring metric is given by [10]

ds2
5 � �

F�y�
F�x�

�
dt� C��; 
�R

1� y
F�y�

d 
�

2

�
R2

�x� y�2
F�x�

�
�
G�y�
F�y�

d 2 �
dy2

G�y�
�
dx2

G�x�

�
G�x�
F�x�

d	2

�
; (74)

where

F�x� � 1� 
x; G�x� � �1� x2��1� �x�; (75)

and

C��; 
� �

��������������������������������

�
� ��

1� 

1� 


s
: (76)

The coordinates x and y vary within the ranges

�1  x  1; �1< y  �1; (77)

and the parameters 
 and � within

0< �  
 < 1: (78)

In order to avoid conical singularities at y � �1 and
x � �1 the angular variables must be identified with pe-
riodicity

� � �	 � 2�

�������������
1� 

p

1� �
: (79)

To avoid a conical singularity at x � 1 the parameters 

and � must be related as


 �
2�

1� �2 : (80)

With these choices, the solution has a regular horizon of
topology S2 � S1 at y � �1=� and ergosurface of the
same topology at y � �1=
. Asymptotic spatial infinity
is at x! y! �1. The static solution is obtained for 
 �
� instead of (80). The black ring metric admits three
Killing vectors @=@t, @=@ , and @=@	. The Killing vector
@=@	 is spacelike and hypersurface orthogonal and the
Harrison transformation associated with it gives the fol-
lowing EMD solution:
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ds02 � �1=�1��2
5
�

�
�
F�y�
F�x�

�
dt� C��; 
�R

1� y
F�y�

d 
�

2

�
R2

�x� y�2
F�x�

�
�
G�y�
F�y�

d 2 �
dy2

G�y�
�
dx2

G�x�

��

���2=�1��2
5�R2 G�x�

�x� y�2
d	2; (81)

A0	 �

���
3
p

2

��1b���������������
1� �2

5

q R2 G�x�

�x� y�2
; (82)

e�2�’0 � �2�2
5
=�1��2

5
�; (83)

with

� � 1� b2R2 G�x�

�x� y�2
: (84)

The metric has a horizon at y � �1=� with topology
S2 � S1 and an ergosurface at y � �1=
 with the same
topology. The external fields do not affect the location of
the horizon and the ergosurface. Although the external
fields deform the horizon and the ergosurface, their topol-
ogy remains the same while the geometry is distorted. For
x; y! �1 the solution tends to the five-dimensional
dilaton-Melvin background with magnetic field

B �
1� ��������������
1� 

p

���
3
p

2

b����������������
1� �2

D

q : (85)

This can be seen by performing the coordinate trans-
formation

r cos� �

�������������
1� 

1� �

s
R

��������������
y2 � 1

p
x� y

; (86)

r sin� �

�������������
1� 

1� �

s
R

��������������
1� x2
p

x� y
; (87)

~ �
1� ��������������
1� 

p  ; (88)

~	 �
1� ��������������
1� 

p 	: (89)

The solution then can be interpreted as a rotating black
ring in the dilaton-Melvin background.

As in the previous cases, the background does not affect
the black ring thermodynamics and the physical quantities
characterizing the magnetized black ring are the same as
for the neutral black ring solution:

M �
3�
4

R2 

1� �

; (90)
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J �
�R3

2

�����������������������������������

�
� ���1� 
�

p
�1� ��2

; (91)

A h � 8�2R3

��������������������������
�3
�1� 
2�

p
�1� �2��1� ��

; (92)

! �
1

R

�������������������

� �

�1� 
�

s
; (93)

T �
1� �
4�R

����������������������
1� 


�
�1� 
�

s
: (94)

Here ! is the angular velocity of the horizon.
VII. DIPOLE BLACK RINGS IN DILATON-MELVIN
BACKGROUND

The dipole black rings are solutions of the EMD gravity
equations given by [23]

ds2
5 � �

F�y�
F�x�

�
H�x�
H�y�

�
1=�1��2

5
�
�
dt� C��; 
�R

1� y
F�y�

d 
�

2

�
R2F�x�

�x� y�2
�H�x�H2�y��1=�1��

2
5
�

�

�
�

G�y�

F�y�H3=�1��2
5
��y�

d 2 �
dy2

G�y�
�
dx2

G�x�

�
G�x�

F�x�H3=�1��2
5��x�

d	2

�
; (95)

e�2�’ �

�
H�x�
H�y�

�
2�2

5
=�1��2

5
�

; (96)

A	 �

���
3
p

2
���������������
1� �2

5

q C��;���R
1� x
H�x�

: (97)

The functions F�x�, G�x�, and C�
; ��, the range of the
coordinates x, y and the parameters 
, � are the same as in
the case of the neutral black ring. The function H�x� is
given by

H�x� � 1��x; (98)

where 0  �< 1.
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The possible conical singularities at x � �1 and y �
�1 are avoided by setting

� � �	 � 2�
�1���3=2�1��2

5
�

1� �

�������������
1� 

p

: (99)

The avoidance of the conical singularity at x � 1 simul-
taneously with (99) is achieved only if

1� 

1� 


�
1��
1��

�
3=�1��2

5�
�

�
1� �
1� �

�
2
: (100)

The solution has a regular outer horizon of topology
S2 � S1 at y � �1=�. There is also an inner horizon at y �
�1. The metric can be continued beyond this horizon to
positive values of y until y � 1=� which is a curvature
singularity. The extremal limit when the two horizons
coincide is achieved for � � 0. In addition there is an
ergosurface with ring topology at y � �1=
.
064008
The dipole black rings carry local magnetic charge [23]
given by

Q �

���
3
p

R

2
���������������
1� �2

5

q �1����2��
2
5
�=2�1��2

5
�

�1� ��

�

������������������������������������
���� ���1� 
�

1��

s
: (101)

Therefore the dipole rings are specified by the three
physical quantities M, J, and Q. The local charge is
independent of the mass M and the angular momentum J
and is a classically continuous parameter. This implies
infinite classical nonuniqueness in five dimensions.

The Harrison transformation generates the following
new EMD solution:
ds025 � �1=�1��2
5
�

�
�
F�y�
F�x�

�
H�x�
H�y�

�
1=�1��2

5
�
�
dt� C��; 
�R

1� y
F�y�

d 
�

2
�

R2F�x�

�x� y�2
�H�x�H2�y��1=�1��

2
5
�

�

�
�

G�y�

F�y�H3=�1��2
5��y�

d 2 �
dy2

G�y�
�
dx2

G�x�

��
���2=�1��2

5
�R

2G�x�

�x� y�2

�
H�y�
H�x�

�
2=�1��2

5
�
d	2; (102)

A0	 � ��1

�
A	 �

���
3
p
b

2
���������������
1� �2

5

q �
R2G�x�

�x� y�2

�
H�y�
H�x�

�
2
�

4

3
�1� �2

5�A
2
	

��
; (103)
e�2�’0 �

�
H�x�
H�y�

�
2�2

5
=�1��2

5
�

�2�2
5
=�1��2

5
�; (104)

where

� � b2 R
2G�x�

�x� y�2

�
H�y�
H�x�

�
2
�

�
1�

2b���
3
p

���������������
1� �2

5

q
A	

�
2
:

(105)

To avoid conical singularities at x � �1 and y � �1
the angular coordinates must have periodicity given by
(99). The balance between the forces in the ring will be
achieved when, in addition, there are no conical singular-
ities at x � 1. Since the ring is carrying a local magnetic
charge there will be an additional force caused by the
coupling between the local charge and the external mag-
netic field. This force manifests itself by the presence of the
external magnetic field strength (via the parameter b) in the
equilibrium condition

1� 

1� 


�
1��
1��

�
3=�1��2

5
�
��3=�1��2

5
�jx�1 �

�
1� �
1� �

�
2
:

(106)

After performing the coordinate transformation (86) one
can show that for x! y! �1 the solution asymptotes the
five-dimensional dilaton-Melvin solution with asymptotic
magnetic field
B � �1����3=2�1��2
5�
�1� ���������������

1� 

p

���
3
p

2

b����������������
1� �2

D

q : (107)
The magnetized dipole ring solution has a regular outer
horizon of topology S2 � S1 at y � �1=� and an ergosur-
face at y � �1=
 with the same topology. There is also an
inner horizon at y � �1. The metric can be continued
beyond this horizon to positive values of y until y � 1=�
which is a curvature singularity. The extremal limit when
the two horizons coincide is achieved for � � 0.

The external magnetic field does not affect the values of
the mass, angular momentum, and the horizon area and
they are the same as for the seed solution (see Appendix A)
M �
3�R2

4

�1���3=�1��
2
5
�

1� �

�

�

1

1� �2
5

��1� 
�
1��

�
;

(108)
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J �
�R3

2

�1���9=2�1��2
5
�

�1� ��2
�����������������������������������

�
� ���1� 
�

p
; (109)

Ah � 8�2R3 �1���
3=�1��2

5
�

�1� ��2�1� ��

� �3�2
5
=2�1��2

5
���� ��3=2�1��2

5
�
���������������������

�1� 
2�

q
: (110)

The same is true also for the angular velocity of the
horizon and the temperature

! �
1

R
�1����3=2�1��2

5�

�������������������

� �

�1� 
�

s
; (111)

T �
1

4�R
��2��

2
5
�=2�1��2

5
��1� ��

��� ��3=2�1��2
5
�

�������������������
1� 


�1� 
�

s
: (112)

The local charge of the magnetized ring is

Q �

���
3
p

R

2
���������������
1� �2

5

q �1����2��
2
5
�=2�1��2

5
�

�1� ��

�

������������������������������������
���� ���1� 
�

1��

s
��1=2�1��2

5
�jx�1: (113)

The Euclidean action of the magnetized solution is
independent of the magnetic field and coincides with that
of the seed solution, IP � ~IP [note, however, that the
balance condition (106) does involve the strength of the
external magnetic field]. At first sight, it seems strange that
the thermodynamics is not affected by the external mag-
netic field. One might expect that the coupling between the
local magnetic charge and the external magnetic field
would affect the thermodynamics. In fact, a similar phe-
nomena is well known in the classical statistical physics—
the external magnetic field does not affect the classical
partition function (the so-called Van Leeuwen’s theorem
for the nonexistence of diamagnetism in classical physics
[58]).

It is interesting to consider the static limit of the mag-
netized dipole ring solution. This limit is obtained for 
 �
�. In the static case the conditions for the absence of
conical singularities are reduced to

� � �	 � 2�
�1���3=2�1��2

5
��������������

1� 

p (114)

and �
1��
1��

�
3=�1��2

5
�

��3=�1��2
5
�jx�1 �

�
1� 

1� 


�
: (115)

Equation (115) can be solved to determine B as a func-
tion of the parameters 
 and �. In other words the external
magnetic field can always be chosen such that to cancel the
conical singularity and to support the static ring in equi-
064008
librium. Therefore, there exist static dipole black rings
with regular horizons in the external magnetic field. This
is possible because of the coupling between the external
magnetic field B and the local charge Q. The magnetized
static dipole black rings provide infinite examples of regu-
lar, static black holes with horizon topology different from
that of the Schwarzschild-Tangherlini black holes, but with
the same mass and asymptotics.
VIII. CONCLUSION

In this paper we presented explicit solutions describing
magnetized black holes and black rings in the higher
dimensional dilaton gravity. The basic physical quantities
of the magnetized black objects were calculated and some
of their properties were discussed. In particular we have
shown that the external magnetic field deforms the black
holes horizon but it does not change the horizon area.
Moreover, we have shown that the external magnetic field
does not affect the thermodynamics of the black objects.
This seems to be related to the fact that the electromagnetic
potential is parallel to the nonrotating Killing vector which
means that there is no coupling between the rotations and
the magnetic field. In the more general case of the rotating
Killing vector we expect that the external field will influ-
ence the black hole thermodynamics as in the four dimen-
sions [57]. The general case, however, requires more
sophisticated mathematical techniques and we will address
this question in a future work. We also discussed briefly the
ultrarelativistic limits of the magnetized solutions and gave
an explicit example for the D-dimensional Schwarzschild-
Tangherlini solution. The ultrarelativistic limits of the
magnetized black holes and black rings might be useful
in the theoretical study of the black hole production in the
near-future accelerators.3
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APPENDIX A: QUASILOCAL FORMALISM

Here we briefly discuss the quasilocal formalism in
EMD gravity [59]. The spacetime metric can be decom-
posed into the form

ds2 � �N2dt2 � �ij�dx
i � Nidt��dxj � Njdt�; (A1)

where N is the lapse function and Ni is the shift vector.
This decomposition means that the spacetime is foliated

by spacelike surfaces �t of metric ��� � g�� � u�u�,
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labeled by a time coordinate t with a unit normal vector
u� � �N�0 . A timelike vector ��, satisfying ��r�t �
1, is decomposed into the lapse function and shift vector as
�� � Nu� � N�. The spacetime boundary consists of the
initial surface �i (t � ti) and the final surface �f (t � tf)
and a timelike surface B to which the vector u� is tangent.
The surface B is foliated by �D� 2�-dimensional surfaces
Srt , of metric ��� � ��� � n�n�, which are intersections
of �t and B. The unit spacelike outward normal to Srt , n� is
orthogonal to u�.

In order to have a well-defined variational principle we
must supplement the action (1) with the corresponding
boundary term:

S�
1

16�

Z
dDx

�������
�g
p

�R� 2g��@�’@�’� e
�2�’F��F���

�
1

8�

Z �f

�i

K
����
�
p

dD�1x�
1

8�

Z
B

�
����
�
p

dD�1x: (A2)

K is the trace of the extrinsic curvature K�� of �ti;f and
� is the trace of the extrinsic curvature ��� of B, given by

K�� � �
1

2N

�@���
@t
� 2D

��N��

�
; (A3)

��� � ����r�n�; (A4)

wherer� andD� are the covariant derivatives with respect
to the metrics g�� and �ij, respectively.

The quasilocal energy and angular momentum are given
by

E �
1

8�

Z
Srt

����
�
p

�
N�k� k0� �

n�p��N�����
�
p

�
dD�2x

�
1

4�

Z
Srt

A0��̂
j � �̂j

0�njd
D�2x; (A5)

Ji � �
1

8�

Z
Srt

n�p
�
i����
�
p

����
�
p

dD�2x�
1

4�

Z
Srt

Ai�̂
jnjdD�2x:

(A6)

Here k � ����D�n� is the trace of the extrinsic cur-
vature of Srt embedded in �t. The momentum variable pij

conjugated to �ij is given by

pij �
����
�
p
��ijK � Kij�: (A7)

The quantity �̂j is defined by

�̂ j � �

����
�
p����
�
p

�������
�g
p

e2�’F0j: (A8)

The quantities with the subscript ‘‘0’’ are those associ-
ated with the background. Detailed discussion of the qua-
silocal formalism can be found in [59].

Let us denote by a tilde all quantities which refer to the
seed solution. Then the Harrison transformation gives a
064008
new solution which is characterized with the following
quantities:

N � �1=�D�3��1��2
D� ~N; (A9)

Nî � ~Nî; (A10)

Ny � ~Ny � 0; (A11)

�ijdxidxj � �2=�D�3��1��2
D� ~�î ĵdx

îdxĵ

���2=�1��2
D� ~�yydy

2; (A12)

�abdx
adxb � �2=�D�3��1��2

D� ~�â b̂dx
âdxb̂

���2=�1��2
D� ~�yydy

2; (A13)

where î and â take the same values as i and a except for
i � y and a � y. It is easy to see that

� � �2=�D�3��1��2
D� ~�; (A14)

� � ~�: (A15)

For the cases considered in this paper we have

k � ��1=�D�3��1��2
D�~k; (A16)

k0 � ��1=�D�3��1��2
D�~k0; (A17)

K�
i � ��1=�D�3��1��2

D� ~K�
i : (A18)

Taking into account these results and the fact that in our
case A0 � 0 and �̂j � 0 we find

E �
1

8�

Z
Srt

����
�
p

�
N�k� k0� �

n�p��N�����
�
p

�
dD�2x

�
1

8�

Z
Srt

����
~�
p �

~N�~k� ~k0� �
~n� ~p�� ~N�����

�
p

�
dD�2x � ~E;

(A19)

Ji � �
1

8�

Z
Srt

n�p
�
i����
�
p

����
�
p

dD�2x

� �
1

8�

Z
Srt

~n� ~p�i����
~�
p

����
~�
p

dD�2x � ~Ji: (A20)

Therefore the Harrison transformation leaves the quasi-
local mass and angular momenta of the seed solution
unchanged. In the same way one can show that the
Euclidean action [i.e. the Euclideanized version of (A2)]
of the magnetized solutions with respect to the dilaton-
Melvin background IP coincide with that of the corre-
sponding seed solutions (with respect to the Minkowski
background)

IP � ~IP: (A21)
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4This is possible, since, in our cases, the Aichelburg-Sexl limit
and the Harrison transformation commute as one can see.
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It is worth noting that the Euclideanization of the dipole
black rings is subtle. In fact, as shown in [24], we are
forced to work with a complex geometry. Nevertheless, the
final result gives a real action.

APPENDIX B: ULTRARELATIVISTIC LIMITS

The ultrarelativistic limit of the Schwarzschild-
Tangherlini spacetime is obtained via the Aichelburg-
Sexl procedure, i.e. by boosting the Schwarzschild-
Tangherlini black hole to the speed of light [60].
Performing a Lorentz boost in the z1 direction and taking
the limit V ! 1 while keeping the ratio p � M=

���������������
1� V2
p

fixed we obtain the ultrarelativistic limit of the
Schwarzschild-Tangherlini spacetime

ds2 � 2dud�� dz2
2 � 
 
 
 � dz

2
D�3 � d�

2 � �2d	2

�H�u�du2; (B1)

where

u �
z1 � t���

2
p ; � �

z1 � t���
2
p ; (B2)

H � �8
���
2
p
p ln� �D � 4�; (B3)

H �
16�

���
2
p
p

�D� 4��D�3�z2
2 � z

2
3 � 
 
 
 � z

2
D�3 � �

2��D�4�=2

�D> 4�:

(B4)

The ultrarelativistic limit of the dilaton-Schwarzschild-
Melvin solution can be found by applying the Harrison
064008
transformation4 to the ultrarelativistic limit of the
Schwarzschild-Tangherlini spacetime and the result is

ds2 ��2=�D�3��1��2
D��2dud��dz2

2�

 
� dz
2
D�3�d�

2�

���2=�1��2
D��2d	2��2=�D�3��1��2

D�H�u�du2:

(B5)

The dilaton field and the magnetic field are invariant
under the Lorentz boost in the z1 direction and remain
unchanged. The metric (B5) represents an impulsive gravi-
tational wave propagating in the dilaton-Melvin back-
ground (Universe) along the z1 direction. The impulsive
wave front corresponds to the null hypersurface u � 0. On
the impulsive wave front the metric is given by

ds2 � �2=�D�3��1��2
D��dz2

2 � 
 
 
 � dz
2
D�3 � d�

2�

���2=�1��2
D��2d	2: (B6)

This metric does not depend on time and, therefore, the
impulsive wave is nonexpanding. In addition the explicit
form of the metric shows that the impulsive wave front is
curved (for b � 0).

The ultrarelativistic limits of the other magnetized so-
lutions can be found in the same manner by applying the
Harrison transformation to the ultrarelativistic limits of
their seed solutions (see [61–63]).
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