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Unstable giant gravitons
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We find giant graviton solutions in Frolov’s three parameter generalization of the Lunin-Maldacena
background. The background we study has ~�1 � 0 and ~�2 � ~�3 � ~�. This class of backgrounds provides
a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantita-
tively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a
greater energy than the point gravitons, making them unstable states. Despite this, we find striking
quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the
giant.
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I. INTRODUCTION

The anti de Sitter/conformal field theory (AdS/CFT)
correspondence [1] provides a new approach to the study
of non-Abelian gauge theories. One may hope that ulti-
mately it may even be used to understand nonperturbative
aspects of QCD, which is, at the time of writing, a formi-
dable problem. If this hope is ever to be realized, we must
gain an understanding of the gauge theory/gravity corre-
spondence in situations with no supersymmetry or confor-
mal symmetry. Recently, a significant step in this direction
was achieved by Lunin and Maldacena [2], who identified
the gravitational dual of � deformed N � 4 super Yang-
Mills theory. The dual gravitational theory has an AdS5

times a deformed S5 geometry. Since the AdS5 factor is not
deformed, the field theory is still conformally invariant.
However, it only has N � 1 supersymmetry. This defor-
mation was further generalized by Frolov [3] who gave a
background determined by three parameters that, in gen-
eral, preserves no supersymmetry. The gauge theory/grav-
ity correspondence for this background was explored in
detail by Frolov, Roiban, and Tseytlin [4]. These authors
went on to show a quantitative agreement between the
semiclassical energies of strings with large angular mo-
mentum and the one-loop anomalous dimensions of the
corresponding gauge theory operators. This is a significant
result. The gauge theory/gravity correspondence is a strong
weak coupling duality in the ’t Hooft coupling. At weak
coupling, computations in the field theory are straightfor-
ward; the dual gravitational theory, however, has a highly
curved geometry. At strong coupling, computations in the
field theory are not (in general) under control; in this case
curvature corrections in the dual gravitational theory can
be neglected. The correspondence is usually explored by
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computing ‘‘nearly protected quantities.’’ These can be
computed at weak coupling in the field theory. Since they
are nearly protected, they can reliably be extrapolated to
the strong coupling regime where comparison with the dual
gravity theory is possible. Typically, one appeals to the
supersymmetry of the problem to find these nearly pro-
tected quantities. The agreement of [4] is striking because
it provides an example of quantitative agreement between
the gravity and field theory descriptions, in a setting with-
out any supersymmetry. It is important to see how far this
quantitative agreement in nonsupersymmetric settings can
be extended. This is the primary motivation for our work.

Giant gravitons [5–7] provide a very natural framework
for the study of nonperturbative effects in the string theory,
in supersymmetric examples of the gauge theory/gravity
correspondence. Since giant gravitons are Bogomol’nyi-
Prasad-Sommerfield (BPS) objects, they lead to effects that
are protected and hence may be extrapolated between
strong and weak coupling. Moreover, they have a simple
description in terms of a string world-sheet theory—to
leading order they simply determine the boundary condi-
tions for strings with no other effect on the world-sheet
sigma model. Much is also known about giant gravitons in
the dual field theory. Operators dual to giant gravitons have
been studied in both the U�N� [8] and the SU�N� [9] gauge
theories. These half BPS states also have a simple descrip-
tion in terms of free fermions for a one matrix model [10]
which has recently been connected to a description which
accounts for the full backreaction of the geometry in the
supergravity limit [11]. A tantalizing attempt to go beyond
one matrix dynamics has appeared in [12]. Further, the
technology needed to study strings attached to giant grav-
itons is well developed [13,14]. Given the recent progress
in constructing nonsupersymmetric examples of the gauge
theory/gravity correspondence, it seems natural to ask if
there are giant graviton solutions in these new geometries.
We will construct giant gravitons for the deformed back-
ground with ~�1 � 0 and ~�2 � ~�3 � ~�.
-1 © 2006 The American Physical Society
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A particularly efficient way to organize and sum the
Feynman diagrams of the field theory is through the use
of a spin chain [15]. In this approach, one identifies the
dilatation operator of the field theory with the Hamiltonian
of the spin chain. Constructing operators with a definite
scaling dimension as well as the spectrum of scaling di-
mensions becomes the problem of diagonalizing the spin
chain Hamiltonian. This approach has been extremely
powerful because it allows one to identify and match the
integrability of the gauge theory dilatation operator [16]
with that of the world-sheet sigma model [17]. Under-
standing the field theory beyond the one-loop approxima-
tion involves studying spin chains with a varying number
of sites [18]. In this article we would like to use the spin
chain approach to study operators dual to open strings
attached to giant gravitons. For nonmaximal giants this
again corresponds to studying a spin chain with a variable
number of sites. A very convenient approach to these
problems has been developed in [19]. The idea is to map
the spin chain into a dual boson model on a lattice. For the
boson model, the number of sites is fixed; the variable
number of sites in the original spin chain is reflected in
the fact that the number of bosons in the dual boson model
is not conserved. In this article we will construct the boson
lattice model which describes open strings attached to
giant gravitons in the deformed background.

Apart from the three parameter deformed backgrounds
studied in this article, there have been many other interest-
ing developments following Lunin and Maldacena’s work.
In [20] energies of semiclassical string states in the Lunin-
Maldacena background were matched to the anomalous
dimensions of a class of gauge theory scalar operators. The
spin chain for the twisted N � 4 super Yang-Mills has
been studied in [21]. The logic employed by Lunin and
Maldacena to obtain the gravitational theory dual to the
deformed field theory has been extended in a number of
ways. Recently, instead of deforming the N � 4 super
Yang-Mills theory, deformations of N � 1 and N � 2
theories have been considered [22]. Further, deformations
of 11 dimensional geometries of the form AdS4 � Y7 with
Y7 a seven dimensional Sasaki-Einstein [23,24] or weakG2

or tri-Sasakian [24] space have been considered. The
pp-wave limit of the Lunin-Maldacena background, and
the relation to BMN [25] operators in the dual field theory,
has been considered in [26]. Recent studies of the
�-deformed field theory include [27]. Semiclassical strings
were studied in [28]. Finally, in [29], interesting instabil-
ities in the general three parameter backgrounds have been
discovered.

Our paper is organized as follows: In the next section we
give an ansatz for the giant graviton solutions. These giant
gravitons blow up in the deformed S5 of the geometry. We
compute the energy and show that the energy of the point
graviton is lower than that of the giant graviton, making the
giant graviton an unstable state. In Sec. III we explicitly
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demonstrate that the giant graviton extremizes the action.
Further, we study vibration modes of the giant arising from
the excitation of the AdS5 coordinates. In contrast to the
AdS5 � S5 vibration spectrum, we find that the frequencies
of these modes does depend on the radius of the giant. We
recover the AdS5 � S5 vibration spectrum for large giants.
Our results show that the giant graviton is perturbatively
stable. We construct a bounce solution to the Euclidean
equations of motion, demonstrating that the giant graviton
is corrected by quantum tunneling. In Sec. IV we compute
the Hamiltonian of the lattice boson model. The energies of
this Hamiltonian give the anomalous dimensions of the
operators dual to open strings ending on the giant. Using
coherent states, we obtain an action governing the semi-
classical dynamics of these strings. We find complete
agreement with the semiclassical dynamics following
from the dual string sigma model. In Sec. V we summarize
and discuss our results.
II. GIANT GRAVITON SOLUTIONS

In this section we will obtain giant graviton solutions in
the deformed background. The giant graviton solutions we
consider are D3 branes that have blown up in the deformed
sphere part of the geometry. Our ansatz for the giant, made
at the level of the action, assumes that it has a constant
radius and a constant angular velocity. This ansatz will be
justified in Sec. III where we will argue that our solution
does indeed extremize the action.

To write down the action for the D3 brane, we need the
metric and dilaton of the background (to write down the
Dirac-Born-Infeld term in the action), the Neveu Schwarz–
Neveu Schwarz (NS-NS) two form potential, and the
Ramond-Ramond (RR) two and four form potentials (to
write down the Chern-Simons terms in the action). The
AdS5 and the deformed sphere spaces are orthogonal to
each other,

ds2 � ds2
AdS5
� ds2

S5
def
:

We will use the following spacetime coordinates:

(1) F
-2
or AdS5 use �t; �1; �2; �3; �4�. In terms of these
coordinates, the metric is

ds2
AdS5
� �

 
1�

X4

k�1

�2
k

!
dt2

� R2

�
�ij �

�i�j
1�

P4
k�1 �

2
k

�
d�id�j:

These coordinates are useful when studying small
fluctuations of the giant graviton, since they make
the SO�4� subgroup of the SO�2; 4� isometry of
AdS5 manifest.
(2) F
or the deformed five sphere, use ��; �;�1; �2; �3�.
In terms of these coordinates, the metric is
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ds2
S5
def
� R2

 
d�2 � sin2�d�2 �G

X3

i�1

�2
i d�

2
i

!

� R2G�2
1�

2
2�

2
3

 X3

i�1

~�id�i

!
2

;

�1 � cos�; �2 � sin� cos�;

�3 � sin� sin�;

G�1 � 1� ~�2
1�

2
2�

2
3 � ~�2

2�
2
1�

2
3 � ~�2

3�
2
2�

2
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FIG. 1 (color online). The energy of the giant graviton versus
r=R for fixed angular momentum. For the plot shown, ~� � 0:4,
N � 10, and M � 7=N. The energy is shown in units of 1=R.
In terms of the dilaton �0 of the undeformed background,
the dilaton is

e� �
����
G
p

e�0 :

The dilaton of the undeformed background satisfies
R4e��0 � 4�Nl4s . The five form field strength of the back-
ground is

F5 � 4R4e��0�!AdS5
�G!S5�;

!S5 � cos�sin3� sin� cos�d�d�d�1d�2d�3:

Finally, the RR two form potential is

C2 � �4R2e��0!1d

 X3

i�1

~�i�i

!
;

d!1 � cos�sin3� sin� cos�d�d�;

and the NS-NS two form potential is

B � R2G!2;

!2 � ~�3�2
1�

2
2d�1d�2 � ~�1�2

2�
2
3d�2d�3

� ~�2�2
3�

2
1d�3d�1:

We will not consider the most general background with
three arbitrary parameters in this paper; from now on we
set ~�1 � 0 and ~� � ~�2 � ~�3.

To write down the D3 brane action

S � �
1

�2��3l4s

Z
d4ye��

���������������������������
j det�G� B�j

q
�
Z
C4

�
Z
C2 ^ B;

we will use static gauge

y0 � t; y1 � �; y2 � �2; y3 � �3:

Our ansatz for the giant graviton is � � �0, �1 � !t
where �0 and ! are constants, independent of y	. It is
now a simple matter to integrate the Lagrangian density
over y1, y2, and y3 to obtain the Lagrangian

L � �m
������������������
1� a _�2

1

q
� b _�1;
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where

m � 2�2r3 e��0

�2��3l4s
� N

r3

R4 ; a � R2 � r2;

b � 4N

"
~��

���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!

�
~��

���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
�2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!#

� N ~�2 r6�R2 � r2�

R8�1� ~�2 r2

R2 �1� r2

R2��
:

r � R sin�0 is the radius of the giant, T3 is the D3 brane
tension, and R is the radius of curvature of the AdS space
and the radius of the (undeformed) sphere. As a check of
our normalizations, we have verified that we recover the
undeformed Lagrangian [5] for giant gravitons in AdS5 �

S5 in the ~�! 0 limit. Solving for _�1 in terms of the
angular momentum

M �
@L

@ _�1

;

we obtain

_� 1 � �
M� b�����������������������������������������

a	M� b
2 �m2a2
p : (2.1)
-3
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FIG. 2 (color online). The energy of the giant graviton versus
r=R for fixed angular momentum. For the plot shown, N � 10
and M � 1=N. The solid line has ~� � 0, the dotted line ~� �
0:8, and the dashed line ~� � 1:6. The energy is shown in units of
1=R. As the deformation increases the giant graviton minimum is
raised until it is no longer a solution.
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The energy of the giant graviton is now easily computed,

E � _�1M� L �

����������������������������������
m2 �

	M� b
2

a

s
:

We determine �0 by minimizing the energy at fixed M.
The energy of the giant graviton is plotted in Fig. 1.

Clearly the energy of the point graviton is less than that
of the giant, so that the giant graviton will be an unstable
state. We will study the nature of this instability in the next
section. The contributions to the Chern-Simons four form
flux and C2 ^ B terms enter with opposite signs. At ~� � 0,
the C2 ^ B term vanishes, while the four form flux term is
nonzero. As ~� is increased, the C2 ^ B term grows faster
than the four form flux term. For large enough deforma-
tions, the C2 ^ B term dominates. Figure 2 shows that there
is a critical deformation beyond which there is no giant
graviton solution. This matches well with the study [30] of
giants in a constant NS-NS B field, in the maximally
supersymmetric type IIB-plane wave background. Other
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work on nonspherical giants and giants in a B field includes
[31].

III. FLUCTUATIONS

We have no guarantee that our ansatz of the previous
section in fact minimizes the action. In this section we
check that this is indeed the case and, further, we study the
spectrum of certain vibration modes of the giant. There are
a number of interesting questions that can be answered
using the vibration spectrum of giant gravitons. If our
giants belong to a family of solutions that all have the
same energy and angular momentum, there will be modes
with zero energy. Second, if our giant graviton solution is
(perturbatively) unstable, there will be tachyonic vibration
mode(s). The excitations we consider correspond to mo-
tions of the branes in spacetime. Consequently, we do not
consider the possibility of exciting fermionic modes or
gauge fields that live on the giant graviton’s world volume.
Our results show that the giant graviton is perturbatively
stable. Finally, we argue that the giant graviton is corrected
by quantum tunneling by constructing a bounce solution to
the Euclidean equations of motion.

Our ansatz for the giant graviton is

�i � 
��i; i � 1; 2; 3; 4;

� � �0 � 
��;

�1 � !t� 
��1:

�0 and ! are constants, independent of y	. Despite their
names, we have not yet given any reason to identify �0 and
! with the constants appearing in our ansatz of Sec. II. We
now plug this ansatz into the action and expand in 
. If the
linear order in 
 contribution to the action vanishes, for
! � _�1 computed using (2.1) and for the value of �0 that
minimizes the energy, we know that the giants of Sec. II
minimize the action and that they are indeed classical
solutions. The quadratic in 
 contribution to the action
can be used to learn about the energies of vibration modes
of the giant.

Plugging this ansatz into the action and expanding, the
term linear in 
 is



Z
dy0dy1dy2dy3

�
A
@��1

@t
� B��

�
;

where
A � �
N

2�2 sin3�0 siny1 cosy1 !cos2�0����������������������������
1�!2cos2�
p � N siny1 cosy1 ~�2 r6�R2 � r2�

2�2R8�1� ~�2 r2

R2 �1� r2

R2��
�

2N siny1 cosy1

�2

�

"
~��

���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!
�

~��
���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
�2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!#
;
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B �
N cos�0sin2�0 siny1 cosy1

4�2
������������������������������
1�!2cos2�0

p �6!2cos2�0 � 2!2sin2�0 � 6� �
2N! cos�0sin3�0 siny1 cosy1

�2�1� ~�2cos2�0sin2�0�

�
N!~�2�3sin5�0cos3�0 � sin7�0 cos�0 � 2~�2sin7�0cos5�0� siny1 cosy1

�2�1� ~�2cos2�0sin2�0�
2 :
Now, notice that the coefficient A is independent of time.
This implies that the term in the first order change in the
action involving ��1 gives no contribution, because we
vary with fixed boundary conditions, that is, ��1 vanishes
at the initial and final times. Using (2.1) and plotting B as a
function of �0, we find that the value of �0 that minimizes
the energy is the same value of �0 that sets B to zero, as
shown in Fig. 3. This confirms that the giant gravitons
written down in Sec. II are indeed solutions to the equa-
tions of motion following from the D3 brane action.

Expanding the action to second order in 
 and varying
with respect to ��i we obtain the wave equation

@2
0��i �

1�!2R2cos2�0

R2sin2�0

L2��i

�
~�2cos2��0�

R2 �@2 � @3�
2��i �

��i
R2 � 0;

where we have introduced the angular momentum squared
L2, which in our coordinates is given by

�
2

sin�2y1�

�
1

2
sin�2y1�

@

@y1

@

@y1 � cos�2y1�
@

@y1

� tany1 @

@y2

@

@y2 � coty1 @

@y3

@

@y3

�
:

The original SO�4�world-volume symmetry that we would
have in the undeformed case is broken to U�1� �U�1�.
These two U�1� symmetries correspond to translations of
�2 and �3. It is possible to choose spherical harmonics
Ylm1;m2

�y1; y2; y3� with definite U�1� �U�1� quantum num-
bers �m1; m2�. For spherical harmonics with L2 � l�l� 2�
we have jm1j � jm2j � l. Making the ansatz
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��i � eiE
l
m1 ;m2

y0

Ylm1;m2
�y1; y2; y3�;

we find

�Elm1;m2
�2 �

1

R2 � l�l� 2�
�

1�!2R2cos2�0

R2sin2�0

�

�
~�2cos2��0�

R2 �m1 �m2�
2:

Clearly these frequencies depend on R sin�0, the radius of
the giant. For a near maximal giant, we have sin�0 � 1 and
cos�0 � 0, so that

�Elm1;m2
�2 �

1

R2 �
l�l� 2�

R2 :

This is equal to the frequency obtained in [7] for giant
gravitons in the undeformed AdS5 � S5 background. Note
that this frequency is independent of the size of the gravi-
ton. This is true for all giant gravitons (not just the maximal
giant) in the undeformed background [7].

Varying with respect to ��1 and �� we obtain the
following two (coupled) wave equations:

@2
0���

1�!2R2cos2�0

R2sin2�0

L2��

�
~�2cos2��0�

R2 �@2 � @3�
2��� A1��� A2@0��1 � 0;

@2
0��1 �

1

R2sin2�0

L2��1 �
A2

cos2�0

@0�� � 0;

where
A1 � �
2�6!2cos2�0cot2�0 � 6cot2�0 � 10!2cos2�0 � 3�!2sin2�0 �

!4sin2�0cos2�0

1�!2cos2�0
�������������������������������

1�!2cos2�0

p
�

4!~�2�15 sin�0cos4�0 � 16sin3�0cos2�0 � sin5�0 � 14~�2sin3�0cos6�0 � 10~�2sin5�0cos4�0�

�1� ~�2cos2��0�sin2��0��
2

�
8!~�4�3sin3�0cos4�0 � sin5�0cos2�0 � 2~�2sin5�0cos6�0�cos2�0 � sin2�0�

�1� ~�2cos2��0�sin2��0��
3

� 8!
�

3 cos�0 cot�0 � sin�0

1� ~�2cos2��0�sin2��0�
�

2~�2cos2�0 sin�0�sin2�0 � cos2�0�

�1� ~�2cos2��0�sin2��0��
2

�
;

-5
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2A2 �
4! cos�0 � 10!cos3�0

sin�0

������������������������������
1�!2cos2�0

p �
2!3cos3�0 sin�0

�1�!2cos2�0�
3=2
� 4!~�2 sin2�0 cos�0�sin2�0 � cos2�0�

�1� ~�2cos2��0�sin2��0��
2 �

8!~�2cos3�0sin2�0

1� ~�2cos2�0sin2�0

�
8 cos�0

1� ~�2cos2�0sin2�0

:

When ~� � 0, ! � 1 and

A1 � 0; A2 � �
2 cos�0

sin2�0

:

Using these values, it is easy to verify that we reproduce the undeformed results of [7]. Using the ansatz

�� � A�e
iElm1 ;m2

y0

Ylm1;m2
�y1; y2; y3�; ��1 � A�e

iElm1 ;m2
y0

Ylm1;m2
�y1; y2; y3�;

the energies of our fluctuations are found by solving

�Elm1;m2
�4

sin2�0

�
l�l� 2�

R2sin2�0

�
A1

R2 � ~�2�m� n�2
cos2�0

R2 �
�1�!2R2cos2�0�

R2sin2�0

l�l� 2�
�

� �Elm1;m2
�2
�

~�2�m� n�2cos2�0 � A1 � l�l� 2��2�!2R2cos2�0�

R2sin2�0

�
A2

2�1�!
2R2cos2�0�

R2cos2�0

�
� 0:
We can now search for a perturbative instability, corre-
sponding to an E2 < 0 mode. The frequencies for the ��i
modes are manifestly positive. The analysis of the ��1, ��
coupled system is not as simple. In what follows, we will
restrict ourselves to small deformations ~� 1. Obviously
the positive energy modes cannot become unstable for
small ~�, so that we focus on the zero modes. The zero
modes of the undeformed problem have l � 0, so that we
now focus on l � 0. The l � 0 modes satisfy

@2
0��� A1��� A2@0��1 � 0;

@2
0��1 �

A2

cos2�0

@0�� � 0:

In the undeformed case, where A1 is zero, there are two
zero modes corresponding to constant shifts in �1 and �.
In the deformed case, A1 < 0 so that, although there is still
a zero mode associated with constant shifts of �1, the zero
mode associated with constant shifts of � is lifted.

Even though the giant is perturbatively stable, it may
still be unstable due to tunneling effects. To investigate this
possibility, we look for bounce solutions of the Euclidean
equations of motion. In the undeformed case, instantons
linking the point graviton and sphere giants are known
(see, for example, [32]). These solutions are obtained by
allowing � (which determines the radius of the giant) to
depend on time. Allowing both � and �1 to depend on
time, after integrating over the spatial world-volume coor-
dinates, we find the Lagrangian (r is the radius of the giant)

L � �m
������������������������������
1� a _�2

1 � _�2
q

� b _�1;

where
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m � N
r3

R4 ; a � R2 � r2; r � R sin�0;

b � 4N

"
~��

���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!

�
~��

���������������
4� ~�2

p
4~�2

���������������
4� ~�2

p log

 
�2 r2

R2 �

���������
4�~�2
p

~� � 1���������
4�~�2
p

~� � 1

!#

� N ~�2 r6�R2 � r2�

R8�1� ~�2 r2

R2 �1� r2

R2��
:

The canonical momenta are

M �
@L

@ _�1

�
ma _�1������������������������������

1� a _�2
1 � _�2

q � b;

P � �
@L
@ _�
�

m _�������������������������������
1� a _�2

1 � _�2
q :

The Hamiltonian is obtained, as usual, by performing a
Legendre transformation. In what follows, we treat the
momentum M as a constant and make the Euclidean
continuations P 2

� ! �P
2
� and H ! �H to obtain

H � �

�����������������������������������������������
m2 �

�M� b�2

a
� P 2

�

s
:

The Euclidean equations of motion are now

_� �
@H
@P �

; _P � � �
@H
@�

:
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FIG. 3 (color online). In the above plot B is shown as the solid
line; the energy of the giant graviton minus the minimum of the
energy is shown as the dashed line. The x axis is r=R. For the
plot shown, ~� � 0:4, N � 10, and M � 7=N. The energy is
shown in units of 1=R.
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These equations of motion are solved by P � � 0 and � �
�0 a constant with sin�0 the radius of the unstable giant.
We have looked for numerical solutions to these equations
by starting with P� � 0 and � � �0 � 
 with 
 �0.
We find solutions as shown in Fig. 4 below.

Our solutions are periodic with the period becoming
arbitrarily long as we decrease the value of 
. The value
of � decreases to a minimum before returning to its initial
value. These bounce solutions signal that our giant is
unstable due to tunneling effects [33].
0 10 20 30 40 50 60 70 80 90 100
0.35
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0.75
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FIG. 4. In the above plot � is shown as a function of t. The
starting point is arbitrarily close to �0 where sin�0 corresponds
to the value of the radius of the giant graviton for ~� � 0:4, N �
10, and M � 7=N.
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IV. OPEN STRINGS

The background studied in Sec. II is conjectured [3] to
be dual to the field theory with scalar potential

V � Tr
X3

n>m�1

je�i��mn�m�n � ei��mn�n�mj
2

� Tr
X3

n�1

	�n; ��n

2;

where

�mn � �
mni�i:

Below we will give a precise relation between the parame-
ters �i of the gauge theory and the parameters ~�i of the
gravity background. Our giant graviton solutions corre-
spond to branes orbiting with angular momentum along
the �1 direction. The R charge of �1 corresponds to the
angular momentum M of Sec. II. Thus, a giant graviton
with angular momentum M should be dual to an operator
built out of M �1 fields. From now on we use Z to denote
�1 and X; Y to denote �2;�3. To match what was done in
the dual gravitational theory we set �1 � 0 and �2 � �3 �
� so that

V � Tr	jei��ZY � e�i��YZj2 � jei��XZ� e�i��ZXj2

� jYX� XYj2 � 	X; �X
2 � 	Y; �Y
2 � 	Z; �Z
2
:

We would like to determine the spin chain of this de-
formed N � 4 super Yang-Mills theory relevant for the
dual description of open strings attached to giants. The spin
chain for the deformed N � 4 super Yang-Mills theory
was found in [34]; describing the open strings amounts to
determining what boundary conditions must be imposed on
this spin chain. In the undeformed theory with gauge group
U�N�, operators dual to sphere giants are given by Schur
polynomials of the totally antisymmetric representations
[8], which are labeled by Young diagrams with a single
column. The cutoff on the number of rows of the Young
diagram perfectly matches the cutoff on angular momen-
tum arising because the sphere giant fills the S5 of the
AdS5 � S

5 geometry. For maximal giants, the Schur poly-
nomials are determinant-like operators. Attaching a string
to the maximal giant gives an operator of the form

O � 
j1���jN
i1���iN

Zi1j1
� � �ZiN�1

jN�1
�M1M2 � � �Mn�

iN
jN
:

The open string is given by the product �M1M2 � � �Mn�
iN
jN

.
The Mi could, in principle, be fermions, covariant deriva-
tives of Higgs fields, or Higgs fields themselves. To de-
scribe excitations of the string involving only coordinates
from the S5, we would restrict theMi to be Higgs fields. We
will restrict ourselves even further and require that the Mi
are Z or Y. A spin chain description can then be constructed
by identifying �M1M2 � � �Mn�

iN
jN

with a spin chain that has
n sites. If Mi � Z the ith spin is spin-up; if Mi � Y the ith
-7
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spin is spin-down. It is not possible for Z’s to hop off and
onto the string attached to a maximal giant; as soon as
M1 � Z or Mn � Z the operator factorizes into a closed
string plus a maximal giant graviton. This implies the
boundary constraint M1 � Z � Mn. However, for non-
maximal giants, Z’s can hop between the graviton and
the open string. In this case, the number of sites in the
spin chain is dynamical. If, however, one identifies the
spaces between the Y’s as lattice sites and the Z’s as bosons
which occupy sites in this lattice, the number of sites is
again conserved [19]. For the undeformed theory this leads
to the Hamiltonian [19]

H � 2��2 � 2�
XL
l�1

âyl âl � �
XL�1

l�1

�âyl âl�1 � âlâ
y
l�1�

� ���â1 � â
y
1 � � ���âL � â

y
L�:

The operators in the above Hamiltonian are Cuntz oscil-
lators [19]

aia
y
i � I; ayi ai � I � j0ih0j:

For a giant with angular momentum p=R, the parameter

� �
�������������
1�

p
N

r
measures how far from a maximal giant we are.

Because of the deformation, hopping is now accompa-
nied by an extra phase. To see how this comes about, note
that the deformation replaces

	Z; Y
 ! ZYei�� � YZe�i��;

	Z; Y
	Z; Y
y ! ZY �Y �Z�YZ �Z �Y�ZY �Z �Y e2�i�

� YZ �Y �Z e�i2��:

It is straightforward to see what interactions in the spin
chain Hamiltonian these terms induce (the overbraces in-
dicate Wick contractions),

Tr �YZ �Z �Y�Tr�Y
z���}|���{

Z

z�������}|�������{
. . .� ! Tr�YZ . . .� $ ayl al;

Tr �ZY �Y �Z�Tr�Z
z���}|���{

Y

z�������}|�������{
. . .� ! Tr�ZY . . .� $ ayl al;

Tr �ZY �Z �Yei2���Tr�Y
z��������}|��������{

Z

z������������}|������������{
. . .� ! ei2��Tr�ZY . . .�

$ ei2��ayl al�1;

Tr �YZ �Y �Ze�i2���Tr�Z
z����������}|����������{

Y

z��������������}|��������������{
. . .� ! e�i2��Tr�YZ . . .�

$ e�i2��ala
y
l�1:
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To hop onto the spin chain, we are hopping from the
‘‘zeroth site,’’ which is the Schur polynomial/giant gravi-
ton, and onto the first site of the string. The term which
does this has an e�i2�� coefficient. Another way to hop
onto the spin chain is to hop from the L� 1th site into the
Lth site. The term which does this has an ei2�� coefficient.
It is straightforward to argue for the phases when we hop
off of the giant graviton. From the above discussion we see
that the deformation modifies this Hamiltonian to

H � 2��2 � 2�
XL
l�1

âyl âl � �
XL�1

l�1

�âyl âl�1ei2��

� âlâ
y
l�1e

�i2��� � ���â1e
i2�� � ây1e

�i2���

� ���âLe�i2�� � â
y
Le

i2���:

In the above derivation of the deformed Hamiltonian we
have considered only the terms which look like F-terms.
For this to be valid, it is necessary that the self energy,
vector exchange, and terms which look like D-terms con-
tinue to cancel as they did in the supersymmetric theory. It
has been argued [4] that this is indeed the case, using the
similarity between the � deformation [35] and noncom-
mutative theories [36].

The semiclassical limit, in which the action derived from
coherent states should provide a good approximation to the
dynamics, is obtained by taking

L�
����
N
p
! 1; �! 1;

holding �
L2 , L�, and � fixed. To obtain the low energy

effective action, we will use the coherent states

jzi �
�����������������
1� jzj2

q X1
n�0

znjni;

with parameter

zl � rle
i�l ;

for the lth site. The coherent state action is given as usual
by

S �
Z
dt
�
i
�
Z
��������@@t

��������Z
	
� hZjHjZi

�
:

In the above expression the coherent state jZi is written as a
product over all sites,

jZi �
Y
l

jzli:

As an illustration of the manipulations which follow, we
describe the evaluation of the first term in the action. It is
straightforward to see that
-8
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@
@t
jzli � �

rl _rl��������������
1� r2

l

q X1
n�0

rnl e
in�l jni

�
��������������
1� r2

l

q X1
n�0

n
�

_rl
rl
� i _�l

�
rnl e

in�l jni;

�
zm

��������@@t
��������zl

	
� i

r2
l

_�l

1� r2
l

�lm:

Thus,

�
Z
��������@@t

��������Z
	
� i

XL
l�1

r2
l

_�l

1� r2
l

:

In the large L limit, to leading order in L we have

�
Z
��������@@t

��������Z
	
� iL

Z 1

0

r���2 _����

1� r���2
d�:

A straightforward computation along these lines gives

S � �
Z
dt
�
L
Z 1

0

r2 _�

1� r2 d�� 2��2 �
�
L

Z 1

0
��r0�2

� r2��0 � 2�~��2�d�� ��z�1�z�1� � ��z�0�z�0�

� ���z�0� � �z�0�� � ���z�1� � �z�1��
�
:

We identify

~� � L�:

We write this action in terms of � and rescale �! �
� .

Clearly, the deformation replaces

�0 ! �0 � 2L�:

Let us now consider the description of the open strings
using the dual sigma model. The undeformed case has been
studied in [19,37]. The work [19] uses a coordinate system
in which the brane is static, a gauge in which p�2

is
homogeneously distributed along the string, p�2

� 2J
and  � t. After taking a low energy limit, the string sigma
model action is

�
���������
�YM

p Z
dt
Z 2�

0

d�
2�

�
r2 _�1

1� r2 �
�YM

8�2J 2 �r
02 � r2�021 �

�
;

in perfect agreement with the undeformed result from the
field theory [19], after identifying L � J and �YM �
8�2�.

The background studied in Sec. II can be obtained by
performing a sequence of T-duality-shift-T-duality (TsT)
transformations [3]. A TsT transformation exploits a two
064007
torus, with coordinates ��1; �2� say, in the geometry. A
TsT transformation begins with a T-duality with respect to
�1, then a shift �2 ! �2 � ��1 and finally a second
T-duality along �1. In the AdS5 � S5 background there
are three natural tori ��1; �2�, ��2; �3�, and ��3; �1�. This
allows three independent TsT transformations giving the
three parameter deformation of Sec. II. See [3] for details.
The TsT transformation has a particularly simple action on
the string sigma model, something which was exploited in
[3] to obtain the Lax pair for the bosonic part of the sigma
model. To obtain the sigma model for the deformed theory,
we simply need to shift [3]

�0i ! �0i � 
ijk�jpk:

For the above action, we only need to consider �01,

�01 ! �01 � 
1jk�jpk:

Next, since we set X � 0 we know that p3 � 0. Thus,

�01 ! �01 � 
1j2�jp2 � �01 � 
132�3p2 � �01 � �3p2:

Now, we have set �3 � �2 � � and in our gauge p2 �
2J , so that

�01 ! �01 � 2�J � �01 � 2�L:

This is in complete agreement with the spin chain result.

V. SUMMARY

In this paper we have found giant graviton solutions in
the deformed background with ~�1 � 0 and ~�2 � ~�3 � ~�.
These giants have an energy which is greater than the
energy of a point graviton. We have also considered the
spectrum of small fluctuations about these giants. The
spectrum depends on the radius of the giant in contrast to
the undeformed case where the spectrum is independent of
the size of the giant [7]. For small deformations, we have
argued that the giant graviton is perturbatively stable. The
Euclidean equations of motion admit a bounce solution
indicating that the giant graviton will be unstable due to
tunneling effects. We have also considered the semiclassi-
cal dynamics of open strings attached to these giants. We
find that there is perfect quantitative agreement between
the gauge theory and the string theory. Indeed, the defor-
mation in the gauge theory exactly reproduces the TsT
transformation relating the deformed and undeformed
sigma models.

The comparison in this paper provides further quantita-
tive agreement following from AdS/CFT duality in a non-
supersymmetric case. Further, the fact that the giant
graviton is unstable makes the quantitative agreement
even more interesting.

There are a number of directions in which the present
work can be extended. It would be interesting to look for
giant gravitons in the general three parameter deformed
-9
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background. One could also consider giants which have
expanded into the AdS5 space; the giant will be the same as
the solution presented in [6]; the deformation should,
however, modify the small fluctuation spectrum [7].
Further, the open string fluctuations we have considered
are certainly not the most general fluctuations that can be
considered. It would be interesting to extend our results to
064007
see if the agreement we have found continues to hold for
more general open string configurations.
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