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Unification of inflation and cosmic acceleration in the Palatini formalism
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A modified model of gravity with additional positive and negative powers of the scalar curvature, R, in
the gravitational action is studied. This is done using the Palatini variational principle. It is demonstrated
that using such a model might prove useful to explain both the early time inflation and the late time cosmic
acceleration without the need for any form of dark energy.
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I. INTRODUCTION

It seems to be a well established fact that the universe is
undergoing a phase of accelerated expansion [1–6]. This is
usually explained via the presence of the so-called dark
energy [7,8]. This is not, however, the only way to address
this problem. Several authors are suggesting that gravity
should in some way be modified. One possible modifica-
tion is to generalize the Einstein-Hilbert action by includ-
ing higher-order terms in the scalar curvature (for a generic
study see [9]). Such terms seem to be predicted, among
other curvature invariants or nonminimally coupled scalar
fields, in the effective action in almost every unification
scheme, such as Superstrings, Supergravity or GUTs. For
example, terms inversely proportional to R may be ex-
pected from some time-dependent compactification of
string or M theory [10] and terms involving positive
powers of curvature invariants may be induced by the
expansion of the effective action at large curvature [11].
This of course does not mean that adding such higher-order
terms in the gravitational Lagrangian leads to a String/M
theory motivated action. It is more of an indication of the
fact that such phenomenological models seem too be just
somehow inspired by these predictions. The choice of
these generalized actions is, strictly speaking, based upon
the resulting phenomenology.

In [12] it was shown that a term inversely proportional to
the curvature can lead to late time expansion. Soon after
concerns were raised on whether this model passes solar
system tests [13] or has a correct Newtonian limit [14].
However, there are also serious doubts about whether these
problems are really present or merely products of a mis-
conception [15]. The most important drawback in adopting
such a model still remains. It has to do with its stability in a
weak gravity regime within matter [16] and might be over-
come by more sophisticated models [17].

In [18] a further modification by using the Palatini varia-
tional principle on the action of [12] was suggested. In this
formalism the metric and the affine connection are consid-
ered as independent quantities, and one has to vary the
action with respect to both of them in order to derive the
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field equations. If the standard Einstein-Hilbert action is
used, one will get standard general relativity with this
approach [19], as with the metric approach, but, for a
more general action, the Palatini and the metric approaches
give different results. The Palatini approach seems appeal-
ing because the field equations are not fourth-order pde’s as
in the metric approach, but a set of second order pde’s plus
an equation involving the connection, which is trivial to
solve and interpret using a conformal transformation [18].
Additionally, in vacuum the theory becomes equivalent to
Einstein gravity plus a cosmological constant so it passes
solar system tests as long as this constant is chosen to have
a suitable value. This also ensures that some interesting
attributes of general relativity, like gravitational waves and
black holes (Schwarzchild-de Sitter and anti–de Sitter) are
present here as well. Finally, whether models like the one
discussed in [18] have the correct Newtonian limit seemed
to be a controversial issue [20,21], but a recent paper [22]
seems to be settling it, giving a positive answer.

The universe is also thought to have undergone an infla-
tionary era at early times. The most common approach is to
assume that inflation is caused by a field manifested for
exactly this purpose [23]. There were suggestions in the
past about modifying gravity in such a way as to explain
inflation without the need of such a field [24]. There were
also attempts to unify inflation and late accelerated expan-
sion in a single approach (see for example [25,26]). In [17]
a model with both positive and negative powers of the
scalar curvature in the action was considered in the metric
formalism in order to explain both the early time inflation
and the late time cosmic expansion. In the Palatini formal-
ism, the only similar attempt so far, but with only an extra
R2 term included in the action, was presented in [27], and
the authors derive the conclusion that this term cannot lead
to gravity-driven inflation.

In the present paper the approach of [27] will be fol-
lowed by using a Lagrangian with both positive and nega-
tive powers of R in an attempt to explain both inflation and
the present cosmic accelerated expansion. It will be shown
that including an R3 and an R�1 term can account for both
effects and lead to a unified model, whereas the R2 term
used in [27] is ineffective. It is important to note here that
the scope of this paper is merely to demonstrate that it is
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possible, from a qualitative point of view, to create such a
unified model in the Palatini formalism. Thus possible
problems with the Newtonian limit will not concern us
here, although it can easily be shown that the discussed
model has the correct Newtonian behavior [22].

The rest of the paper is organized as follows. In Sec. II
the Palatini formalism is very briefly revised. After that the
discussed model is presented and studied in vacuum. In
Sec. III FLRW cosmology is studied in this modified
gravity regime. It is shown that it exhibits an inflationary
behavior at early times, an era similar to standard cosmol-
ogy, and a de Sitter expansion at late time. Section IV
contains conclusions.
II. PALATINI FORMALISM

Let us, very briefly, review the Palatini formalism for a
generalized action of the form

S �
1

2�2

Z
d4x

�������
�g
p

L�R� � SM; (1)

where �2 � 8�G and SM is the matter action. For a de-
tailed study see [18].

Varying with respect to the metric g�� gives

L0�R�R�� �
1

2
L�R�g�� � �2T��; (2)

where the prime denotes differentiation with respect to R
and the stress-energy tensor (SET) T�� is given by

T�� � �
2�������
�g
p

�LM

�g��
; (3)

where LM it is the matter Lagrangian density. Since the
affine connection and the metric are considered to be
geometrically independent objects we should also vary
the action with respect to ����. If we also use the fact
that the connection is the Christoffel symbol of the con-
formal metric h�� � L0�R�g�� (see [18]), we get

���� � f
�
��g �

1

2L0
�2��

��@��L
0 � g��g��@�L0�; (4)

where f���g denotes the Christoffel symbol of g��. By
contracting Eq. (2) one gets

L0�R�R� 2L�R� � �2T: (5)

It is important to notice that, once one chooses a certain
L�R�, when T � 0, as in vacuum, for example, (but not
only in that case as we are going to see later on), Eq. (5)
becomes a simple algebraic equation in R. This implies
that R is a constant and the studied theory becomes nothing
more than Einstein gravity plus a cosmological constant.
Therefore in vacuum, the maximally symmetric solutions
will be de Sitter and anti–de Sitter and flat spacetime will
not be a global solution, as in the cosmological constant
model. Consequently any solution will not be asymptoti-
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cally flat but asymptotically de Sitter and anti–de Sitter.
For example the static black hole solutions will be, instead
of Schwarzchild, Schwarzchild-de Sitter and
Schwarzchild-anti-de Sitter solutions.

In [27] the authors considered a modified action with an
additional R2 term and they arrived at the result that this
cannot lead to a gravity-driven inflation. However, includ-
ing an R2 term seems to be a singular case, since as one can
easily see from the form of Eq. (5), it will not give any
contribution to the left hand side. Here we will consider the
Lagrangian

L�R� �
R3

�2 � R�
	2

3R
; (6)

where 	 and � are for the moment some constants, on
which we will try to put constraints later on. Our choice of
the form of the Lagrangian is based upon the interesting
phenomenology that it will lead to. In vacuum Eq. (5) gives
for L given by Eq. (6)

R4 � �2R2 � 	2�2 � 0: (7)

Note that even if we included an R2 term in Eq. (6) and (7)
would remain unchanged due to the form of Eq. (5). Thus,
even if we have avoided that for simplicity’s sake, there is
no reason to believe that it will seriously affect our results
in any way. One can easily solve Eq. (7) to get

R2 �
�2

2
�1	

��������������������������
1� 4�	=��2

q
�: (8)

If 	
 � this corresponds to two de Sitter and two anti–de
Sitter solutions for R. Here we will consider the two de
Sitter solutions, namely:

R1 � �; R2 � 	: (9)

If we further assume that 	 is sufficiently small and � is
sufficiently large, then, since the expansion rate of the de
Sitter universe scales like the square root of the scalar
curvature, R1 can act as the seed of an early time inflation
and R2 as the seed of a late time accelerated expansion.
III. FLRW COSMOLOGY

Let us now check our previous result in Friedmann-
Lemaitre-Robertson-Walker cosmology. We are going to
consider the spatially flat metric

ds2 � �dt2 � a�t�2�dx2 � dy2 � dz2�; (10)

which is favored by present observations (see for example
[4,5]). We also assume that the stress-energy tensor is that
of a perfect fluid, i.e.

T�� � �
� p�u�u� � pg��: (11)

Following [27] we write the nonvanishing components of
the Ricci tensor:
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FIG. 1. _R as a function of R.
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FIG. 2. H as a function of R. It is easy to see from these figures
that, in the presence of nonrelativistic matter, the universe will
start to become flatter and the expansion rate will drop signifi-
cantly. The subscript ‘‘out’’ denotes, in both graphs, the value of
the quantities at the time when the pure de Sitter phase ends.
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R00 � �3
�a
a
�

3

2
�L0��2�@0L0�2 �

3

2
�L0��1 �r0

�r0L0; (12)

Rij � �a �a� 2 _a2 � �L0��1f���g@0L
0

�
a2

2
�L0��1 �r0

�r0L
0��ij; (13)

where �r is the covariant derivative associated with g��.
Using Eqs. (2), (12), and (13) we can derive the modified
Friedmann equation:

6H2 � 6H�L0��1@0L
0 �

3

2
�L0��2�@0L

0�2

�
�2�
� 3p� � L

L0
: (14)

where H � _a=a is the Hubble parameter.
Now we can investigate the different cosmological eras

of our model. At very early time we expect the matter to be
fully relativistic. Denoting by 
r and pr the energy density
and pressure, the equation of state will be pr � 
r=3. Thus
T � 0 and Eq. (5) will have the solution we mentioned in
the previous section. Taking into account that we expect
the curvature to be large we infer that R � R1 � �.
Therefore, the universe will undergo a de Sitter phase
which can account for the early time inflation. As usual,
conservation of energy implies 
r � a�4. Thus, it is easy
to verify that the last term on the right hand side of Eq. (14)
will quickly dominate. Additionally, R is a constant now so
the second and third term on the left hand side vanish and
we are left with

H �
������������
�=12

q
: (15)

At some stage the temperature will drop enough for
some matter component to become nonrelativistic [28]. If
we assume that its pressure pm � 0 (dust), then Eq. (5)
takes the following form:

R3

�2
� R�

	2

R
� ��2
m: (16)

SET conservation now implies

_
m � 3H
m � 0: (17)

Using Eqs. (16) and (17) it is easy to show after some
mathematical manipulations that

_R �
3HR�R2 � R4

�2 � 	2�

�3R
4

�2 � R2 � 	2�
: (18)

The modified Friedmann Eq. (14) takes the form

H2 �
2�2
��

6�3R
2

�2 � 1� 	2

3R2��1� 3
2A�

2
(19)

where 
 � 
r � 
m,
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A �
�6R

4

�2 �
2
3 	

2��R2 � R4

�2 � 	2�

�3R
4

�2 � R2 � 	2��3R
4

�2 � R2 � 	2

3 �
; (20)

� � 2
�
R3

�2 �
	2

3R

�
; (21)

and we have used Eq. (16) and the equation of state for the
relativistic component of the cosmological fluid.

Let us now use the equations we derived to examine the
behavior of the universe in lower curvature. The second
term in the numerator on the right hand side of Eq. (19), �,
is dominant with respect to the matter term as long as the
curvature is still very large. Thus we can use Eqs. (19) and
(18) to derive _R as a function only of R, i.e.

_R � f�R�: (22)

Because of its length we will not give the expression for f
explicitly. We can, however, understand its behavior, by
plotting its graph (see Fig. 1). One can easily see that in the
presence of a nonrelativistic matter component the curva-
-3



THOMAS P. SOTIRIOU PHYSICAL REVIEW D 73, 063515 (2006)
ture will start to decrease dramatically. The same holds for
the Hubble parameter H (Fig. 2). Therefore, in a short time
the curvature will become small enough so that the matter
term will dominate Eq. (19). At the same time _R will also
become very small. The above can also be inferred in the
following way. � plays the role of an effective dynamical
cosmological constant. Since the curvature is now less than
� and as long as it is significantly larger than 	, in the
leading order

_R��3HR; H2 �
R3

3�2 (23)

Thus, it is easy to see that

R� t�2=3; a�t� � t2=9: (24)

From Eq. (24) one concludes that


r � t�8=9; �� t�2: (25)

i.e. � decreases much faster than the energy density of
relativistic matter. Hence, the universe will soon enter a
radiation dominated era characterized by a very low
curvature.

We next investigate the behavior of the modified
Friedmann Eq. (14) for low curvature. The second and
the third term on the right hand side are negligible now
and L0 � 3R2=�2 � 1� 	2=�3R2� will tend to 1 provided
that 	 is small enough. On the other hand, L � R3=�2 �
R� 	2=�3R� can be written, using Eq. (16), as

L �
2R3

�2 �
2	2

3R
� �2
m; (26)

where the dominant term now is �2
m. Therefore, Eq. (14)
will give

H2 � �2
; (27)

where, as before, 
 � 
r � 
m. Equation (27) resembles
standard cosmology. It is reasonable, therefore to assume
that everything can continue as expected, i.e. radiation
dominated era, Big Bang Nucleosynthesis (BNN), and
matter dominated era. Recall that the scenario described
above starts at very high curvature and as soon as matter
starts becoming nonrelativistic so it seems safe to assume
that radiation will still be dominant with respect to ordi-
nary matter (dust).

Finally at some point we expect matter to become sub-
dominant again due to the increase of the scale factor. Thus
at late times we can arrive to the picture where 
� 0 and
Eq. (5) will give the vacuum solutions mentioned in the
previous section (Eq. (9)). However, now the curvature is
small and the preferred solution will be R2 � 	. The uni-
verse will therefore again enter a de Sitter phase of accel-
063515
erated expansion similar to the one indicated by current
observations.

The values of 	 and � are left unspecified here, apart
from some loose assumptions about their order of magni-
tude and can be fixed to match observations. Specifically, if
we assume that the curvature is already of the order of its
asymptotic value, then 	 should be of the order of
10�67 �eV�2 to account for the current accelerated expan-
sion. On the other hand, the value of � is related to the
expansion rate during inflation. So, probably some bounds
on its value will be put by more carefully examining the
inflationary behavior of such a model. Solving the flatness
seems to be trivial. However, one will need a significant
number of e-foldings to address the horizon problem and
create the perturbations in the Cosmic Microwave
Background and the value of � might have a significant
role on that. As a first comment let us also say that having
� very large and 	 very small is actually the most physical
choice, because it represents a small deviation away from
general relativity.
IV. CONCLUSIONS

A model of modified gravity including both positive and
negative powers of the scalar curvature in the action has
been considered here within the Palatini approach. It has
been demonstrated that such a model can account, apart
from late time accelerated cosmic expansion which was a
well established fact, also for early time inflation. At the
same time its evolution during the standard cosmological
eras, like Big Bang Nucleosynthesis is almost identical to
the standard cosmological model.

It should be noted, of course, that the approach is highly
qualitative. A detail quantitative approach should be per-
formed to check the conclusions of this study, whose scope
was merely to demonstrate that it seems possible to create a
unified model for inflation and cosmic expansion in the
Palatini formalism. Inflation is needed to solve specific
problems related with the cosmological evolution, like
the generation of large enough density perturbations and
the Horizon problem. Therefore one would like the model
to provide us with an inflationary behavior that can address
these problems successfully and be in agreement with the
observations. Another point that has to be studied further is
the mechanism that provides the passage from inflation to
ordinary cosmology. It is not clear at the moment how such
a geometrical inflation will end and how the universe will
reheat after that. We will address this point in future work
[29].
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