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Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes
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Recent work, which treats the Hawking radiation as a semiclassical tunneling process at the horizon of
the Schwarzschild and Reissner-Nordström spacetimes, indicates that the exact radiant spectrum is no
longer pure thermal after considering the black hole background as dynamical and the conservation of
energy. In this paper, we extend the method to investigate Hawking radiation as massless particles
tunneling across the event horizon of the Kerr black hole and that of charged particles from the Kerr-
Newman black hole by taking into account the energy conservation, the angular momentum conservation,
and the electric charge conservation. Our results show that when self-gravitation is considered, the
tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum
deviates from the pure thermal spectrum, but is consistent with an underlying unitary theory.
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I. INTRODUCTION

The ‘‘no hair’’ theorem stated that all information about
the collapsing body was lost from the outside region apart
from three conserved quantities: the mass, the angular
momentum, and the electric charge. In other words, this
implied that the only stationary rotating black hole solu-
tions of the Einstein-Maxwell equations in four dimensions
are the Kerr-Newman metrics. In the classical theory, the
loss of information was not a serious problem since the
information could be thought of as preserved inside the
black hole but just not very accessible. However, taking the
quantum effect into consideration, the situation is changed.
With the emission of thermal radiation [1], black holes
could lose energy, shrink, and eventually evaporate away
completely. Since the radiation with a precise thermal
spectrum carries no information, the information carried
by a physical system falling toward black hole singularity
has no way to be recovered after a black hole has disap-
peared completely. This is the so-called ‘‘information loss
paradox’’ [2], which means that pure quantum states (the
original matter that forms the black hole) can evolve into
mixed states (the thermal spectrum at infinity). Such an
evolution violates the fundamental principles of quantum
theory, as these prescribe a unitary time evolution of basis
states. While the information paradox can perhaps be
attributed to the semiclassical nature of the investigations
of Hawking radiation, researches in string theory indeed
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support the idea that Hawking radiation can be described
within a manifestly unitary theory, however, it still remains
a mystery how information is recovered. Although a com-
plete resolution of the information loss paradox might be
within a unitary theory of quantum gravity or string/M-
theory, it is argued that the information could come out if
the outgoing radiation were not exactly thermal but had
subtle corrections [2].

On the other hand, the mechanism of black hole radiance
remains shrouded in some degree of mystery. In the origi-
nal derivation of black hole evaporation, Hawking de-
scribed the thermal radiation as a quantum tunneling
process [3] triggered by vacuum fluctuations near the event
horizon. According to this scenario, a pair of particles is
spontaneously created just inside the horizon, the positive
energy particle then tunnels out to the infinity, and the
negative energy ‘‘partner’’ remains behind and effectively
lowers the mass of the black hole. This tunneling picture
can be depicted in another manner, that is, a particle/
antiparticle pair is created just outside the horizon, the
negative energy particle tunnels into the horizon because
the negative energy orbit exists only inside the horizon, the
positive energy partner is left outside and emerges at
infinity.

In fact, the above viewpoint that regards the radiation as
quantum tunneling out from inside the black hole has been
proved very convenient to explore the issue of dynamics.
But, actual derivation [4] of Hawking radiation did not
proceed in this way at all, most of which based upon
quantum field theory on a fixed background spacetime
without considering the fluctuation of the spacetime ge-
ometry. Moreover, there is another fundamental issue that
-1 © 2006 The American Physical Society
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must necessarily be dealt with, namely, the energy conser-
vation. It seems clear that the background geometry of a
radiating black hole should be altered with the loss of
energy, but this dynamical effect is often neglected in
formal treatments.

Recently, a program that implemented Hawking radia-
tion as a tunneling process was initiated by Kraus and
Wilczek [5] and developed by Parikh and Wilczek [6],
(this framework shall be referred to as the Kraus-Parikh-
Wilczek’s analysis for briefness, see also Ref. [7] for a
different methodology that the tunneling picture has been
applied.) who carried out a dynamical treatment of black
hole radiance in the static spherically symmetric black hole
geometries. More specifically, they considered the effects
of a positive energy matter shell propagating outwards
through the horizon of the Schwarzschild and Reissner-
Nordström black holes, and incorporated the self-
gravitation correction of the radiation. In particular, they
took into account the energy conservation and allowed the
background geometry to fluctuate in their dynamical de-
scription of the black hole background. In doing so, they
allowed the black hole to lose mass while radiating, but
maintained a constant energy for the total system. The
emission spectrum that they calculated for the Schwarz-
schild and Reissner-Nordström black holes gives a leading-
order correction to the emission rate arising from loss of
mass of the black hole, which corresponds to the energy
carried by the radiated quantum. This result displays that
the derived spectrum of black hole radiation is not strictly
pure thermal under the consideration of energy conserva-
tion and the unfixed spacetime background, which may be
a correct amendment to Hawking radiation spectrum.

Apart from the energy conservation and the particle’s
self-gravitation are considered, a salient point in the Kraus-
Parikh-Wilczek’s analysis is to introduce a coordinate
system that is well-behaved at the event horizon in order
to calculate the emission probability. The so-called
‘‘Painlevé-Gullstrand coordinates’’ rediscovered in
Ref. [8] are not only time independent and regular at the
horizon, but for which time reversal is manifestly asym-
metric, namely, the coordinates are stationary but not
static. Following this approach, a lot of people [9–11]
have investigated Hawking radiation as tunneling from
various spherically symmetric black holes, and the ob-
tained results are very successful to support the Parikh-
Wilczek’s picture. Nevertheless, all these investigations are
limited to the spherically symmetric black holes and most
of them are confined only to discuss the tunneling process
of the uncharged massless particles. There are also some
recent attempts to extend this approach to the case of the
stationary axisymmetric geometries [12,13], however, as
far as the treatment is concerned, not all of them are
completely satisfactory.

The purpose of the current paper is to present a reason-
able extension of the self-gravitation analysis (we will
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follow the presentation of [6]) from spherically symmetric
spacetime to the case of a rotating Kerr [14] black hole.
Moreover, we attempt to extend this method to investigate
the tunneling radiation of charged particles from the event
horizon of a stationary Kerr-Newman [15] black hole. In
order to do so, one needs to find a coordinate system that is
well-behaved at the event horizon, since it is the key to do a
tunneling computation in the semiclassical framework of
[5,6]. Fortunately, several years ago a suitable solution to
this problem was already provided by Chris Doran [16],
who presented a faithful generalization of the Painlevé-
Gullstrand coordinate system to the case of the Kerr black
hole. The new form of the Kerr solution found in Ref. [16]
inherits most of the attractive properties of the Painlevé-
Gullstrand coordinate system: (i) The metric is regular at
the event horizon; (ii) The time direction remains to be a
Killing vector besides there exists another Killing vector
@�; (iii) The time coordinate t registers the local proper
time for radially free-falling observers; (iv) The measure
on the surfaces of constant-time slices is the same as that of
flat spacetime; (v) In addition, it satisfies Landau’s condi-
tion of the coordinate clock synchronization [17]. All these
features are very useful to study the radiation of particles
tunneling across the event horizon of a rotating black hole.
Their utility will be demonstrated by how to calculate the
tunneling probability in this paper.

Now since we shall adopt the semiclassical method [5,6]
with which the gravitation effects need not to be taken into
account in our discussion, it seems that the unique task left
is directly to calculate the tunneling rate and the corrected
radiant spectrum of the black holes. Nevertheless, there is
still another important issue needed to be well addressed,
namely, the frame-dragging effect of a rotating black hole.
In general, because there exists a frame-dragging effect of
the coordinate system in the stationary rotating spacetime,
the matter field in the ergosphere near the horizon must be
dragged by the gravitational field with an azimuthal angu-
lar velocity also, so a legitimate physical picture should be
described in the dragging coordinate system. In addition,
due to the presence of rotation, the event horizon does not
coincide with the infinite red-shift surface in both forms of
the original Kerr [14] solution and that presented by Doran
[16], the geometrical optical limit cannot be used there
since the Kraus-Parikh-Wilczek’s analysis is essentially
akin to a WKB (‘s-wave’) approximation. So the
Painlevé-Kerr metric introduced by Doran [16] is still
inconvenient for us to depict the tunneling process that
takes place at the event horizon. Apparently, this super-
ficial difficulty can be easily overcome by further perform-
ing a dragging coordinate transformation which makes the
event horizon coincide with the infinite red-shift surface so
that the WKB approximation can be applied now. The final
Painlevé-Kerr coordinate system at which we arrived in a
dragging coordinate system retains all the nice features
mentioned above, therefore it is very convenient for us to
investigate the tunneling process of a rotating black hole.
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After equipped with these insights, we are readily to
investigate Hawking radiation of massless particles as a
tunneling process across the event horizon of the Kerr
black hole and that of charged particles from the Kerr-
Newman black hole by taking into account the energy
conservation, the angular momentum conservation, and
the electric charge conservation. The picture adopted in
our discussion is: a (charged) particle does tunnel out of a
rotating (charged) black hole, the tunneling barrier is cre-
ated by the self-gravitation among the outgoing particle. If
the total energy and total angular momentum as well as
electric total charge must be conserved, the outgoing par-
ticle must tunnel out a radial barrier to an observer resting
in the dragging coordinate system. With the loss of energy,
the angular momentum, and the electric charge, the black
hole will shrink its size, its dragging velocity and electric
potential will change also. That is to say, the geometry
must be dynamic. This picture enables us to compute the
tunneling rate and the radiant spectrum of a rotating Kerr
and Kerr-Newman black hole. Our results show that when
self-gravitation is considered, the tunneling probability is
related to the change of Bekenstein-Hawking entropy and
the derived emission spectrum deviates from the pure
thermal spectrum, but is consistent with an underlying
unitary theory.

Our paper is outlined as follows. In Sec. II, we begin
with by briefly reviewing the extension of the Painlevé-
Gullstrand coordinate system to the Kerr black hole case
and show that the new form [16] of the Kerr solution has
many of the desired properties to do a semiclassical tun-
neling calculation of the emission rate from which the
corrected spectrum can be directly extrapolated. We then
introduce the dragging coordinate system in the Painlevé-
Kerr spacetime and present the radial geodesic equation of
uncharged particles. In Sec. III, we investigate Hawking
radiation as tunneling from the event horizon of the Kerr
black hole and compute the tunneling rate. In Sec. IV, we
extend this analysis to Kerr-Newman spacetime and cal-
culate the emission probability of charged particles.
Section V ends with some brief remarks.
II. NEW FORM OF THE KERR SOLUTION AND
DRAGGING COORDINATE SYSTEM

Recall that in the tunneling framework advocated by
Parikh and Wilczek’s [6], a convenient trick is to use sta-
tionary coordinates that are manifestly asymmetric under
time reversal. In the case of a Schwarzschild black hole, it
is most convenient to recast the metric into the form of
Painlevé-Gullstrand coordinates
ds2 � dt2 �
� ��������

2M
r

s
dt� dr

�
2
� r2�d�2 � sin2�d�2�:

(1)
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The Painlevé-Gullstrand coordinate system (1) has a
number of nice features [16], many of which extend to
the Kerr case. The solution is well-behaved, without a
singularity at the horizon, so can be employed safely to
analyze physical processes near the event horizon, and
indeed inside it. A second useful feature is that the time
coordinate t coincides with the local proper time of ob-
servers free-falling along radial trajectories starting from
rest at infinity. Because it has many of the properties of a
global, Newtonian time, physics as seen by these observers
is almost entirely Newtonian, making it a very powerful
one for studying across-horizon physics. Another useful
property of this metric is that the measure on surfaces of
constant-time slices is the same as that of flat Euclidean
spacetime. A further feature of the metric is that an ob-
server at infinity does not make any distinction between the
Painlevé-Gullstrand coordinates and the static
Schwarzschild coordinates, the two time coordinates co-
incides with each other there. Finally, the line element
satisfies the Landau’s condition of coordinate clock syn-
chronization [17], making it very important to discuss the
tunneling process because particle tunneling through a
barrier is an instantaneous process in the sense of quantum
mechanics.

Extending to the case of a stationary rotating black hole,
it is naturally expected to find an analogue of the Painlevé-
Gullstrand coordinates for the Kerr solution. Such an at-
tempt might fail due to the presence of angular momentum.
However, Doran [16] indeed achieved a suitable general-
ization by realizing that the key is to look for a convenient
set of reference observers which generalizes the idea of a
family of free-falling observers on radial trajectories, since
it is only the local properties of time t that make it so
convenient for describing the physics of the solution.
Starting from the advanced Eddington-Finkelstein coordi-
nate formalism of the Kerr metric and performing a coor-
dinate transformation, Doran reached to a new form of the
Kerr metric as follows [16]

ds2 � dt2 �
� ����������

2Mr
�

s
�dt� asin2�d�� �

����������������
�

r2 � a2

s
dr
�

2

� �d�2 � �r2 � a2�sin2�d�2; (2)

where � � r2 � a2cos2�, and � � r2 � a2 � 2Mr (see
below), in which M is the mass, the specific angular
momentum a � J=M is kept as a constant thought this
paper.

Unlike Doran did in Ref. [16], instead we shall demon-
strate that via a suitable coordinate transformation the
metric (2) can be directly obtained from the usual form
of the Kerr solution which can be expressed as [14]

ds2 � d�t2 �
2Mr

�
�d�t� asin2�d ���2 �

�

�
dr2 � �d�2

� �r2 � a2�sin2�d ��2: (3)
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In order to do so, it is instructive to note that the metric (1)
can be obtained from the original Schwarzschild solution

ds2 �

�
1�

2M
r

�
d�t2 �

dr2

1� 2M=r
� r2�d�2 � sin2�d ��2�;

(4)

by a coordinate transformation of the Painlevé-type

d�t � dt�

����������
2Mr
p

r� 2M
dr: (5)

So a natural extension of this transformation in the rotating
case should be written as

d�t � dt�

�����������������������������
2Mr�r2 � a2�

p
�

dr;

d �� � d��
a
�

����������������
2Mr

r2 � a2

s
dr:

(6)

A direct computation can check this indeed is the case.
The new form (2) of the Kerr metric directly generalizes

the Painlevé-Gullstrand metric (1), replacing
������������
2M=r

p
with����������������

2Mr=�
p

, and introducing a rotational component. This
coordinate system faithfully inherits a number of nice
characters of the Painlevé-Gullstrand line element:
(i) The metric is well-behaved at the event horizon;
(ii) There exist two commuting Killing vectors @t and
@�; (iii) The time coordinate t represents the local proper
time for radially free-falling observers; (iv) The hyper-
surfaces of constant-time slices are just flat Euclidean
space in the oblate spheroidal coordinates; (v) In addition,
it satisfies Landau’s condition of the coordinate clock
synchronization [17]. As such, we shall refer it to as the
Painlevé-Kerr coordinate system. Since these coordinates
comply with the perspective of a free-falling observer, who
is expected to experience nothing out of the ordinary upon
passing through the horizon, it is well-suited for studying
processes near the event horizon. The new form of the Kerr
solution has already proved to be very powerful in numeri-
cal simulation in astrophysics, black hole physics and
quantum mechanics in curved spaces ([16] and references
therein). In this paper, we shall further exploit its another
application in black hole phenomena due to its distinguish-
ing feature of horizon regularity, namely, Hawking radia-
tion as tunneling from the horizon.

However, due to the inclusion of rotation, the Painlevé-
Kerr metric (2) is still inconvenient for our study of the
tunneling process at the event horizon. The reasons come
from two aspects. In the one hand, because the event
horizon r� � M�

������������������
M2 � a2
p

does not coincide with the
infinite red-shift surface rTLS � M�

������������������������������
M2 � a2cos2�
p

in
both forms of the original Kerr solution and the Painlevé-
Kerr metric, the geometrical optical limit cannot be ap-
plied. On the other hand, since there exists a frame-
dragging effect in the stationary rotating spacetime, the
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matter field in the ergosphere near the horizon must be
dragged by the gravitational field also, so a reasonable
physical picture should be depicted in the dragging coor-
dinate system. Obviously, this hints that we must continue
to transform the metric into a dragging coordinate system.
Carrying out a dragging coordinate transformation d� �
�dt with

� �
d�
dt
� �

gt�
g��

�
a�r2 � a2 ���

�r2 � a2�2 � �a2sin2�
; (7)

yields the new line element, which shall be called as the
dragged Painlevé-Kerr metric

dŝ2 �
��

�r2 � a2�2 � �a2sin2�
dt2 �

�

r2 � a2 dr
2

� 2

�����������������������������
2Mr�r2 � a2�

p
�

�r2 � a2�2 � �a2sin2�
dtdr� �d�2: (8)

In fact, the line element (8) represents a 3-dimensional
hypersurface in the 4-dimensional spacetime, with no co-
ordinate singularity at the horizon. Along with the above-
mentioned properties of the Painlevé-Kerr coordinate sys-
tem, the event horizon and the infinite red-shift surface
coincide with each other in the dragged Painlevé-Kerr
coordinate system so that the WKB approximation can
be used now. These attractive features are very advanta-
geous for us to discuss Hawking radiation via tunneling
and to do an explicit computation of the tunneling proba-
bility at the event horizon.

In the subsequent section, we shall investigate the tun-
neling behavior of massless particles from the horizon. For
this purpose, let us first evaluate the radial, null geodesics.
Since the tunneling processes take place near the event
horizon, we may consider a particle tunneling across the
event horizon as an ellipsoid shell and think that the
particle should still be an ellipsoid shell during the tunnel-
ing process, i.e., the particle does not have motion in the
�-direction. Therefore, under these assumptions (dŝ2 �
0 � d�), the radial, null geodesics followed by massless
particles are

_r �
dr
dt
�

�r2 � a2�2

�r2 � a2�2 ��a2sin2�

�

�
�

�������������������������
1�

�

r2 � a2

s
�

�������������������������������
1�

�2a2sin2�

�r2 � a2�3

s �
; (9)

where the upper (lower) sign can be identified with the
outgoing (incoming) radial motion, under the implicit
assumption that time t increases towards the future. In
other words, the plus sign corresponds to an outgoing
geodesic and the minus sign corresponds to an ingoing
geodesic, respectively.
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III. TUNNELING PROCESS OF UNCHARGED
PARTICLES FROM KERR BLACK HOLES

Now we turn to discuss Hawking radiation of uncharged
particles as a semiclassical tunneling process across the
barrier which is created just by the outgoing particle itself.
We adopt the picture of a pair of virtual particles sponta-
neously created just inside the horizon. The positive energy
virtual particle can tunnel out and materialize as a real
particle escaping classically to infinity, its negative energy
partner is absorbed by the black hole, resulting in a de-
crease in the mass and angular momentum of the black
hole. In our discussion, we consider the particle as an
ellipsoid shell of energy ! and angular momentum a!.
If the particle’s self-gravitation is taken into account,
Eqs. (7)–(9) should be modified. To guarantee the conser-
vation of energy and angular momentum, we fix the total
mass and total angular momentum of the spacetime but
allow the hole’s mass and angular momentum to fluctuate.
When a particle of energy ! is radiated from the event
horizon, the mass and angular momentum of the black hole
will be reduced to M�! and �M�!�a, respectively.
Then we should replace M with M�! in Eqs. (7)–(9)
in order to describe the moving of the shell. In particular,
the particle will move along the modified null geodesic in
the radial direction

_r�
~�

r2�a2

� �����������������������
1�

~�

r2�a2

s
�

������������������������������
1�

~�2a2sin2�

�r2�a2�3

s �
�1
; (10)

where ~� � r2 � a2 � 2�M�!�r is the horizon equation
after the emission of the particle with energy !.

Since the event horizon coincides with the infinite red-
shift surface in the dragged Painlevé-Kerr coordinate sys-
tem, so the geometrical optical limit become an especially
reliable approximation and the semiclassical WKB
(‘s-wave’) approximation can be used. By means of
WKB approximation, the tunneling probability for an out-
going positive energy particle can be expressed in terms of
the imaginary part of the action as

�� e�2 ImS: (11)

At this point, it should be noticed that the coordinate �
does not appear in the dragged Painlevé-Kerr metric (8).
That is, � is an ignorable coordinate in the Lagrangian
function. To eliminate this degree of freedom completely,
the imaginary part of the action should be written as [by
using dt � d�= _� � dr= _r.]

Im S � Im
Z tf

ti
�Pr _r� P� _��dt

� Im
Z rf

ri

�Z �Pr;P��
�0;0�

� _rdP0r � _�dP0��
�
dr
_r
; (12)
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where Pr and P� are two canonical momenta conjugate to

r and �, respectively. ri � r� � M�
������������������
M2 � a2
p

and

rf � M�!�
��������������������������������
�M�!�2 � a2

p
are the locations of the

event horizon before and after a particle tunnels out, they
are just inside and outside the barrier through which the
particle tunnels.

To proceed with an explicit calculation, we now remove
the momentum in favor of energy by applying the
Hamilton’s equations

_r �
dH
dPr

���������r;�;P���
d�M�!�
dPr

;

_� �
dH
dP�

����������;r;Pr�
� a ~�

d�M�!�
dP�

;

(13)

where dH��;r;Pr� �
~�dJ � a ~�d�M�!�, which repre-

sents the energy change of the black hole because of the
loss of the angular momentum when a particle tunnels out,
and the dragging angular velocity is given by

~� �
a�r2 � a2 � ~��

�r2 � a2�2 � ~�a2sin2�
:

Substituting Eqs. (10) and (13) into Eq. (12), and noting
that we must choose the positive sign in Eq. (10) as the
particle is propagating from inside to outside the event
horizon, then we have

Im S � Im
Z rf

ri

Z M�!

M
	�1� a�0�d�M�!0�


dr
_r

� Im
Z M�!

M

Z rf

ri

r2�r2 � a2� � �0a2cos2�

�r2 � a2�2 � �0a2sin2�

�

�
r2 � a2

�0

�� �������������������������
1�

�0

r2 � a2

s

�

��������������������������������
1�

�02a2sin2�

�r2 � a2�3

s �
drd�M�!0�; (14)

where

�0 � r2 � a2 � 2�M�!0�r � �r� r0���r� r
0
��;

r0� � M�!0 �
���������������������������������
�M�!0�2 � a2

q
:

We see that r � r0� is a single pole in Eq. (14). The integral
can be evaluated by deforming the contour around the pole,
so as to ensure that positive energy solution decay in time.
In this way, we finish the r integral and get
Im S � �2�
Z M�!

M

�M�!0�2 � �M�!0�
���������������������������������
�M�!0�2 � a2

p
� a2=2���������������������������������

�M�!0�2 � a2
p d�M�!0�: (15)
-5
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Completing the integration finally yields

ImS � �	M2 � �M�!�2 �M
������������������
M2 � a2

p
� �M�!�

�
��������������������������������
�M�!�2 � a2

q

: (16)

In terms of the entropy expression SBH � ��r2
� � a

2�, the
tunneling rate is then expressible as [5]

�� e�2 ImS � e�SBH ; (17)

where �SBH � SBH�M�!� � SBH�M� is the difference
of Bekenstein-Hawking entropies of the Kerr black hole
before and after the emission of the particle. The derived
emission spectrum actually deviates from pure thermality.

To conclude this section, we find that in order to prop-
erly extend the semiclassical tunneling formalism [5,6] to
the case of a Kerr black hole, we must adopt the Painlevé-
Kerr metric which neatly generalizes the Painlevé-
Gullstrand line element. Nevertheless, we must further
transform it to the dragged Painlevé-Kerr coordinate sys-
tem so that an explicit tunneling analysis can be made.
Moreover, when the energy conservation and the angular
momentum conservation as well as the particle’s self-
gravitation are taken into account, the tunneling rate is
related to the change of black hole entropy during the
process of the particle’s emission and the radiant spectrum
is not precisely thermal. Furthermore, it should be pointed
out that our discussion made in this section can be directly
generalized to deal with the Hawking radiation of un-
charged particles tunneling from the Kerr-Newman black
hole with a simple replacement of 2Mr by 2Mr�Q2. The
result is the same as that obtained above, generalizing
those given in Refs. [5,6]. In the next section, we will focus
on a semiclassical treatment of the tunneling characters of
charged massive particles from a charged Kerr black hole.
IV. RADIATION OF CHARGED PARTICLES AS
TUNNELING FROM THE KERR-NEWMAN

BLACK HOLE

As mentioned in the last section, the analysis of un-
charged massless particles tunneling from a Kerr-Newman
black hole completely parallels to the case that made for a
Kerr black hole. In this section, we shall investigate the
tunneling behavior of a charged massive particle and cal-
culate its emission rate from a charged rotating black hole.
It should be noted that one must overcome two additional
difficulties. The first is that one has to decide the equation
of motion of a charged test particle since the radial, null
geodesics is only applicable to describe the tunneling
behavior of the uncharged radiation from the event hori-
zon. Different from the null geodesics of an uncharged
particle, the trajectory followed by a charged massive
particle is not lightlike, but subject to Lorentz forces.
Here we will decide it approximately by the phase velocity.
The second is how to take into account the effect of the
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electro-magnetic field when the charged particle tunnels
out from the event horizon. Apart from the conservation of
energy and angular momentum, the electric charge conser-
vation must be considered also. In the following discus-
sion, we shall adopt a slightly modified tunneling picture,
that is, we consider the charged massive particle as a
charged conducting ellipsoid shell carrying energy !,
angular momentum a!, and electric charge q. To account
for the effect of the electro-magnetic field, we shall con-
sider a matter-gravity system that consists of the black hole
and the electro-magnetic field outside the hole. Taking into
account the particle’s self-gravitation, the conservation of
energy and angular momentum as well as electric charge,
we must fix the total mass, total angular momentum, and
total electric charge of the spacetime but allow those of the
black hole to vary also.

Before seeking for the equation of motion of a charged
massive particle, we must first deal with how the electro-
magnetic vector potential changes under two steps of
coordinate transformations. To this end, recall that the
Kerr-Newman black hole solution [15] can be expressed
in the Boyer-Lindquist coordinate system as

ds2 � d�t2 �
2Mr�Q2

�
�d�t� asin2�d ���2 �

�

�
dr2

� �d�2 � �r2 � a2�sin2�d ��2; (18)

A �
Qr
�
�d�t� asin2�d ���; (19)

where � � r2 � a2cos2�, and � � r2 � a2 �Q2 � 2Mr,
in which the parameters M, Q, and J � Ma are the mass,
the electric charge, and the angular momentum of the black
hole, respectively.

A generalized Painlevé-type coordinate transformation

d�t � dt�

��������������������������������������������
�2Mr�Q2��r2 � a2�

p
�

dr;

d �� � d��
a
�

����������������������
2Mr�Q2

r2 � a2

s
dr;

(20)

sends the metric (18) and the vector potential (19) to

ds2 � dt2 � �d�2 �

� ����������������������
2Mr�Q2

�

s
�dt� asin2�d��

�

����������������
�

r2 � a2

s
dr
�

2
� �r2 � a2�sin2�d�2; (21)

A �
Qr
�
�dt� asin2�d��: (22)

Here, the form of vector potential remains unchanged up to
a gauge transformation. To make the event horizon coin-
cide with the infinite red-shift surface, we further introduce
the dragging coordinate transformation
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d� �
a�r2 � a2 � ��

�r2 � a2�2 ��a2sin2�
dt; (23)

under which the desired 3-dimensional dragged Painlevé-
Kerr-Newman line element and the relevant electro-
magnetic vector potential can be obtained as follows

dŝ2 �
��

�r2 � a2�2 ��a2sin2�
dt2 �

�

r2 � a2 dr
2

� 2

��������������������������������������������
�2Mr�Q2��r2 � a2�

p
�

�r2 � a2�2 ��a2sin2�
dtdr� �d�2;

(24)

Â �
Qr�r2 � a2�

�r2 � a2�2 � �a2sin2�
dt � Atdt: (25)

As before, the radial, null geodesics are given by Eq. (9)
with 2Mr replaced by 2Mr�Q2. But we are considering
the tunneling process of charged particles from a rotating
charged black hole, the trajectory followed by a charged
test particle is not lightlike, it does not follow the radially
lightlike geodesics when it tunnels across the horizon.
Because the calculations are more involved by the fact
that the trajectory is now also subject to Lorentz forces,
for the sake of simplicity, here it is approximately deter-
mined by the phase velocity. According to de Broglie’s
hypothesis and the definition of the phase (group) velocity,
the outgoing particle that can be considered as a massive
shell corresponds to a kind of ‘s-wave’ whose phase ve-
locity vp and group velocity vg have the following rela-
tionship

vp �
1

2
vg; vp �

dr
dt
; vg �

drc
dt
; (26)

where rc denotes the radial position of the particle.
Since the tunneling process across the barrier is an

instantaneous effect, there are two events that take place
simultaneously in different places during the process. One
is the particle tunneling into the barrier, another is the
particle tunneling out the barrier. Because the dragged
Painlevé-Kerr-Newman metric (24) satisfies Landau’s con-
dition of the coordinate clock synchronization [17], the
coordinate time difference of these two events is

dt � �
gtr
gtt
drc; �d� � 0�: (27)

By the definition of the group velocity, we have

vg �
drc
dt
� �

gtt
gtr
�

���������������������������������������������
�2Mr�Q2��r2 � a2�

p ; (28)

therefore the phase velocity is

_r �
dr
dt
� �

gtt
2gtr

�
�

2�r2 � a2�
=

�������������������������
1�

�

r2 � a2

s
: (29)
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To include the particle’s self-interaction effect after the
charged particle emission, the mass and charge parameters
in Eqs. (24), (25), and (29), should be replaced with M !
M�! and Q! Q� q, when a charged test particle of
energy ! and electric charge q tunnels out. Based on a
similar discussion to that made in the last section, it is
obvious that we must accordingly modify the radial trajec-
tory of the charged massive particle to account for the
particle’s self-gravitation, which is described by

_r �
~�

2�r2 � a2�
=

�������������������������
1�

~�

r2 � a2

s
; (30)

where ~� � r2 � a2 � 2�M�!�r� �Q� q�2 is the hori-
zon equation after the emission of the particle with energy
! and electric charge q.

When we investigate the tunneling process of a charged
particle, the effect of the electro-magnetic field should be
taken into account. So we must consider the matter-gravity
system that consists of the black hole and the electro-
magnetic field outside the black hole. As the Lagrangian
function of the electro-magnetic field corresponding to the
generalized coordinates described by A� is
��1=4�F��F��, we can find that the generalized coordi-
nate At in Eq. (25) is an ignorable coordinate. In addition,
the coordinate � is also a cyclic one. In order to eliminate
these 2 degrees of freedom completely, the action of the
charged massive particle should be written as

S �
Z tf

ti
�Pr _r� P� _�� PAt

_At�dt

�
Z rf

ri

�Z �Pr;P�;PAt �
�0;0;0�

� _rdP0r � _�dP0� � _AtdP
0
At
�

�
dr
_r
;

(31)

where the canonical momenta fPr; P�; PAtg conjugate to

the coordinates fr;�; Atg, ri � M�
�������������������������������
M2 �Q2 � a2

p
and

rf � M�!�
���������������������������������������������������������
�M�!�2 � �Q� q�2 � a2

p
are the loca-

tions of the event horizon before and after the charged
particle emission.

According to the Hamilton’s equations, we have

_r �
dH
dPr

���������r;�;P�;At;PAt ��
d�M�!�
dPr

;

_� �
dH
dP�

����������;r;Pr;At;PAt �
� a�

d�M�!�
dP�

;

_At �
dH
dPAt

���������At;r;Pr;�;P��� �
d�Q� q�
dPAt

;

(32)

where the dragging angular velocity and the electric po-
tential in the dragging coordinate system are given by
-7
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� �
a�r2 � a2 � ~��

�r2 � a2�2 � ~�a2sin2�
;

� �
�Q� q�r�r2 � a2�

�r2 � a2�2 � ~�a2sin2�
:

We would like to emphasize that, by keeping the mass M
and the electric charge Q fixed, the conservation of energy
and angular momentum as well as electric charge will be
enforced in a natural fashion. Substituting Eqs. (30) and
(32) into Eq. (31), and switching the order of integration
yield the imaginary part of the action

ImS� Im
Z rf

ri

Z �M�!;Q�q�
�M;Q�

	�1�a�0�d�M�!0�

��0d�Q�q0�

dr
_r

� Im
Z �M�!;Q�q�
�M;Q�

Z rf

ri

2�r2�a2�

�0

�

�����������������������
1�

�0

r2�a2

s �
r2�r2�a2���0a2cos2�

�r2�a2�2��0a2sin2�
d�M�!0�

�
�Q�q0�r�r2�a2�

�r2�a2�2��0a2sin2�
d�Q�q0�

�
dr; (33)

where

�0 � r2 � a2 � 2�M�!0�r� �Q� q0�2

� �r� r0���r� r
0
��;

r0� � M�!0 �
������������������������������������������������������������
�M�!0�2 � �Q� q0�2 � a2

q
:

The above integral can be evaluated by deforming the
contour around the single pole r � r0� at the event horizon.
Doing the r integral first, we find

ImS � ��
Z �M�!;Q�q�
�M;Q�

2r0�
r0� � r

0
�

	r0�d�M�!
0�

� �Q� q0�d�Q� q0�
: (34)

By means of the identity

�r0� � r
0
��dr0� � 2r0�d�M�!

0� � 2�Q� q0�d�Q� q0�;

(35)

we can easily finish the integration and arrive at a simple
expression

Im S � ��
Z rf

ri
r0�dr

0
� �

�
2
�r2
i � r

2
f�; (36)

from which the tunneling rate can be readily deduced

�� e�2ImS � e��r
2
f�r

2
i � � e�SBH ; (37)

where �SBH � SBH�M�!;Q� q� � SBH�M;Q� �
��r2

f � r
2
i � is the difference of Bekenstein-Hawking entro-

pies of the Kerr-Newman black hole before and after the
064003
particle emission. We see that the above result perfectly
generalizes those obtained in Refs. [5,6], which is indica-
tive of a consistence with an underling unitary theory.

To end this section, it is necessary to reveal that the
reason why the Kraus-Parikh-Wilczek’s semiclassical tun-
neling formalism is so successful is in that its effectiveness,
to a large extent, relies on the well-known thermodynamic
properties of a charged rotating black hole. A rigorous
check on the prescribed method allows us to confirm that
it is closely related to the first law of black hole thermo-
dynamics. In fact, it is easily observed that all the radial
trajectories whether or not they are charged, share the
common near-horizon behavior

_r � �0�r� r0��; �0 �
r0� � r

0
�

2�r02� � a
2�
; (38)

where �0 is the surface gravity after the particle’s emission.
On the other hand, note also that the explicit expressions
for the angular velocity and electric potential are given by

�0� �
a

r02� � a
2 ; �0� �

�Q� q0�r0�
r02� � a

2 ;

one can verify that the entropy S0 � ��r02� � a
2� obeys the

differential form of the first law of thermodynamics [18,19]

d�M�!0� �
�0

2�
dS0 � a�0�d�M�!

0� ��0�d�Q� q
0�:

(39)

Keeping the mass M and electric charge Q fixed, Eq. (39)
indicates that the black hole could be in thermal equilib-
rium with the radiation outside the hole, and the detailed
equilibrium condition is essentially equivalent to the con-
servation laws established elsewhere [18].

Substituting Eq. (39) into (33), then the imaginary part
of the action can be rewritten as

Im S � Im
Z rf

ri

Z �M�!;Q�q�
�M;Q�

1

�0�r� r0��
	d�M�!0�

� a�0�d�M�!
0� ��0�d�Q� q

0�
dr

� �
1

2

Z SBH�M�!;Q�q�

SBH�M;Q�
dS0 � �

1

2
�SBH; (40)

which is equal to half of the difference of the initial and
final entropy of the system. This completes our proof.
V. CONCLUDING REMARKS

In this paper, we have presented a neat extension of the
semiclassical tunneling framework [5,6] in the spherically
symmetric black hole cases to deal with Hawking radiation
of massless particles as a tunneling process through the
event horizon of a Kerr black hole and that of charged
particles from a Kerr-Newman black hole. The new form of
the Kerr solution found by Doran [16] is especially appro-
priate for us to do an explicit tunneling calculation when
-8
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transformed into the dragged Painlevé-Kerr coordinate
system. By treating the background spacetime as dynami-
cal, the energy conservation and the angular momentum
conservation as well as the electric charge conservation are
enforced in a nature way, when the particle’s self-
gravitation is taken into account. Adapting this tunneling
picture, we were able to compute the tunneling rate and the
radiant spectrum of a Kerr and Kerr-Newman black hole.
The resulting probability of particle emission is propor-
tional to a phase space factor depending on the initial and
final entropy of the system which multiplies the square of
the quantum mechanical tunneling amplitude for the pro-
cess. Meanwhile, this implies that the emission spectrum
actually deviates from perfect thermality, but is in agree-
ment with an underlying unitary theory (which is presum-
ably String Theory but that is beyond the scope of this
paper).

Before concluding, some remarks are in order. First, our
analysis made here strictly followed the approach [5,6] that
visualizes the source of Hawking radiation as a tunneling
process. The pertinent point of this approach is that black
hole radiance is a dynamical mechanism for which con-
servation laws must be enforced. The effectiveness of the
prescribed method is closely related to the first law of black
hole thermodynamics. For a stationary radiation process
where a black hole is in thermal equilibrium with the
outside radiation, the detailed equilibrium condition sug-
064003
gests quantum conservation laws hold true [18]. If the
evaporation can stabilize with the end point of the system
being a stable remnant in thermal equilibrium with radia-
tion, the information could be preserved. Second, we
would like to stress that the preceding study is still a
semiclassical analysis (formally analogous to a WKB ap-
proximation), which means that the radiation should be
treated as point particles. Such an approximation can only
be valid in the low energy regime. If we are to properly
address the information loss problem, then a better under-
standing of physics at the Planck scale is a necessary
prerequisite, especially that of the last stages or the end-
point of Hawking evaporation.

Finally, in a separate work [20] the extension made here
has satisfactorily been examined in the case of a (2� 1)-
dimensional rotating black hole. Further application to the
case of rotating black holes in higher dimensions is in
progress.
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