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Asymmetric inflation: Exact solutions
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We provide exact solutions to the Einstein equations when the universe contains vacuum energy plus a
uniform arrangement of magnetic fields, strings, or domain walls. Such a universe has planar symmetry;
i.e., it is homogeneous but not isotropic. Further exact solutions are obtained when dust is included and
approximate solutions are found for w � 0 matter. These cosmologies also have planar symmetry. These
results may eventually be used to explain some features in the Wilkinson Microwave Anisotropy Probe
data. The magnetic field case is the easiest to motivate and has the highest possibility of yielding reliable
constraints on observational cosmology.
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I. INTRODUCTION

After many successes, standard radiation/matter domi-
nated big bang cosmology was found inadequate to provide
solutions to a number of problems raised when the model
was studied in more detail in the light of modern data.
These problems include the horizon problem, the flatness
problem, the magnetic monopole problem, etc. Faced with
these issues, it was clear that a departure from conventional
thinking was required and initial assumptions needed to be
questioned. Specifically, the cosmological constant that
was for many years in disfavor was reintroduced and
gave a solution to Einstein’s equations with an exponen-
tially growing scale factor, i.e., inflation [1–4]. This im-
mediately solved the problems listed above, since it
allowed the Universe to be in thermal equilibrium, diluted
monopoles, and flattened the curvature. Inflation also al-
lowed quantum fluctuations in the early Universe to expand
to superhorizon sizes. Upon reentry, the fluctuations gen-
erate the density perturbations [5–8] that led to structure
[9,10].

As more cosmological data became available [11–13],
more detailed inflationary models have become necessary
to explain it [14]. In the past two decades, many infla-
tionary scenarios have been analyzed [15–18], but all have
one feature in common: homogeneous isotropic expansion.
However, before the onset of inflation, a typical region of
the universe is anything but homogeneous and isotropic. It
is possible that an asymmetric feature in some region could
be stretched out by an asymmetric inflation, but remain
imprinted through the end of inflation, or that a parameter
or field initially asymmetrically distributed is diluted to a
negligible value by the end of inflation, but with an imprint
left on the inflated universe. Asymmetric features could
also be generated by the phase transition that is responsible
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for the inflation. We will investigate these possibilities in
models with homogeneous but anisotropic expansions.

In a previous paper [19], we gave exact solutions of
Einstein’s equations for cases of a universe with planar
symmetry. These include a universe with cosmological
constant plus magnetic fields, cosmic strings, or cosmic
domain walls aligned uniformly throughout all space. In
this paper, we give exact results that include nonrelativistic
matter (dust). We also give approximate solutions for w �

0 matter.
The first year Wilkinson Microwave Anisotropy Probe

(WMAP) results [20–22] contain interesting large-scale
features which warrant further attention [23,24]. One glar-
ing observational feature is the suppression of power at
large angular scales (� * 60�), which is reflected most
distinctly in the reduction of the quadrupole C2. This effect
was also seen in the Cosmic Background Explorer (COBE)
results [11,13]. After the COBE experiment, Monte Carlo
studies were used to cast doubt on quadrupole suppression
[25,26], suggesting the effect could just be statistical. The
WMAP analyses [20–24] have arrived at similar conclu-
sions. Nevertheless, interesting physical effects are not
ruled out, especially since the octupole also appears to be
somewhat suppressed. Thus, it does not seem unreasonable
to try to model such behavior by altering the cosmological
model from the standard big bang plus inflation scenario.
Intriguingly, the more precise measurements of WMAP
also showed that the quadrupole C2 and octupole C3 are
aligned. In particular, the ‘ � 2 and 3 powers are found to
be concentrated in a plane P inclined about 30� to the
Galactic plane. In a coordinate system in which the equator
is in the plane P, the ‘ � 2 and 3 powers are primarily in
the m � �‘ modes. The axis of this system defines a
unique ray and supports the idea of power in the axial
direction being suppressed relative to the power in the
orthogonal plane. These effects seem to suggest that one
(longitudinal) direction may have expanded differently
from the other two (transverse) directions, where the trans-
verse directions describe the equatorial plane P mentioned
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above. Although this effect once again could be explained
away as statistical [20–24], a realistic physical model that
can explain some or all anisotropic effects in the WMAP
data would be of interest.

While there are many ways to approach the issue of
global anisotropy of the Universe, it would be most sat-
isfying to explain global anisotropy by a simple modifica-
tion of the conventional Friedman-Robertson-Walker
(FRW) model. To achieve this, one has to consider an
energy-momentum tensor which is spatially nonspherical
or spontaneously becomes nonspherical at each point in
space-time. Such a situation could occur when defects or
magnetic fields are present. Magnetic fields [27] and cos-
mic defects [28] can arise in various ways. Moreover, it is
known that large-scale magnetic fields exist in the
Universe, perhaps up to cosmological scales [27,29].
These considerations motivate us to focus our attention
on the effect magnetic fields and defects can have on the
expansion of the Universe.

As a modest step toward understanding the form, sig-
nificance, and implications of an asymmetric universe, we
will modify the standard spherically symmetric FRW cos-
mology to a form with only planar symmetry [30]. Our
choice of the energy-momentum tensor will result in non-
spherical expansion1 from an initially spherical symmetric
configuration: An initial comoving sphere will evolve into
a spheroid that can be either prolate or oblate depending on
the choice of matter content. For the sake of clarity, we first
give some general properties of cosmologies with planar
symmetry. (The Universe looks the same from all points
but the points all have a preferred axis.) Our first example
will be a universe filled with dust, uniform magnetic fields,
and cosmological constant. (Some aspects of cosmic mag-
netic fields have been previously studied; see, e.g.,
Ref. [31].) This is perhaps the most easily motivated,
exactly solvable case to consider, and it will give us a
context in which to couch the discussion of other examples
with planar symmetry and cases where planar symmetry is
broken. We then describe a number of other exactly solv-
able planar-symmetric cases.

To set the stage, consider an early epoch in the Universe
at the onset of cosmic inflation, where strong magnetic
fields have been produced in a phase transition [32–35].
Assuming the magnitude of the magnetic field and vacuum
energy (�) densities are initially about the same, we will
find that eventually � dominates. It was estimated [33] that
the initial magnetic field energy produced in the electro-
weak phase transition was within an order of magnitude of
the critical density. Other phase transitions may have even
higher initial field values [34,35] or high densities of
cosmic defects. Hence, it is not unphysical to consider a
1By spherical expansion, we mean homogeneous isotropic
expansion, while in this paper we occasionally use the term
nonspherical expansion to describe expansion that has only
planar symmetry.
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universe with magnetic fields and � of comparable mag-
nitudes. If the magnetic fields are aligned in domains, then
some degree of inflation is sufficient to push all but one
domain outside the horizon. (Below, we also discuss the
cases where there is one or only a few domains within the
horizon.)

Finally, we should mention that departure from spherical
symmetry and/or departure from standard inflationary cos-
mology is an active and controversial area of study. A
partial list of topics includes polarization of light from
astrophysical objects and related phenomena [36– 40],
the topology of the Universe [41–43], and low ‘ mode
suppression [44,45]. The plan of the paper follows.

In the second section, we review the generalization of a
FRW universe to the case of planar symmetry. We display
the Christoffel symbols, Ricci tensor, and general form of
the energy-momentum tensor with the corresponding
Einstein equations and the general form of energy-
momentum conservation. This section sets up the basic
equations to be solved and also contains a discussion of
thermodynamics in a planar-symmetric universe. We find a
natural splitting of the elements of T�� into spherically
symmetric and anisotropic pieces. This procedure provides
the key insight needed to find exact solutions for the
equations of cosmic evolution. In the third section, we
carry out a general analysis of the features resulting from
planar symmetry and give various relations and inequal-
ities based on energy conditions, many of which involve
the eccentricity of the expansion. Various limiting cases are
also considered.

Sections IV, V, and VI treat a universe filled with cos-
mological constant, dust, and either uniform magnetic
fields, aligned cosmic strings, or aligned cosmic domain
walls, respectively. We have given each of these exactly
solvable cases a separate section so that we can systemati-
cally compare and contrast them more easily. Graphics and
limiting cases are both used for this purpose. The magnetic
field and aligned cosmic string cases are qualitatively
similar, and both are substantially different from the case
of domain walls. Section VII contains our conclusions and
a brief discussion of how one would apply our results to
density perturbations [46]. An appendix has been included
to treat the case of matter with generic nonzero choice for
w, the parameter that describes the equation of state. These
results are only approximate, and so they have been rele-
gated to the appendix to avoid breaking the flow of the
discussion of exact results presented in the main body of
the paper.
II. UNIVERSE WITH PLANAR SYMMETRY

To make the simplest directionally anisotropic universe,
we modify the FRW spherical symmetry of space-time into
planar symmetry. (Cylindrical symmetry is, of course, not
appropriate since it introduces preferred location of the
axis of symmetry.) The most general form of a planar-
-2



2The subscript ‘‘i’’ refers to the moment of transition from
isotropic to anisotropic dynamics.
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symmetric metric (up to a conformal transformation) is
[30]

�g��� � diag�1;�e2a;�e2a;�e2b�; (1)

where a and b are functions of t and z; the xy plane is the
plane of symmetry. We also impose translational symmetry
along the z axis; the functions a and b now depend only on
t. [Examples of planar-symmetric spaces include space
uniformly filled with either uniform magnetic fields, static
aligned strings, or static stacked walls, where the defects
are at rest with respect to the cosmic background frame.
This situation with defects is artificial or at best contrived
but could perhaps arise in brane world physics where walls
could be static or walls beyond the horizon could be
connected by static strings. We will not pursue these details
here. Of course, any spherically symmetric contributions
(vacuum energy, matter, radiation) can be added without
altering the planar symmetry.] For the metric (1), the non-
zero Christoffel symbols are

�0
11 � �0

22 � _ae2a; �0
33 �

_be2b;

�1
01 � �2

02 � _a; �3
03 �

_b;

which results in the following nonzero components of the
Ricci tensor:

R0
0 � ��2 �a� �b� 2 _a2 � _b2�;

R1
1 � R2

2 � �� �a� 2 _a2 � _a _b�;

R3
3 � ��

�b� _b2 � 2 _a _b�:

To support a symmetry of space-time, the energy-
momentum tensor for the matter has to have the same
symmetry. In the case of planar symmetry, this requires

�T��� � �8�G��1 diag��; �; �; ��: (2)

Here the energy density �, transverse �, and longitudinal �
tension densities are functions only of time. The corre-
sponding Einstein equations are

_a 2 � 2 _a _b � �; (3)

�a� �b� _a2 � _a _b� _b2 � �; (4)

2 �a� 3 _a2 � �: (5)

We also need the equation expressing covariant conserva-
tion of the energy-momentum [a direct consequence of
Eqs. (3)–(5)]:

_�� 2 _a��� �� � _b��� �� � 0: (6)

We consider now the thermodynamics of cosmological
models evolving anisotropically. Energy density � and
pressure p correspond to the spherically symmetric part
of the energy-momentum tensor, � � 	� �� ~�, � �
	� p� ~�, � � 	� p� ~� , where we have written tildes
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on the anisotropic parts of the energy-momentum tensor.
As in the isotropic case [47], we have

Tdp=dT � �� p; (7)

where T is the temperature. Up to an additive constant, the
entropy in a volume V is

S � ��� p�V=T: (8)

Taking V � Vie2a�b, we find

_S=S � 2 _a� _b� _�=��� p�: (9)

For an adiabatic process, the entropy in a comoving vol-
ume is conserved; thus, the right-hand side of Eq. (9)
vanishes,

_�� �2 _a� _b���� p� � 0: (10)

For matter with the equation of state p � w�, Eq. (10)
gives

� � �ie��1�w��2a�b�: (11)

Equation (10) expresses covariant conservation of the iso-
tropic part of the energy-momentum. Since the total
energy-momentum is conserved locally [Eq. (6)], the
same holds for its anisotropic part,

_~�� 2 _a�~�� ~�� � _b�~�� ~�� � 0: (12)

Equation (12) will be the key to finding our exact solutions.

III. GENERAL PROPERTIES

Before considering specific models for the energy-
momentum, we first establish several general features of
an anisotropic universe described by Eqs. (3)–(6). These
results will be important for conceptual understanding of
solutions and asymptotics bounding the effects caused by
asymmetry and comparing the results for various types of
asymmetric components.

1. We assume that before anisotropic effects became
important, the universe had expanded isotropically.
During the initial phase of anisotropic expansion, when
anisotropic contributions to the energy-momentum are
significant, different tension densities in the longitudinal
and transverse directions cause comoving spheres to
evolve into spheroids. At a later phase, when all contribu-
tions except for the vacuum energy fade away, longitudinal
and transverse expansion rates become equal and the ex-
pansion proceeds isotropically. Thus, in this universe, each
initial sphere develops an eccentricity; whether the result-
ing spheroid is oblate or prolate depends on which tension
dominated during the initial phase of deformation.

2. We assume that initially2 space is isotropic, ai � bi,
and is expanding isotropically, _ai � _bi > 0. Without loss
-3



TABLE I. The components of the energy-momentum (2) for
various contributions to the matter. In the text, tables, and figure
captions, we use the labels �, w, M, S, and W to represent
cosmological constant, matter with equation of state � � wp,
magnetic fields, strings, and walls, respectively. Occasionally,
we label dust with the symbol 0.

� � �

Vacuum energy (�) 	 	 	
Matter (w) � �w� �w�
Magnetic field (M) 
 �
 

Strings (S) 
 0 

Walls (W) 
 
 0
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of generality, we set ai � 0, which is equivalent to a simple
rescaling of scale factors ea and eb. For expansion in some
direction to change into contraction, we need to cross the
point where the expansion rate in this direction becomes
zero. Since the energy density is positive, from Eq. (3) it
follows that there can be no contraction in the transverse
direction, _a > 0. (See Figs. 1, 9, and 17.)

3. If the transverse tension is always smaller (larger)
than the longitudinal tension, then the initially spherical
region of space-time has expanded asymptotically to the
shape of an oblate (prolate) spheroid. Indeed, if �< � ,
then Eqs. (4) and (5) give �a� �b <�2 _a2 � _a _b� _b2.
Consider two cases: (i) When _a � _b, we arrive at �a� �b >
0, which upon integration leads to a contradiction, _a� _b >
0; (ii) when _a > _b, we find _a� _b > 2

R
t
ti
dt� _b2 � _a2�,

which is allowed. Similarly, if �> � , then _a 	 _b leads
to a contradiction, while _a < _b is allowed. In the allowed
cases, further integration leads to the results a > b when
�< � , and a < b when �> � . (See Figs. 5, 6, 13, 14, 21,
and 22 for examples of different cases.)

4. On the other hand, longitudinal contraction is pos-
sible. To find a moment t � t
 when longitudinal expan-
sion changes into contraction, we set _b
 � 0 in Eqs. (3)–
(5) and find �b
 � �
 �

1
2 ��
 � �
�. Examining entries in

Table I, we see that, except for the case when the magnetic
field dominates,3 �b
 is positive. It follows that only in the
magnetic-field-dominating case can space contract in the
longitudinal direction; see Figs. 2, 10, and 18 for examples
of the different cases. If the initial magnetic field is suffi-
ciently strong, the longitudinal size can become smaller
than its initial value (curves with b < 0 in Fig. 2).
However, no matter how strong the initial field is, after a
sufficiently long period of time, contraction turns into
expansion following the correct asymptotic behavior.

5. For all known forms of matter, the components of the
energy-momentum tensor satisfy the dominant energy con-
dition [48,49]; in our case, it says � 	 0, � 	 �, and � 	 �
(see Table I for examples). Evaluating Eq. (6) at the initial
time, we find _�i � � _ai�3�i � 2�i � �i�; from the energy
conditions, it now follows that the energy density does not
increase initially, _�i � 0. Let us investigate whether the
energy can increase at a later time. For this to happen, we
need to have _�
 � 0 for some t � t
; Eqs. (3) and (6) then
give _a2


�4�
 � 3�
 � �
� � �
��
 � �
�. This equation
has a real solution for _a
 only when the wall contribution
dominates; see Table I. However, even in the worst case,
with only the wall contribution, the energy density cannot
increase. Indeed, using � � �, we find _a2


 � �
. Since _a >
0 by item 2, Eq. (3) gives _b
 � 0. In item 4 we found that,
unless magnetic field contribution dominates, �b
 > 0, and
3When we say that some contribution to the energy-
momentum dominates, we mean by this that the contribution
is the largest for all times.
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thus for walls _b cannot become zero if initially _bi > 0. This
proves that _� � 0 in all cases.

6. Let us prove that the transverse expansion rate has its
maximum at t � ti. First, from Eqs. (3) and (5) it follows
that �ai �

1
2 ��i � �i�, and so �ai � 0 because of the energy

conditions in item 5. It follows that _a initially decreases
with time. Suppose, however, that _a starts increasing and
reaches its initial value _ai for the first time at the moment
t
. Equation (5) then gives �a
 �

1
2 ��
 � �i�, and �i 	 �
 	

�
 from item 5 leads to �a
 � 0. This is impossible, since to
reach the first point at which _a
 � _ai we need to have �a
 >
0. We thus conclude _a � _ai, which was to be demon-
strated. (See Figs. 1, 9, and 17.)

7. Consider now longitudinal expansion. From
Eqs. (3)–(5), we have �bi � �i �

1
2 ��i � �i�. Examining

entries in Table I, we see that �bi � 0 except for the case
when the wall contribution dominates. Excluding this case,
we repeat the argument in item 6, and for the point at which
_b
 � _bi we find �b
 � �
 �

1
2 ��
 � �
� � _a2


 � _a2
i . Using

the result in item 6, we have �b
 � �
 �
1
2 ��
 � �
� � 0,

which contradicts �b
 > 0 that we need to make _b
 � _bi.
We thus conclude that, except when wall contribution
dominates, the longitudinal expansion rate has its maxi-
mum at t � ti. (See Figs. 2, 10, and 18.)

8. Next we derive a bound on the spatial volume.
Consider two cases: (i) when _a � _b, Eq. (3), _� � 0 in
item 5, and _a > 0 in item 2 lead to �a�1� _b= _a� � �b � 0
and so 2 �a� �b � 0; (ii) when _a 	 _b, Eq. (3), _� � 0 in
item 5, and _b > 0 in item 4 (which is true unless magnetic
field contribution dominates) lead to �a�1� _a= _b� �
�b _a = _b � 0 and so 2 �a� �b � 0 again. In both cases, inte-
gration gives the following bound for the volume of space:

2a� b � �3�i�
1=2�t� ti�: (13)

9. The energy condition � 	 � bounds the eccentricity
from above. Indeed, from Eqs. (3) and (5) follows _a� _b �
�� � �� 2 �a�=2 _a. Integrating and using _a > 0 from item 2
and � 	 � from item 5, we arrive at the following bound:

ea�b � _ai= _a: (14)
-4
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From item 6, we have _ai= _a 	 1 and so Eq. (14) allows a >
b. Solving Eq. (5) asymptotically for large t, we find _a�
��=3�1=2, which turns Eq. (14) into an asymptotic bound

ea�b & ��i=��
1=2: (15)

Since ea�b is a convenient variable, we define it to be the
‘‘pseudoeccentricity.’’4

10. When � � � (the vacuum energy with any combi-
nation of magnetic fields and strings aligned in the same
direction), similarly to item 9 we find

ea�b � ��i=��1=2: (16)

11. We consider here the case when neither the mag-
netic field nor the wall contribution dominates. Using _b >
0 from item 4 and _b � _ai from item 7, Eqs. (3) and (4)
together with condition � 	 � from item 5 lead to _a�
_b 	 � �a� �b�= _b, and integration gives the bound

ea�b 	 � _b= _ai�e
_a= _ai�1: (17)

The right-hand side of Eq. (17) does not exceed unity, so
a < b is allowed. Using now asymptotic expressions for _a
and _b [which are obtained from Eqs. (3) and (5)], we find

ea�b *

�
3�� �

2��i��1=2

�
exp���=�i�

1=2 � 1: (18)

Asymptotically �; � � 	, and so the bounds (15) and (18)
bracket the pseudoeccentricity as follows:

�	=�i�
1=2 exp��	=�i�

1=2 � 1 & ea�b & ��i=	�1=2: (19)

The two bounds in Eq. (19) do not contradict each other
since �i 	 	.

12. When � � � (the vacuum energy with walls), we
have _a� _b � � �a� �b�= _b. Using now �a � � 1

2
�b from

item 8 and integrating, we find ea�b � � _b= _ai�
1=2.

Asymptotically, comoving spheres evolve into prolate el-
lipsoids,

ea�b & �	=�i�
1=4: (20)

13. By item 6, the transverse expansion rate has its
maximum at t � ti. Also, for all physical matter contribu-
tions, the energy density exceeds the vacuum energy (see
Table I). From Eq. (3), we then have _a� 2 _b 	 	= _a, and
4The standard definition of the eccentricity of an ellipse, with
semimajor axis of length A � ea and semiminor axis of length
B � eb, is

������������������
A2 � B2
p

=B �
�����������������������
e2�a�b� � 1
p

. We are interested in
spheroids that can be either prolate or oblate. If a cross section
that is tangent to the symmetry axis of the spheroid is an ellipse
with axes A along the symmetry axis and B normal to that axis,
then either one can be larger. This distinction is not contained in
the definition of eccentricity, so a more appropriate measure for
our purposes is the ratio A=B � ea�b, which we will call the
pseudoeccentricity.
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thus

a� 2b 	 	�3=�i�
1=2�t� ti�: (21)

14. Except when contribution of matter with w> 0
dominates, the longitudinal tension exceeds the vacuum
energy. Equation (5) together with the condition _a � _ai

from item 6 then gives

a 	 	�3�i�
�1=2�t� ti�: (22)

15. When 	 > 0, we have asymptotics �; �; � � 	, and
_a; _b� �13	�

1=2. In order to find asymptotics when 	 � 0,
we first observe that all quantities have power law behav-
ior: �� C�t�s� , etc. Equation (5) gives s� � 2, s _a � 1.
From Eqs. (4) and (5), we then have either s _b 	 1, s� �
s� � 2 or s _b < 1, s� � s _b � 1, s� � 2s _b. Examining en-
tries in Table I, we conclude that from s� � 2 it follows
that min�s
; s�� � 2; if there is more than one anisotropic
component, then s
 is the smallest anisotropic exponent.
This results in s� � s� � 2, s _b 	 1. (See Table III for
examples.)

16. Let us find how asymptotics for 	 > 0 in item 15
approach their limiting values. From Eq. (6), we have

����� � �13	�
1=2�3� 2n� � n� ��� � 0; (23)

where n� � ��=�� and n� � ��=��. When n� and n�
are constants (for example, when, besides the vacuum
energy, there is only one other contribution from Table I)
or slowly varying functions, Eq. (23) gives �� / e�t=t�
with characteristic time

t� � �
1
3	�
�1=2�3� 2n� � n� ��1: (24)

For the cases �M, �S, and �W, �13	�
1=2t� equals 1

4 , 1
2 , and

1, respectively. Similarly, from Eqs. (3)–(5) we obtain

�� _a�� � �13	�
1=2��3� 4n� �� _a� 2n�� _b � 0; (25)

�� _b����13	�
1=2��4n��4n��� _a��3�2n��2n� �� _b�0:

(26)

Solving these equations and keeping only the leading
terms, we find � _a / te�t=t _a , � _b / te�t=t _b for the case �M
with �13	�

1=2t _a � �
1
3	�

1=2t _b �
1
3 and � _a / te�t=t _a , � _b /

te�t=t _b for the cases �S and �W with �13	�
1=2t _a equal to

1 and 1
3 , respectively, with �13	�

1=2t _b equal to 1 in both
cases. (See Figs. 1, 2, 9, 10, 17, and 18.)

For the reader’s convenience, we have collected in
Table II many of the general results proved in items 1–
16, conditions of their applicability, and examples of mat-
ter content when the results can be used.
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TABLE II. Summary of general results concerning the system described by Eqs. (3)–(6).
Initially, space is assumed to be isotropic, ai � bi � 0, and expanding isotropically, _ai � _bi >
0. In derivations of some of the results the energy conditions, � 	 0, � 	 �, � 	 � , were
assumed. The symbols in the last column indicate the matter content types for which the
corresponding result in the second column is applicable. If there are more than two components,
then their arbitrary combination is allowed. Also, the result can be extended to matter content
which is not indicated in the fourth column provided that it does not exceed the indicated
components.

No. Result Conditions Applicable to

2 _a > 0 �, M, S, W, w
3a a > b � < � M, S
3b a < b � > � W
4 _b > 0 �� 2�� � 	 0 �, S, W, w
5 _� � 0 �, M, S, W, w
6 _a � _ai �, M, S, W, w
7 _b � _ai �� 2�� � 	 0 M, S, w
8 max�2a� b� �� 2�� � 	 0 �, S, W, w
9 max�a� b� �, M, S, W, w
10 a� b � � � �, M, S
11 min�a� b� �� 2�� � 	 0, �� 2�� � 	 0 S, w
12 max�a� b� � � � �, W
13 min�a� 2b� �, M, S, W, w
14 mina � 	 	 �, M, S, W
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IV. MAGNETIC FIELDS

We are now in a position to extend the analysis of a
universe with the cosmological constant plus magnetic
fields of Ref. [19] to the more general case that also
includes dust. The analysis is similar to the case without
dust but adds to it a new variable and requires the use of
Eq. (10). We will find exact solutions in this case and in the
cases where magnetic field is replaced by strings or walls.
Lest the reader become complacent with the ease at which
these solutions have been found, we will show that, if we
have instead ��M=S=W� w, the resulting differential
equations are much more complicated and difficult to
solve. Numerical techniques are still available by which
we will solve these equations and present the results
graphically.

In the case of cosmological constant, magnetic fields,
and w � 0 matter, Eqs. (3), (5), and (12) with the corre-
sponding entries from Table I give

_a 2 � 2 _a _b � 	� �� 
; (27)

2 �a� 3 _a2 � 	� w�� 
; (28)

_
� 4 _a
 � 0: (29)

From the conservation of the anisotropic part of the
energy-momentum, Eq. (29), we find

a � 1
4 ln�
i=
�: (30)

Substituting this result into Eq. (28), we arrive at
063529

 �
� 11
8 _
2 � 2
2�	� w�� 
� � 0: (31)

Equation (31) does not explicitly involve the independent
variable t. To use this fact, we let 
 be the independent
variable and introduce a new dependent variable f � 1

2 _
2.
After this change, Eq. (31) becomes


f0 � 11
4 f� 2
2�	� w�� 
� � 0; (32)

here the prime means differentiation with respect to 
.
Solving Eq. (27) for _b and substituting it into Eq. (10),
we find (after some algebra)


f�0 � �1� w���38f� 

2�	� �� 
� � 0: (33)

The system of coupled differential equations (32) and (33)
can be replaced by the following system of coupled inte-
gral equations:

f �
8

3
	
2 �

8

3

�3=4

i ��i � 4
i�
11=4 � 8
3

� 2w
11=4
Z 
i



d
�
�7=4: (34)

� � �i�
=
i�
�3=8��1�w� 

�
1� �1

� w��i
i

Z 
i



d
�
=
i�

1��3=8��1�w� f�1

�
�1
; (35)

where

 � exp
�
��1� w�

Z 
i



d

�	� 
�f�1

�
: (36)
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We were not able to find the exact solution to the coupled
system of Eqs. (32) and (33) for arbitrary w. Instead, in the
remainder of this section, we derive the exact solution for
w � 0 and defer derivation of an approximate solution for
arbitrary w until Appendix A. (Another exactly solvable
case w � �1 is not really a separate case, since it can be
obtained from the solution for w � 0 by setting � � 0 and
redefining 	.)

For w � 0, Eqs. (32) and (33) give

f � 8
3	


2 � 8
3

�3=4
i ��i � 4
i�


11=4 � 8
3; (37)

� � �i�
=
i�
3=4�1� F�
=
i�

�1

�

�
	� ��i � 4
i��
=
i�

3=4 � 3

	� �i � 
i

�
�1=2

; (38)

where

F�
=
i� �
3

8
��i=
i��1� �	� �i�=
i

1=2
Z 1


=
i

dxx�1=4

� f	=
i � �4� �i=
i�x
3=4 � 3xg�3=2: (39)

From Eqs. (11), (30), and (38), we find

b �
1

2
ln
	� ��i � 4
i��
=
i�

3=4 � 3

	� �i � 
i

�
1

4
ln�
=
i�

� ln�1� F�
=
i�: (40)

Finally, time dependence of the above functions ��
�, a�
�,
and b�
� can be deduced from the function 
�t�, which is
given implicitly by

t� ti�
1

4

Z 
i



d

�

1

3
	
2�

1

3

�3=4

i �4
i��i�
11=4�
3

�
�1=2

(41)

as it follows from f � 1
2 _
2 and Eq. (37).

From a physical point of view, the value of ea�b is the
largest for the most anisotropic case; for fixed 
i, this is
achieved for �i � 0 when ea�b � �1� 
i=	�1=2 	 1. The
case of infinitely large �i corresponds to the most isotropic
case when ea�b � 1. It follows that ea�b 	 1 for any �i. A
careful inspection of the solution embodied in Eqs. (30),
(40), and (41) confirms this and shows that the space is
oblate and its pseudoeccentricity monotonically increases
from its initial value (unity) to its asymptotic value. More
magnetic field increases the anisotropy; more matter re-
063529
duces anisotropy, but neither can change an oblate ellipsoid
into a prolate one.

In the case w � 0, asymptotics from Appendix A sim-
plify as follows:


� 
i exp��4�	=3�1=2�t� ti � ��; (42)

a� �	=3�1=2�t� ti � ��; (43)

b� �	=3�1=2�t� ti � �� �
1
2 ln�1� ��i � 
i�=	

� ln�1� F�0�; (44)

�� �i�1� �	� �i�=
i
1=2�1� F�0��1

� exp���3	�1=2�t� ti � ��; (45)

where

� �
1

4

Z 
i

0
d

��

1

3
	
2

�
�1=2

�

�
1

3
	
2 �

1

3

�3=4

i ��i � 4
i�
11=4 � 
3

�
�1=2

�
: (46)

The corresponding asymptotic for pseudoeccentricity is

ea�b � �1� ��i � 
i�=	1=2�1� F�0��1: (47)

This form agrees with the general result expressed in
Eq. (16). In addition, the lower bound for pseudoeccen-
tricity can be derived: replacing the expression in the
braces in Eq. (39) by its bound 	=
i � �1� �i=
i�x

3=4

and integrating, we find

ea�b *

�
�i

�i � 
i
�


i

�i � 
i

�
1�

�i � 
i

	

�
�1=2

�
�1
	 1:

(48)

Hence, the asymmetric expansion is always oblate in this
case.

We finally note that, in the case of zero vacuum energy,
the exact solution derived above simplifies significantly,
since integrals in both Eqs. (39) and (41) are elementary
functions:

F�
=
i� � ��i=
i�
�1� �i=
i�

1=2

�4� �i=
i�
3

�
108� �10� �i=
i�

2

�1� �i=
i�
1=2

�
108�
=
i�

1=2 � �4� �i=
i � 6�
=
i�
1=42

�
=
i�
3=8�4� �i=
i � 3�
=
i�

1=41=2

�
;

(49)
t� ti � 2�3
i�
�1=2

�
�4� �i=
i � 6�
=
i�

1=4�4� �i=
i � 3�
=
i�
1=41=2

�
=
i�
3=8�4� �i=
i�

2
�
�10� �i=
i��1� �i=
i�

1=2

�4� �i=
i�
2

�
: (50)

The resulting form of the solution is then given by Eqs. (30), (38), (40), (49), and (50). Using this solution, we find the
following large-time asymptotics:


� 
i�
1
2�4� �i=
i�

1=2�3
i�
1=2t�8=3; (51)
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FIG. 2. Expansion parameter b as a function of t for the case
M�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from top to bottom.
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t
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FIG. 3. Matter density � as a function of t for the case M�w
with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1 to 1
with step 0.2 from top to bottom.
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a� 2
3 ln�12�4� �i=
i�

1=2�3
i�
1=2t; (52)

b� 2
3 ln�12��i=
i�

3=2�4� �i=
i�
�1�3
i�

1=2�t� ti�; (53)

�� 4
3t
�2: (54)

The pseudoeccentricity becomes

ea�b � 1� 4
i=�i: (55)

In the following, we will refer to the parameters a and b
as planar and axial expansion parameters. Note that, in
order to generate the figures, we have used large values for
the initial matter density �i and the magnetic field energy
density 
i relative to the cosmological constant 	 in order
to make the effects of their contributions to the stress
energy tensor stand out in the graphics. We will do this
throughout the paper but caution the reader that we are not
implying these are realistic choices of parameters. A real-
istic choice of initial conditions would probably be 	, �i,
and 
i all of the same order of magnitude, but in this case
we would need to plot small differences of parameters
instead of plotting them directly. Recall that the ��=�
effects found in the cosmic microwave background density
perturbations are of order 10�5, so observationally one is
typically, but not always, looking for small effects.

Figure 1 gives the expansion parameter a as a function
of time in a universe filled with aligned magnetic fields,
cosmological constant, and matter. Each curve corresponds
to matter with a different equation of state parameter w.

Each curve in Fig. 2 plots the axial expansion parameter
bwith time in a universe filled with aligned magnetic fields
and cosmological constant for matter with a variety of
choices for w. Comparing Figs. 1 and 2 shows that a grows
faster than b. This implies the expansion is oblate; i.e., an
initial spherical region expands to an oblate spheroid.

Figures 3 and 4 show the decay of the matter density and
of the magnetic field energy, respectively, with time using
0. 0.2 0.4 0.6 0.8 1. 1.2
0.

0.5

1.

1.5

2.

2.5

t

a

FIG. 1. Expansion parameter a as a function of t for the case
M�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from top to bottom.
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FIG. 4. Magnetic field density 
 as a function of t for the case
M�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from bottom to top.
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FIG. 5. Pseudoeccentricity ea�b for the case M�wwith 	 � 1,
�i � 10, 
i � 200. Curves are for w from �1 to 1 with step 0.2
from bottom to top.
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FIG. 8. Asymptotic value of the pseudoeccentricity for the
case M�w with 	 � 1 as a function of w and �i for 
i � 200.
Curves are for ea�b from 4 to 22 with step 2 from top to bottom.
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FIG. 7. Asymptotic value of the pseudoeccentricity for the
case M�w with 	 � 1 as a function of �i and 
i. Sets of curves
are for ea�b equal to 20, 15, 10, 5 from top to bottom; the
abscissa corresponds to ea�b � 1. Curves in each set are for w
equal to �0:5, �0:25, 0, 0.25, 0.5 from top to bottom.
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the same initial parameters that were used to generate
Figs. 1 and 2. Figure 5 shows the behavior of the pseu-
doeccentricity with time, again for the same initial parame-
ters which were used in the previous figures.

In Fig. 6, we have plotted the axial expansion parameter
versus the planar expansion parameter. Each curve is for a
different value of initial magnetic field energy density.
Time increases along each curve from left to right. Note
that a always increases, but for sufficiently strong initial
magnetic fields, after an initial increase, b reaches a maxi-
mum, then decreases for a time, reaches a minimum, and
then increases thereafter. Figure 7 shows the asymptotic
values of the pseudoeccentricity as a function of magnetic
field energy density and initial matter density for various
fixed values of w. As expected, stronger 
i leads to higher
eccentricity, but increasing �i, the spherically symmetric
component of T�� tends to dampen the effect. As with
previous figures, the parameters in Figs. 6 and 7 were
chosen to enhance the visualization, not for physical rea-
sons. Finally, Fig. 8 is a contour plot of the asymptotic
0. 0.5 1. 1.5 2. 2.5 3.

0.5

0.

0.5

1.

a

b

FIG. 6. Expansion parameters a and b for the case M� with
	 � 1, �i � 0. Curves are for 
i � 0, 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 from top to bottom.

063529
value of the pseudoeccentricity (the curves are lines of an
equal asymptotic value of ea�b) for a range of initial matter
densities and equations of state.
V. STRINGS

In a somewhat artificial case of cosmological constant
plus strings plus matter, the equations to solve are

_a 2 � 2 _a _b � 	� �� 
; (56)

2 �a� 3 _a2 � 	� w�� 
; (57)

_
� 2 _a
 � 0: (58)

From the conservation of the anisotropic part of the
energy-momentum, Eq. (58), we find

a � 1
2 ln�
i=
�: (59)
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Proceeding with the analysis in a manner similar to Sec. IV,
we arrive at the following system of equations:


f0 � 7
2f� 


2�	� w�� 
� � 0; (60)


f�0 � �1� w���34f�
1
2


2�	� �� 
� � 0; (61)

or equivalently

f �
2

3
	
2 � 2
3 �

2

3

�3=2

i ��i � 2
i�

7=2

� w
7=2
Z 
i



d
�
�5=2; (62)

� � �i�
=
i�
�3=4��1�w� 

�
1�

1

2
�1� w��i
i

�
Z 
i



d
�
=
i�

1��3=4��1�w� f�1

�
�1
; (63)

where

 � exp
�
�

1

2
�1� w�

Z 
i



d

�	� 
�f�1

�
: (64)

As in the magnetic field case, we can find the exact
solution to the coupled system of equations only for non-
relativistic matter (w � 0), which we present below. An
approximate solution for arbitrary w together with large t
asymptotics is given in Appendix B. Setting w � 0,
Eqs. (62) and (63) reduce to

f � 2
3	


2 � 2
3 � 2
3

�3=2
i ��i � 2
i�
7=2; (65)

� � �i�
=
i�
3=2�1� F�
=
i�

�1

�

�
	� 3
� ��i � 2
i��
=
i�

3=2

	� �i � 
i

�
�1=2

; (66)

where

F�
=
i��
3

4
��i=
i��1��	��i�=
i

1=2

�
Z 1


=
i

dxx1=2f	=
i�3x���i=
i�2�x3=2g�3=2:

(67)

Equations (11), (59), and (66) give

b �
1

2
ln
	� 3
� ��i � 2
i��
=
i�

3=2

	� �i � 
i
�

1

2
ln�
=
i�

� ln�1� F�
=
i�: (68)

The time dependences of the above functions ��
�, a�
�,
and b�
� are found from the function 
�t�, which is given
implicitly by

t� ti�
1

2

Z 
i



d

�

1

3
	
2�
3�

1

3

�3=2

i ��i�2
i�

7=2

�
�1=2

:

(69)
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There is a substantial analogy with the magnetic field
case: All the statements in the paragraph following Eq. (41)
in Sec. IV are also correct for the case of strings if one
replaces the magnetic field density with the string density.

In the case w � 0, asymptotics from Appendix B sim-
plify as follows:


� 
i exp��2�	=3�1=2�t� ti � ��; (70)

a� �	=3�1=2�t� ti � ��; (71)

b� �	=3�1=2�t� ti � �� �
1
2 ln�1� ��i � 
i�=	

� ln�1� F�0�; (72)

�� �i�1� �	� �i�=
i
1=2�1� F�0��1

� exp���3	�1=2�t� ti � ��; (73)

where

� �
1

2

Z 
i

0
d

��

1

3
	
2

�
�1=2

�

�
1

3
	
2 � 
3 �

1

3

�3=2

i ��i � 2
i�

7=2

�
�1=2

�
: (74)

The corresponding asymptotic for the pseudoeccentricity
is

ea�b � �1� ��i � 
i�=	
1=2�1� F�0��1: (75)

To find the lower bound for this quantity, we replace the
expression in the braces in Eq. (67) by its bound 	=
i �

�1� �i=
i�x
3=2, integrate, and find

ea�b *

�
�i

�i � 
i
�


i

�i � 
i

�
1�

�i � 
i

	

�
�1=2

�
�1
	 1:

(76)

This is the same bound we found for the magnetic field
case [Eq. (48)], and we see the expansion is again of the
oblate form.

Again, for the case 	 � 0, the above solution is given in
terms of elementary functions. We find

F�
=
i� � ��i=
i���1�
�

1

��1�
�

1

��
=
i�
� arctanh��1�

� arctanh��
=
i�

�
; (77)

t� ti � 
�1=2
i f13��i=
i � 2��arctanh��1�

� arctanh��
=
i� � ��1� � �
=
i�
�1=2��
=
i�g;

(78)

where

��x� � �1� 1
3��i=
i � 2�x1=21=2: (79)
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FIG. 10. Expansion parameter b as a function of t for the case
S�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1
to 1 with step 0.2 from top to bottom.
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The large-time asymptotics are


� 
if
�2�t�; (80)

a� f�t�; (81)

b��f�t�; (82)

�� �ie
�f�t�; (83)

where f�t� � t
1=2
i � 1

6 ��i=
i � 2� ln�t
1=2
i �. The pseu-

doeccentricity becomes

ea�b � e2f�t�: (84)

Figures 9 and 10 plot a and b as a function of time for a
range of w values. While Fig. 9 is qualitatively similar to
Fig. 1, Fig. 10 shows only a monotonic increase in b, unlike
Fig. 2. (See items 2 and 4 in Sec. III.) Figures 11 and 12
show the matter density and string density as a function of
time. These figures are qualitatively similar to Figs. 3 and 4
for the magnetic field case, but the curves in the string case
are somewhat more compressed. Figure 13 is the plot of the
pseudoeccentricity with time for strings. Figure 14 plots a
versus b for a variety of values of initial string density. The
monotonic increase of b is again apparent, in contrast to the
results for magnetic fields shown in Fig. 6.

Figure 15 gives contours of asymptotic values of the
pseudoeccentricity as a function of matter density and
string density. The results are similar to, but somewhat
milder than, the magnetic case (Fig. 7). Finally, Fig. 16
shows a dependence of the asymptotic value of the pseu-
doeccentricity on the equation of state. The effect is again
similar to, but milder than, the magnetic field case.
FIG. 11. Matter density � as a function of t for the case S�w
with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1 to 1
with step 0.2 from top to bottom.
VI. WALLS

If we replace magnetic fields or cosmic strings from the
previous two sections by a uniform stack of cosmic domain
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FIG. 9. Expansion parameter a as a function of t for the case
S�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1
to 1 with step 0.2 from top to bottom.
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FIG. 12. Magnetic field density 
 as a function of t for the case
S�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1
to 1 with step 0.2 from bottom to top.
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FIG. 15. Asymptotic value of the pseudoeccentricity for the
case S�w with 	 � 1 as a function of �i and 
i. Sets of curves
are for ea�b equal to 20, 15, 10, 5 from top to bottom; the
abscissa corresponds to ea�b � 1. Curves in each set are for w
equal to �0:5, �0:25, 0, 0.25, 0.5 from top to bottom.
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FIG. 13. Pseudoeccentricity ea�b for the case S�w with 	 �
1, �i � 10, 
i � 200. Curves are for w from �1 to 1 with
step 0.2 from bottom to top.
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FIG. 14. Expansion parameters a and b for the case S� with
	 � 1, �i � 0. Curves are for 
i � 0, 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 from top to bottom.
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FIG. 16. Asymptotic value of the pseudoeccentricity for the
case S�w with 	 � 1 as a function of w and �i for 
i � 200.
Curves are for ea�b from 4 to 22 with step 2 from top to bottom.
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walls, we arrive at another solvable model described by the
following equations:

_a 2 � 2 _a _b � 	� �� 
; (85)

2 �a� 3 _a2 � 	� w�; (86)

_
� _b
 � 0: (87)

Again, we were not able to solve the above equations
exactly for arbitrary w; also, it appears to be much harder
to arrive at a simple and accurate approximation similar to
the approximations for the cases of magnetic fields and
strings (see Appendixes A and B for details). We reluc-
tantly restrict ourselves only to the case w � 0. Somewhat
surprisingly, the analysis will need to be substantially
different from the magnetic fields and strings cases.

To proceed, it is convenient to use the substitution a �
2
3 lnu, which transforms the Riccati equation (86) into an
easily solvable linear equation �u � 3

4	u. This results in

a �
2

3
ln
3 � �
1� �

� ln; (88)

where  � exp��	=3�1=2�t� ti� and

� �
�1� ��i � 
i�=	

1=2 � 1

�1� ��i � 
i�=	1=2 � 1
: (89)

Energy-momentum conservation, Eq. (87), gives

b � ln�
i=
�: (90)

Using Eqs. (11), (85), (88), and (90), we find


 � 
i
1� �

3 � �

�
3 � �
1� �

�
1=3
�
1�

3
i

2	
1� �

�1� ��1=3
F��

�
�i

2	
�1� ��

3 � 1

3 � �

�
�1
; (91)

where
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FIG. 17. Expansion parameter a as a function of t for the case
W�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from top to bottom.
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FIG. 18. Expansion parameter b as a function of t for the case
W�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from top to bottom.
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F�� �
Z 

1
dx
�x3 � ��4=3

�x3 � ��2
: (92)

The function F�� can be written in terms of the hyper-
geometric functions, but the expression is complicated and
not illuminating, so we will not give it here.

In the case 	 � 0, the above exact solution simplifies
significantly. Instead of Eq. (88), we now have

a � 2
3 ln�1� C� Ct�; (93)

where C � 1� 1
2 �3��i � 
i�

1=2, and Eq. (91) becomes


 � 
i�1� C� Ct�
1=3

�
1�

3�i

4C
�t� ti�

�
9
i

28C2 ��1� C� Ct�
7=3 � 1

�
�1
: (94)

Returning to the case of 	 � 0, the large t wall energy
density is


� 
ie��	=3�1=2�t�ti�
�
�1� ��1=3

1� �
�

3
i

2	
F�1�

�
�i

2	
�1� ��4=3

1� �

�
�1
; (95)

the transverse scale factor is

a� �	=3�1=2�t� ti� �
2
3 ln�1� ��; (96)

the longitudinal scale factor is

b� �	=3�1=2�t� ti� � ln
�
�1� ��1=3

1� �
�

3
i

2	
F�1�

�
�i

2	
�1� ��4=3

1� �

�
; (97)

and the matter density is

�� e��3	�
1=2�t�ti�

�
�1� ��5=3

1� �
�

3
i

2	
�1� ��4=3F�1�

�
�i

2	
�1� ��8=3

1� �

�
�1
: (98)

From Eqs. (96) and (97), the pseudoeccentricity is

ea�b �
�

1� �
1� �

�
3
i

2	
�1� ��2=3F�1� �

�i

2	
�1� ��2

1� �

�
�1
:

(99)

In the case of zero vacuum energy, the asymptotics read:


� constt�2; (100)

a� 2
3 lnt� const; (101)

b� 2 lnt� const; (102)

�� constt�10=3: (103)
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As opposed to the cases of magnetic fields and strings, the
pseudoeccentricity vanishes for large t, since ea�b � t�4=3.

The plots for walls show a number of qualitative differ-
ences with the previous cases of magnetic fields and
strings. The expansion parameters a and b change with
time (see Figs. 17 and 18) more like the string case, where
both grow monotonically; but note that now b grows faster
than a, which is the reverse of the behavior seen for strings.
This means the expansion for walls is always prolate,
unlike the expansions for strings and magnetic fields,
which are always oblate.

For walls, the matter density, Fig. 19, falls faster with
time than its string and magnetic field counterparts due to
the fact that the overall expansion and, therefore, density
dilution are faster for walls. On the other hand, due to the
nature of its contribution to the stress energy tensor, the
wall energy density, Fig. 20, falls more slowly than the
magnetic field and string energy densities.

Figure 21 for the pseudoeccentricity provides another
way of visualizing the prolateness of the wall expansion,
-13
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FIG. 19. Matter density � as a function of t for the case W�w
with 	 � 1, �i � 10, 
i � 200. Curves are for w from �1 to 1
with step 0.2 from top to bottom.
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FIG. 21. Pseudoeccentricity ea�b for the case W�w with 	 �
1, �i � 10, 
i � 200. Curves are for w from �1 to 1 with
step 0.2 from top to bottom.
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since ea�b is always less than one in this case. Figure 22 for
a versus b represents the degree of prolateness for wall
expansion for a variety of initial conditions. Figure 23
shows asymptotic pseudoeccentricity contours for walls
as a function of initial matter and wall energy densities,
and Fig. 24 gives asymptotic pseudoeccentricity contours
for walls as a function of matter density and equation of
state parameter w.
0. 1. 2. 3. 4.
0.

2.

a

FIG. 22. Expansion parameters a and b for the case W� with
	 � 1, �i � 0. Curves are for 
i � 0, 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 from bottom to top.
VII. CONCLUSIONS

Einstein’s equations for magnetic fields that extend
across the Universe have been considered elsewhere.
Examples include cylindrically symmetric magnetic
geons, exact solutions for planar geometry with magnetic
fields and dust, and asymptotics [31]. None of these studies
contain exact solutions with cosmological constant and
magnetic fields (�M). We have not only given exact solu-
tions to the �M case but also have found exact �M plus
dust solutions. In addition, we have exact solutions when
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FIG. 20. Magnetic field density 
 as a function of t for the case
W�w with 	 � 1, �i � 10, 
i � 200. Curves are for w from�1
to 1 with step 0.2 from bottom to top.
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FIG. 23. Asymptotic value of the pseudoeccentricity for the
case W�w with 	 � 1 as a function of �i and 
i. Sets of curves
are for ea�b equal to 0.02, 0.03, 0.04, 0.05 from top to bottom;
the abscissa corresponds to ea�b � 1. Curves in each set are for
w equal to �0:5, �0:25, 0, 0.25, 0.5 from top to bottom.
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FIG. 24. Asymptotic value of the pseudoeccentricity for the
case W�w with 	 � 1 as a function of w and �i for 
i � 200.
Curves are for ea�b from 0.0115 to 0.0120 with step 0.0001 from
bottom to top.
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the magnetic fields are replaced by uniform arrangements
of cosmic strings or cosmic domain walls. Finally, we have
given approximate solutions in all these cases where dust
can be replaced by matter with an arbitrary value ofw in its
equation of state. All our solutions have planar symmetry.

The cosmic microwave background (CMB) and other
modern cosmological data are of such high quality that it is
now possible to study aspects of the Universe that were
previously completely out of reach. In order to carry out
these investigations, it may be necessary to go beyond the
homogeneous isotropic big bang/inflationary cosmology
and compare the data with less symmetric but perhaps
more realistic models. In the case of planar symmetry
studied here, an understanding of the density perturbations
and structure formation requires perturbing around planar-
symmetric solutions. Here we have taken a step in that
direction by considering a planar-symmetric universe with
eccentric expansion and have shown that exact solutions
can be obtained even when the eccentricity is large. This
will allow a density perturbation analysis to be carried out
in these cosmologies, which in turn can be compared with
CMB data and galaxy structure and correlation data [46].

It is not just a mathematical exercise to consider planar
symmetry. We know that magnetic fields and cosmic de-
fects can be produced in the early universe. In the case of
magnetic fields, their energy density 
 at its production
epoch can be a substantial fraction of the matter density �,
and this can cause spherical symmetry to be lost in a
cosmology. If the typical magnetic domain size D is small
compared to H�1, then the local expansion is eccentric,
while the average global expansion remains spherical,
while ifD 	 H�1, then the whole universe expands eccen-
trically until D comes within the horizon. Also, if D �
H�1 initially, a period of inflation can push regions of size
D outside the horizon, and we are again in a situation of
eccentric expansion.
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The planar-symmetric cases of cosmic strings and do-
main walls are somewhat more artificial, since they are
assumed to be static and aligned. However, this may not be
totally unrealistic when considered from the perspective of
more fundamental theories. For instance, certain anti–
de Sitter/conformal field theories derived from string the-
ory have parallel walls, and other theories with branes can
have strings connecting them. If two parallel walls, both
outside the horizon, were connected by strings, then the
strings would be expected to be parallel on average even if
they had some dynamics. Based on the above remarks, and
with the knowledge of the fact that aligned walls and
strings both produce planar symmetry, we have given exact
solutions for these cases as well.

Even though magnetic fields, string, and wall systems all
have planar symmetry, the forms of their energy-
momentum tensors differ. For magnetic fields, T�� is
traceless, and so this case has similarities with a radiation
filled universe. For strings and walls, the trace of T�� does
not vanish, so there are some similarities with the non-
relativistic matter component. Strings and walls are under
tension, so they also have some similarities with vacuum
energy. To see all these properties, we have solved the
equations of motion exactly for many cases of interest.
The large-time behaviors of these solutions are summa-
rized in Table III.

In all these cases, the universe undergoes eccentric
expansion and, in some instances, eccentric inflation. Our
analysis is completely general, and in order to apply these
results, more input is necessary; e.g., initial conditions
need to be specified, perhaps as derived from a model
with early universe phase transitions. Time scales need to
be fixed; e.g., when did the phase transition take place? For
instance, for magnetic field production, a phase transition
not far above the electroweak scale may be effective in
producing eccentric effects, at the same time remaining
compatible with other requirements on the cosmological
model, e.g., successful baryogenesis. If the magnetic field
production scale were too high, then there would be a
danger that all the eccentric effects could be washed out.

As stated above, with exact planar-symmetric solutions
at hand, we are now in a position to begin density pertur-
bations analysis [46]. To apply the results of this paper, it
will be necessary to consider how the spectrum of density
perturbations is affected by asymmetric expansion. Since
perturbations get laid down by quantum fluctuations and
then asymmetrically expanded in our models, any initial
spherical perturbation becomes ellipsoidal. After a while,
the expansion becomes spherically symmetric again, but,
as long as perturbations remain outside the horizon, they
stay ellipsoidal. Only after they reenter our horizon will
they be able to adjust (they will probably start to oscillate
between prolate and oblate with frequency that depends on
size and overdensity). So, if the perturbations are just
entering at last scattering, they should be ellipsoidal. The
-15



TABLE III. Summary of large-time behavior for various quan-
tities for ten different cases of universe content. For each choice
of an anisotropic component, magnetic fields (M), strings (S), or
walls (W), matter with w � 0 or with 0<w< 1 is included and
cosmological constant is either present (�) or absent. Only the
leading terms in asymptotics are given and ~t � �	=3�1=2t.


 � ea eb ea�b

M�w e�4~t e�3�1�w�~t e~t e~t 	 1
M�0 e�4~t e�3~t e~t e~t 	 1
Mw t�8=3 t�2 t2=3 t�2�1�2w�=�3�1�w� t2w=�1�w�

M0 t�8=3 t�2 t2=3 t2=3 	 1
S�w e�2~t e�3�1�w�~t e~t e~t 	 1
S�0 e�2~t e�3~t e~t e~t 	 1
Sw t�2 t�2 t t��2w=�1�w� t�1�3w�=�1�w�

S0 t�2 t�2 t t�2 	 1
W�0 e�~t e�3~t e~t e~t � 1
W0 t�2 t�10=3 t2=3 t2 t�4=3
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smaller they are at last scattering, the more they have
oscillated and, if damped, the closer to spherical they
should be. Hence, the larger scale perturbations (corre-
sponding to smaller ‘) will have a better memory of the
eccentric phase. This would appear to agree with what
seems to be hinted at in the WMAP observations: more
distortion of the low ‘ modes. However, a detailed phe-
nomenological analysis needs to be carried out to confirm
these facts.

To summarize, what we need are modes that expanded
eccentrically to be entering the horizon at the time of last
scattering and then to feed this information into a Sachs-
Wolfe type of calculation. This is a most interesting and
challenging calculation, since it requires a full reanalysis
of the density perturbations in eccentric geometry. In this
paper, we have moved toward that goal. We have carried
out exact calculations of the evolution of a variety of
universes with asymmetric matter content. In some cases,
namely, when w is neither zero nor minus one, we have
been forced to use approximate methods. We have ex-
plored the asymptotic behavior of both the exact and
approximate cases. Our results provide a starting point
for the analysis of density perturbations in asymmetric
cosmologies. WMAP and its successors will be able to
either bound or detect effects of asymmetric inflation, and
we have taken the first steps in the theoretical exploration
in that direction.

Finally, we make a few comments about the case where
there are multiple magnetic domains within the cosmologi-
cal horizon. (A similar discussion would apply to strings
and walls.) If the domains are randomly oriented, then
what one should expect is eccentric expansion within
each domain, with dependence on the local value of the
cosmological constant, magnetic field strength, and matter
content. Locally, there is planar symmetry, but globally the
universe would look isotropic if averaged over many do-
063529
mains. One effect of the averaging would be an alteration
of the power spectrum on scales of the order of the domain
size. This assumes the domains have a preferred size that is
probably on the order of the horizon size when they were
produced, if the associated phase transition was second
order, or on the size of the correlation length at production,
if the associated phase transition was first order. This is in
contrast to the density perturbations produced in inflation
that typically have a flat power spectrum. One would also
expect to see polarization effects survive in the CMB in an
isotropic average of magnetic domains. A detailed analysis
of these effects would take dedicated numerical studies.
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APPENDIX A: APPROXIMATE SOLUTIONS FOR
��M�MATTER WITH ARBITRARY w

We develop a simple approximation by expanding
around 
 � 0. Eliminating � in Eqs. (32) and (33), we find

2wf

2f00 � 15

4 
f
0 � 11

2 f� 2
3


f0 � 11
4 f� 2
2�	� 
�

� �1� w�
�

f0 �

1

4
�11� 3w�f

� 2�1� w�
2�	� 
�
�
: (A1)

A power series solution in 
 to this equation is

f � 8
3	


2 � 8
3

�3=4
i ��i�
=
i�

�3=4�w � 4
i

11=4

� 8
3 �O�
�1=4��15�3w�: (A2)

The approximate solution for ��
� can then be found from
Eqs. (35) and (36). [A much faster way to calculate � is to
use Eq. (32) directly. The result � � �i�
=
i�

�3=4��1�w� is
unacceptably inaccurate as is clear from both the exact
solution (38) for w � 0 and the asymptotic form (A6)
below for arbitrary w.] The functions a�
� and b�
� are
given by Eqs. (30) and (11). Finally, time dependence of
the above functions ��
�, a�
�, and b�
� can be deduced
from the function 
�t�, which is given implicitly by

t� ti �
1

4

Z 
i



d

�
1

3
	
2 �

1

3

�3=4

i ��i�
=
i�
�3=4�w

� 4
i

11=4 � 
3

�
�1=2

(A3)

as it follows from f � 1
2 _
2 and Eq. (A2).

Comparing Eqs. (37) and (A2), we notice that the above
approximate solution becomes exact for w � 0. In addi-
tion, being an expansion in small 
, the approximate
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solution gives correct asymptotics for large t. To find the
behavior of various quantities for large t, we need the
corresponding asymptotic of the integral in Eq. (A3).
When 	 > 0, the integral diverges for small 
, and so we
extract this divergent part first; this results in

t� ti �
1
4�3=	�

1=2 ln�
i=
� � �; (A4)

where

� �
1

4

Z 
i

0
d

��

1

3
	
2

�
�1=2
�

�
1

3
	
2

�
1

3

�3=4

i ��i�
=
i�
�3=4�w � 4
i�
11=4 � 
3

�
�1=2

�
:

(A5)

Similarly extracting the divergent part of  for small 
, we
find

�� �
=
i�
�3=8��1�w�e�1�w���1� F�0��1; (A6)

where

� � �
3

8
�
i=	� �

Z 
i

0
d

�	� 
�

��
8

3
	
2

�
�1
� f�1

�
;

(A7)

F�0� � �1� w��i
i

Z 
i

0
d
�
=
i�

1��3=8��1�w� f�1: (A8)

Finally, this results in the following asymptotics:


� 
ie
�4�; (A9)

a� �; (A10)

b� ���� �1� w��1 ln�1� F�0�; (A11)

�� �i�1� F�0�
�1 exp���1� w��3����; (A12)

where ��t� � �	=3�1=2�t� ti � ��. For large t, both scale
factors grow linearly (as in the isotropic case driven by the
cosmological constant only). Because of anisotropy intro-
duced by the magnetic fields, however, the space has
expanded more transversally than longitudinally. This dif-
ference is characterized by the pseudoeccentricity whose
asymptotic form in this case is

ea�b � e��1� F�0��1=�1�w�: (A13)

When 	 � 0, the asymptotics depend on the range of the
parameter w; in the most interesting case, 0<w< 1, they
are


� 3�4=3
�1=3
i t�8=3; (A14)

a� 2
3 ln�
1=2

i t�; (A15)
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b�
2�1� 2w�
3�1� w�

ln�
1=2
i t�; (A16)

��
4�1� w�
3�1� w�

t�2: (A17)

Thus, in the absence of constant negative pressure from the
cosmological constant, anisotropy causes the space to in-
finitely expand in the transverse directions and infinitely
contract in the longitudinal direction. This results in pseu-
doeccentricity diverging for large t: ea�b � �
1=2

i t�2w=�1�w�.
In the case of dust (w � 0), the asymptotic value for the
pseudoeccentricity is finite, in agreement with Eq. (55).
APPENDIX B: APPROXIMATE SOLUTIONS FOR
�� S�MATTER WITH ARBITRARY w

Eliminating � in Eqs. (60) and (61), we find

2wf

2f00 � 9

2 
f
0 � 7f� 
3


f0 � 7
2 f� 


2�	� 
�

� �1� w�
�

f0 �

1

2
�7� 3w�f� �1� w�
2�	� 
�

�
:

(B1)

A power series solution to this equation is

f � 2
3	


2 � 2
3 � 2
3

�3=2
i ��i�
=
i�

�3=2�w � 2
i

7=2

�O�
�1=2��9�3w�: (B2)

The approximate solution for � can then be found from
Eqs. (63) and (64). [As in the previous section, a simple
expression � � �i�
=
i�

�3=2��1�w�, which follows directly
from Eq. (32), is a poor approximation.] Similar to the case
of magnetic fields, the approximate solution (B2) becomes
exact for w � 0.

Proceeding similarly to Appendix A, we find the follow-
ing large-time asymptotics:


� 
ie
�2�; (B3)

a� �; (B4)

b� ���� �1� w��1 ln�1� F�0�; (B5)

�� �i�1� F�0��1 exp���1� w��3����; (B6)

ea�b � e��1� F�0��1=�1�w�; (B7)

where ��t� � �	=3�1=2�t� ti � �� and
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i
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d
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3
	
2
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3
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3
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1

3

�3=2

i ��i�
=
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�3=2�w � 2
i�
7=2
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�1=2

�
; (B8)
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(B9)

F�0� �
1

2
�1� w��i
i

Z 
i

0
d
�
=
i�

1��3=4��1�w� f�1:

(B10)

In the case of zero vacuum energy, the asymptotics
depend on the range of the parameter w; in the most
interesting case, 0<w< 1, they are


� t�2; (B11)
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a� ln�
1=2
i t�; (B12)

b��
2w

1� w
ln�
1=2

i t�; (B13)

��
2�1� w�

1� w
t�2: (B14)

As in the magnetic field case, the pseudoeccentricity di-
verges for large t: ea�b � �
1=2

i t��1�3w�=�1�w�.
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