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We show that inflation in a false vacuum becomes viable in the presence of a spectator scalar field
nonminimally coupled to gravity. The field is unstable in this background; it grows exponentially and
slows down the pure de Sitter phase itself, allowing then fast tunneling to a true vacuum. We compute the
constraint from graceful exit through bubble nucleation and the spectrum of cosmological perturbations.
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I. INTRODUCTION

Observations in the framework of the standard cosmo-
logical model tell us that the observed Universe is in a
zero-energy vacuum state (except possibly for a small
cosmological constant which becomes relevant only at
late times). From the point of view of fundamental physics,
however, one can wonder why the vacuum energy is zero.
The question that we want to answer in this paper is the
following: Is it possible that the Universe started in a
different vacuum state with large zero-point energy and
then tunneled to the zero-energy state (which could very
reasonably be the minimum available energy state)?’

At the same time it is also well known that a universe
with a large vacuum energy inflates. And, in fact, this was
the first way to introduce inflation (““Old Inflation,” Guth,
1982 [3]). As Guth himself already realized in the original
paper, the simplest version of this idea does not work, since
inflation does not end successfully (‘“‘graceful exit”
problem).

A mechanism that could realize this idea (often called
false vacuum inflation or also first-order inflation, since it
would end through a first-order transition with nucleation
of bubbles of true vacuum) in a simple way, appears very
attractive; in fact, it would explain dynamically why the
Universe has almost zero cosmological constant, and at the
same time it would provide inflation, without the need for a
slow-rolling field. In this paper we show that all this is
possible with the addition of one simple ingredient: the
presence of a nonminimally coupled scalar field.

This model was proposed already by Dolgov [4] in 1983
in order to provide a solution to the cosmological constant
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It is even more appealing if we follow Coleman and
De Luccia arguments [1], who concluded that in the thin wall
limit and for large enough bubbles, tunneling is suppressed to a
negative energy state, or Banks [2] who claims that such a
tunneling cannot occur since instantons that interpolate to a
negative energy vacuum simply do not exist in a consistent
theory.
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problem: the scalar field is able to screen the bare value of
A at late times. However, the model was not a realistic
description of our Universe, since at late times the Newton
constant was driven to unacceptably small values. Our idea
instead is to use this model in order to explain how a false
vacuum inflation can end successfully through bubble
nucleation. A model in the very same spirit was proposed
in the ’80s, known as extended inflation [5,6]. The problem
with old inflation was that, in order to have sufficient
inflation one needs the ratio r = ['y,./H} (where ', is
the decay rate per unit volume of the true vacuum to the
false vacuum and H; is the Hubble constant during infla-
tion) to be much smaller than 1. At the same time inflation
can end only if » becomes of order one. So only a model
with variable (increasing) r can be viable. The idea of
extended inflation was to consider a Brans-Dicke gravita-
tional theory, in which the vacuum energy does not pro-
duce de Sitter inflation but power-law inflation. This gives
indeed an increasing r and so successful completion of the
phase transition. However, the model had a definite pre-
diction: the spectral index of cosmological perturbations
had to be roughly ng =< 0.8, and this was ruled out in 1992
by the Cosmic Background Explorer satellite (COBE)
experiment on the anisotropies of the cosmic microwave
background (CMB) [7], so many variants of this model
were proposed [8,9]. Another possibility for making r
variable that has been explored is having I',,. variable
through the introduction of a slowly rolling field [10].
Our proposal still keeps I',,. constant, but it differs from
the so-called hyperxetended [8,9] models, since we intro-
duce an initial de Sitter stage and then we show that this
stage dynamically evolves in a second stage, which is the
same as in the original extended inflation. In this sense our
proposal is as simple as the original extended inflation: the
difference is that it has two different periods of inflation.
The first period is exactly de Sitter and it is the period in
which the spectrum of perturbations is produced on the
scales relevant to the observations (surprisingly none of
the modifications of extended inflation has considered the
simple possibility of having an early de Sitter stage, the
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only mention being in [11], which however did not con-
sider it as a viable opportunity). During this period the
nonminimally coupled scalar field grows exponentially
from small to large values. The second period instead starts
when the nonminimally coupled scalar becomes important,
it slows down inflation dramatically, and it leads to a
power-law behavior (which could even be decelerating).
So it can lead to a successful transition to the radiation era
through bubble nucleation.

The plan of the paper is as follows: In the next section
we introduce the model proposed by Dolgov [4], summa-
rizing the dynamics of the classical homogeneous fields. In
Sec. Il we analyze the constraints on the parameters of the
model in order to give sufficient inflation and graceful exit,
both analytically and numerically. In Sec. IV we study the
production (spectral index and amplitude) of density fluc-
tuations in this minimal scenario, and we also discuss the
fluctuations due to an additional minimally coupled scalar
field which may act as a curvaton. In Sec. V instead we
show possible ways to recover Einstein gravity at late
times. Section VI contains a discussion of other possible
effects and of other observables still to be computed.
Finally, in Sec. VII we draw our conclusions. The paper
contains also two appendices. Appendix A contains the
calculation of the constraint coming from the absence of
detection of big bubbles in the CMB. Appendix B contains
some calculations of the initial amplitude of the field ¢ and
of the perturbation in the energy density due to fluctuations
in the nonminimally coupled field.

II. THE MODEL

As we mentioned in the introduction, the model that we
are going to study has an unstable vacuum energy, that we
will call A, with some tunneling rate per unit volume
| N

The only other ingredient of our model at this point is, as
in [4], a scalar field ¢ which has a generic (“‘nonminimal’’)
coupling to the Ricci scalar R. So, the action is

5= [aay=el 50 + g8R ~ 0,000~ A |
(D

where it is crucial to assume B > 0. The reader should note
that the field ¢ is a spectator and it has nothing to do with
the false vacuum energy A.

Note also that the bare mass in the Lagrangian M does
not coincide in general with the value of the Planck mass
that we observe today (Mp). The Einstein equations that

’Note that, although we are using the name A, this is not a
cosmological constant but a vacuum energy that can decay with
some rate I',,., as happens, for example, for a scalar field trapped
in false vacuum. This can be in principle computed by knowing
the details of the potential barrier that separates the two vacua.
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follow from this action® in the homogeneous case are

— 1 1y i
H? = m[ifﬁ 6HBPP + A} 2
. 1 0 . 5
H= S0+ 8D B¢2)[¢ 8HBdS + 2B

+ 282 ¢p*R], 3)
where H = d/a (a is the scale factor), and the Ricci scalar
is

R = 6H + 12H?, 4)

and the evolution equation for the scalar field is

¢ +3H¢ — BR$ = 0. 5
The energy density and pressure for the field ¢ are
py = 34> — 6HBPS — 3BH* 7, 6)

Py = 50> —2HBP$ + 2R + 3H* B’
+ 2HBP? + 2B (7
Now, let us assume that the Universe starts in the false
vacuum, and that the field ¢ sits close to zero at the

beginning. So, at initial time the evolution of the scale
factor is given by a de Sitter phase:

A
H?>~H} = e (8)
The equation of motion for ¢ in such a background is
¢ +3H;p — 12H B =0, ©)

and its growing solution is

16
= (eH;1)/2 = — _
@(t) = pyeleHi/2, € 3( 1+ .1+ 3 B), (10)

(€ = 88 for small B).

As we said, we are going to choose the initial condition ¢,
close to zero (and zero initial ¢,). Actually it is not
physical to assume that ¢ starts exactly in zero, since the
field is subject to quantum fluctuations, and so the initial
value is of the order ¢y = H; [see Eq. (B4) for a more
precise estimate]. So the field ¢ is unstable in this back-
ground, and indeed it drives the de Sitter phase itself to an
end. In fact, the energy density related to the field ¢ is
negative,
pg = —AH} pjeH, A=3B(1+¢€) — € >0,
(11

and increases with the time in magnitude.

*In this paper we use always the Jordan frame. For the analysis
in the Einstein frame see the case n = 2 of [12].
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FIG. 1 (color online). The evolution of the Hubble parameter
as a function of time in our model (solid line), compared to a
power-law evolution H = «/r (dashed line). Here 8 = 1/56,
H, =107M.

After a period of transition, at late times the field ¢(z)
becomes linear in ¢, its energy density becomes constant,
and the scale factor increases with time as a power law

a(t) ~ 1%, ¢ () ~ Bt, (12)
where
a51+2/3’ 5= 4/BA . (13)
4B \J60B% + 288 + 3

A numerical solution of the system is presented in
Fig. 1.*

This late time behavior is due to the fact that, when ¢
becomes very large, the initial “bare” mass M becomes
subdominant, and so the system reduces to a pure Brans-
Dicke model of gravity. It is known that vacuum energy in
Brans-Dicke theory leads to power-law expansion; this was
in fact used as a proposal for the graceful exit in the
extended inflation scenario. The crucial difference here is
that we have a dynamical transition between Einstein
gravity (that leads to the exponential phase of inflation)
and the Brans-Dicke gravity (that leads to the power-law
phase of inflation). We will exploit the presence of the first
phase in order to produce a flat spectrum of cosmological
perturbations, and the presence of the second phase in
order to have a graceful exit from inflation to the radiation
era. In fact H decreases and when it becomes of the order

of the decay rate F\l,éf it allows the system to tunnel
successfully to the true vacuum.

III. CONSTRAINTS ON INFLATION

We show in this section under which conditions the
model provides a ““graceful exit” from inflation. The tran-

“Some readers might feel uncomfortable with ¢ becoming
bigger than the fundamental scale M—being worried about
quantum gravitational corrections. However these are well
known to be under control [13] if the energy density and the
masses are below M, which is the case here.
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sition from the ‘““false”” vacuum to the ““true’” vacuum with
zero-energy density happens through bubble nucleation.
The transition has to be sufficiently abrupt, so that essen-
tially all of the bubbles are created in a very short time. The
nucleation in the early stages of inflation, in fact, would
produce bubbles that would be stretched to very large
scales by the subsequent inflationary phase and that would
spoil the observed isotropy of the CMB on large scales
[14-16] (“‘big bubbles™ constraint).

First, we introduce the following definition for the num-
ber of e-folds:

N() = ] " H(Dd, (14)

where t.,4 is the time at which inflation ends through
bubble nucleation and the radiation era starts. Assuming
that inflation starts at r = 0, we define N,,, = N(0) as the
total number of e-folds in inflationary stage. Our model can
be successful if it is able to produce the correct spectrum of
perturbations on large scales and, as it is well known, a flat
spectrum can be achieved if H is sufficiently constant
during inflation. This seems to be in contrast with the
requirement that in our model H has to decrease in order
to allow the phase transition. However, the crucial point
that we want to stress here is that the requirement that we
need in order to satisfy observations is not so strong; we
only know that the scales between 30004~ ! Mpc and about
50h~! Mpc have a flat spectrum [17]. This can be achieved
if these scales go out of the horizon during the first stage of
inflation, in which the Hubble parameter is constant. In
usual inflationary scenarios, these scales are produced
roughly between 60 =< N =< 64. For the following we de-
fine N; = N(#;), where t; is the time at which a given
scale L crosses outside the horizon. We also define the
phase I as the phase in which H = H, is a constant, going
from the initial time ¢t =0 up to the time #; where a
transition happens. In terms of e-folds it goes on for N; =
N« — N(t;). The phase II starts at t;; (slightly after 7;),
when H begins to evolve such as «/f, and ends when the
vacuum decays, at a time f,,4, and goes on for N;; = N(t;;)
e-folds. There are three basic requirements that we must
satisfy:

(i) On the relevant scales (i.e. during the phase I) the
production of bubbles of true vacuum has to be
suppressed, and the only source of perturbations
have to be the usual quantum fluctuations of scalar
fields.

(i) The phase II has to start after the production of
perturbations on these scales: Nj; = Nsop-1 wipe-

(iii) Inflation has to be sufficiently long: N =
N3000n~! Mpe-
The crucial quantity that regulates the production of
bubbles is

Fvac

r(t) = H

(15)
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FIG. 2. The evolution of r=T,,./H* as a function of the
number of e-folds N (with 8 =1/56, H; = 107°M, ry =
1077). Time goes from right to left: r = r, at the beginning
and then it grows to O(1).

The end of inflation 7.4 is achieved when this quantity is of
order 1. More precisely [18] the condition for the percola-
tion of bubbles is

9

r(tend) =T

4 (16)

We show in Fig. 2 the typical behavior of »(N) which is
clearly constant for large N and it increases with decreas-
ing N up to 7= (where N is defined to be zero).

The value of the ratio during the phase I is a free
parameter, but it is constrained to be small,

r
ro = HL;C = 1077, a7
in order to prevent big bubbles formation. As we men-
tioned, in fact, a bubble nucleated so early would have a
very big size after inflation and it would appear as a black
patch in the microwave sky. The number given as a bound
is computed in Appendix A.

So, what is important is to constrain the ratio r(N) as a
function of the number of e-folds.

In order to give a quantitative constraint we need the
correspondence between a scale L and the N at which they
are produced (N, ), which is given in general by

T
L<—°>e*NL = H;',
Trh

(18)

where H; is the value of the Hubble constant when the
scale L exits the horizon, and T}, is the temperature at the
beginning of the radiation era. So, the relation is

N, =633 + AN + ln[ } (19)

L
3000~ Mpc

Since we assume that the scales between 3000k~ Mpc
and about 50h~! Mpc are produced during the phase I, we
get the following two relations:
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N300()h7] MpC = (633 + AN),

(20)
N50h71 MpC = (59 + AN),

where

H
AN =37+ 1{—’} (21)
Trh

In our model we may assume that reheating is almost
instantaneous due to rapid bubble collisions, and so

T4 =TWME? = il (2)

where the superscript “R’ means that it is the effective
value of the Planck mass at the beginning of the radiation
era. This implies

1 H, 1. [ r 1 MY
AN=_1In| — L | = o[ 20| = Zqp| 0P|
2 n[lo14 GeV} 8 n[lO”} 2 n[lo19 GeV}
(23)

Since the amplitude of the cosmological perturbations
constrains H; to be at most 107°M [see Eq. (55)], the
biggest value that we can get for AN is around

AN=—1 1n[i} (24)

A. Analytical approximation

We give here an understanding of all the constraints
showing their dependence on the parameters of the model
with an analytical approximation. A more precise numeri-
cal analysis of the ratio r(N) is provided numerically in the
next subsection. The number of e-folds of the first phase is
given by

N; = Ht, (25)

where the time ¢; of the end of the first phase is found
equating the energy density in the field ¢ to the bare
vacuum energy A:

A= |P¢(11)| = AH12¢(I1)2- (26)
Using Eq. (10) we have
1 A
t;=——In| ——=|, 27
! €H; H[Aled’(z)} @D
and so the number of e-folds is
1
Ny~————
VO +488 —3

X In a2
[¢5(1/9_+ 48B(1 +4pB) — 3 — 16,8)}

(28)
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It is of some utility to expand it for small B:

1 M
N, 35 (2 ln[ ¢0} 1n[,8]>. 29)
It is in principle more difficult to estimate the duration of
the remaining part of inflation, since we do not have an
analytical expression for the transition between the phase I
and phase II , when H drops from the value H; to a/f.
However, starting from the end of inflation we can use the
asymptotic solution H = «/r and so we get from Eq. (14):

NG = aln[te;d} (30)

We have also that in the asymptotic phase the ratio r(N)
goes as

9

—4(N/a) = Z_ ,—4(N/a) (31)
4

I,
r(N) = ﬁ e
We can roughly use this solution to find when the phase 11
begins:

9 etula ~ ror (32)
dar
that leads to
o 4
N[] = — Z ln[? roi|. (33)

So, imposing Nj; < Nsp;-1 mpe We have a constraint on a
(at given ry):

(34)

& = —4(59 + AN)/ h{“”’o}

Now inserting here the maximal value for AN of Eq. (24),
we obtain

~236 + § In[;2,
@S — (35)
9

This translates to a constraint on S (or equivalently on w =
ﬁ which is sometimes used in the literature). Assuming the
maximal possible value ry = 1077 we get

1
B = 8 or w =< 14.5. (36)

As we said this number is only an estimate, and we have
the correct constraint coming from the numerical analysis,
in Eq. (37). It is relevant to stress that this condition is
independent on the third parameter of our model, that is the
value of H;/M (or equivalently the value of the vacuum
energy A). As we will show in Sec. IV, the range of 83 that
we get will severely constrain the spectral index of the
fluctuations in the field ¢.

Then, the third constraint that we have to impose is that
the duration of inflation is sufficiently long. In terms of e-
folds, the duration of the first phase is given by Eq. (28),
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while the duration of the second phase is given by Eq. (33),
so one can check for a given set of the parameters whether
Np+ Nip = Nagon-t mpe 18 satisfied or not.” There are
three relevant parameters for this condition: ¢y/M (which
is actually H;/M if the initial condition is given by quan-
tum fluctuations), 3, and ry. The condition is very easy to
satisfy for small 8 and more difficult for 8 approaching the
value 1/2 (for 8> 1/2 we do not have inflation anymore
in the phase II).

B. Numerical analysis

In this section we present the result from the numerical
solution of the differential equations that govern our sys-
tem. In particular we are interested in »(N) and in con-
straining it.

The way in which we applied the conditions on the
duration of inflation given above is as follows:

(i) We compute r(N) =T',,./H(N)* and impose that
r(Nson1 mpe) < 1077

(i1)) We impose that the variation of H between
Nsop-1 mpe and N3goop-1 mpe 18 small.®

(iii) We check that Ny, = N300 b1 mpe-

The region of parameters in which the model works is
shown in Fig. 3 for some different values of AN.

As we showed in the previous subsection, there are two
main parameters: the ratio I'y,./H7 and the nonminimal
coupling parameter 8. As we have shown qualitatively in
Eq. (34), the viable interval in the parameter 8 shrinks as r
decreases. This is respected by the behavior of Fig. 3,
except for the upper part of the figure, where the relevant
scales are produced exactly at the transition between ex-
ponential inflation and power law, and so r(N) decreases
slower than our analytical approximation r4(N) of
Eq. 3D).

The most important information that appears from the
exclusion plot is that the mechanism works with an upper
bound on B. Considering that AN =< 0, from the plot we
can see that

B=L (37)

which means that the analytical approximation Eq. (36)
already gave a good estimate.

Also, note that the dependence on H; comes only in two
places. First, H; enters in defining what is AN. Second,
when checking if the model is able to give sufficient
inflation (which is not shown in Fig. 3). In fact, the duration
of the exponential phase is related to the ratio ¢/M [see

>Here we are disregarding the transition between phase I and
]], so that Ntot = N[ + N[[.

By ‘“small” we mean here an amount that does not
change substantially the spectral index. Precisely we take
ZAH/AN(I/H) = 0.1, where AH = H(N300Oh71 MpC) -
H(Nsg,-1 mpe)- In fact this is the correction that would get a
spectral index in slow-roll approximation, and we want it to be
smaller than 0.1.

063514-5



FABRIZIO DI MARCO AND ALESSIO NOTARI

=7

Inrp -9

-10

-11

30 40 50 60
1

B

FIG. 3. In the shaded areas we show the regions of allowed
parameter space, for different AN (from left to right AN =
—8, —4,0). The region on the top and the region on the right are
excluded because of the constraint on the production of large
bubbles (this is independent on the value of H;/M). For 8
becoming bigger than what is shown in the plot, the scenario
is still viable except when B gets closer to ©(0.1), where
sufficient inflation might become difficult to obtain (depending
also on the value of H,/M).

Eq. (28)], and ¢, = H; if we assume that ¢ is set by the
quantum fluctuations [see Eq. (B4)]. It becomes difficult to
have sufficient inflation only for relatively big values of 8
[close to @(0.1)] and when H, is close to the scale M.

IV. SPECTRUM OF PERTURBATIONS

In this section we compute the spectrum of cosmological
perturbations produced in our scenario, in order to see if it
is consistent with the observations.

The perturbations on relevant cosmological scales are
produced in our model during the phase of exponential
expansion. For this reason one can realize situations in
which the observed spectrum is flat, i.e. ng = 1.

For comparison, extended inflation [6] instead has al-
ways a power-law t* expansion, where the big bubbles
constraint requires a << 20 as we discussed in Sec. III [14].
The constraint on « produced a spectral index ng < 0.75
for any fluctuating field, which was clearly ruled out by
observations, after COBE [7]. Even adding a curvaton did
not help [19], since any field has generically a nonflat
spectrum, due to the fact that H is never constant.

In our model, first we analyze the slope and the ampli-
tude of the spectrum of perturbations due to fluctuations of
the field ¢. Physically the fluctuations in ¢ (which is
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responsible for ending inflation) give rise to the end of
inflation at different times in different Hubble patches,
therefore providing a mechanism for density perturbations.
However, even with the presence of our exponential phase,
this minimal scenario appears to be in disagreement with
the observed spectrum. The reason is that the field ¢ is not
minimally coupled and so its fluctuations do not have ng =
1 even if the Hubble constant is exactly constant during the
first phase of inflation. As we will show, the situation is
improved with respect to extended inflation (precisely
ng — 1 is a factor of 2 closer to 1), but the big bubbles
constraint still constrains ng to be too small, using the
WMAP data.

One possibility (which is under study [12] and it is not
developed in this paper, except for some remarks in
Sec. VI) to construct an inflationary model fully compat-
ible with observations is to modify the original Lagrangian
in order to obtain a strong successful transition even with a
small B during the phase I. Another possibility is to keep
our Lagrangian, noting that a good spectrum can be easily
produced assuming that another light minimally coupled
field (so, with flat spectrum of fluctuations during the
exponential phase) is responsible for the generation of
the curvature perturbation. We will show the viability of
this possibility in Sec. IV B.

A. Computing spectral index and amplitude
with only ¢

In order to get the spectrum of the cosmological pertur-
bations we consider fluctuations & ¢ (x, ) associated to the
scalar field ¢:

d(x, 1) = (1) + 5b(x, 1), (38)

and we follow the treatment of cosmological perturbations
in generalized gravity theories given by [20,21]. In a flat
cosmological model with only scalar-type perturbations,

ds?* = —(1 + 2¢)di* — x ,drdx*
+a*(1 + 2¢)8,,dx*dx" (39)

we may study the evolution of the fluctuations by means of
the gauge-invariant combination

¢
Sb, =8¢~ o (40)
which is ¢ in the uniform-curvature gauge (¢ = 0). The

equation of motion for d¢,, is

5, + %5%
o ol e -n

where the function Z is defined as
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(M2 + BV + B + 65267)
(M* + B* + Bd(/H))?

In the large-scale limit the solution is

Z(1) 42)

o, = —g[C(x) - D(x)]cﬁZ—;zdt} (43)

and, ignoring the decaying mode D(x), we can relate the
spectrum of 8¢, to the time-independent function C(x)
which represents the perturbed 3-space curvature in the
uniform-curvature gauge. So, we can compute the ampli-
tude of scalar perturbations by means of the amplitude of
the variable C(x).

The next step is to rewrite Eq. (41) (in k-space and in
conformal time 7) in terms of the variable v = av/Z& Do
and we can take into account that, during the phase I (in
which the perturbations are produced), the function Z
reduces to Z = 1. So the equation of motion becomes

2
N (k2 ~ S 6B)>v —0. (44)
This result agrees with the general fact that a conformally

coupled field (8 = — %) has only Minkowski space fluc-
tuations. We can define the conventional constant v as

3 €
=_4+_, 45
=272 45)
which, for small 8, becomes
v~ % +48. (46)

The solutions of Eq. (44) are

vk, 7) = Walrlle,WHYV (k, |7]) + c;(WHY (K |7])],
47
where ¢, (k) and ¢, (k) are constrained by the quantization
conditions |c,(k)|> — |¢;(k)|*> = 1 and H.? are the Hankel

functions of the first and second kind. So, on large scales
the power spectrum of C is

Plc/z(k, T) =

H
5 ‘ P2 (b, 7)

|C1(k) - Cz(k)|.
(48)

I% %%B%T/zw

From here we can immediately extract the spectral index
ng for scalar perturbations (using the Bunch-Davies vac-
uum ¢, = 1):

dlnPC
=1+ =4 — = —
ng=1 TInk 4—-2v=1—c¢ (49)
and for small 8 this becomes
ng=~1-8g. (50)
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As we said, we have B=1/57, so ng =< 0.86.
Unfortunately, this is not in agreement with recent obser-
vations (such as Wilkinson Microwave Anisotropy Probe
(WMAP) [17]); therefore, the model we presented requires
some corrections in order to work, as we said, modifying
the Lagrangian or adding a curvaton.

Let us compute the amplitude of the perturbations in
8¢, so that we will impose that it is suppressed (in case we
add a curvaton this is required). The amplitude of the
spectrum is

2

med TG

c=

This has to be evaluated at N3yt mpc; therefore, ¢ at that
time has to be much larger than H,, if we want the ampli-
tude of the perturbations to be small as required by experi-
ments. Since we are assuming the initial value ¢ to be of
order H;, this means that there must be a sufficient number
of e-folds between the initial time and the time correspond-
ing to N3pgo5-1 mpe- This can be achieved if the value of ¢
at the end of the phase I (which is roughly M/./B) is much
larger than H;. Therefore this tells us that M has to be large
enough with respect to H;. Precisely we may write () =
M //Be*FH=ND (valid for small B) and so the amplitude
for the mode corresponding to the present horizon, reduces
to

Hi

— A hor
BT A (52)

Ac

where A]\Ihor = 1\]3000/1’1 Mpe N(tl)-

In order to connect to constraints form observations, let
us also introduce the total perturbation in the energy den-
sity £, which is gauge invariant and defined as

)
ZE—qo—H—pp““, (53)
tot

where p, is the total energy density, and 6 p,, stands for a
perturbation about the average value. One can compute it
in the uniform gauge and find that {(x) = C(x) neglecting
the decaying mode in the Eq. (43) (see Appendix B). The
quantity (x) is conserved on superhorizon scales in any
cosmological epoch, and therefore it is related to density
perturbations at late times and it is constrained by experi-
ments. Precisely, its amplitude has to be smaller than 4 X
10719, if we want to suppress the spectrum (since its
spectral index is not flat). So this requirement constrains
the ratio H;/M (we give here the result for small 8):

% < 16mmyBe*FNu X 1075, (54)

This condition guarantees a sufficient number of e-folds
from the initial time 7, until the time at which the scale
corresponding to the present horizon is produced.
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We can also work out a necessary condition: since the
right-hand side has a maximum for 8 = 1/(8AN,,,) and
AN, > 4.3, 7 we find

Hi 551075, (55)
M

which is also necessary to satisfy the phenomenological
bounds on tensor perturbations [see Eq. (65)].

B. Adding a curvaton

As we said at the beginning of this section, another field
(o) may be responsible for the generation of the curvature
perturbations. This is necessary (unless we modify the
Lagrangian to have a strong transition even when B is
small during the phase I, as in [12]) since the spectral
index of perturbations in ¢ is not close enough to 1. In
order to do that we require the field o to be minimally
coupled (or with very small nonminimal coupling) and
light. First of all, note that if H; happens to be small
enough [see Eq. (54)] then the amplitude of the fluctuations
generated by the field ¢ alone is negligible. In this case it is
the field o that can give rise to the observed spectrum of
perturbations, through the curvaton mechanism [22]. So,
we consider here a minimally coupled field o, whose mass
m,, is smaller than H;. In other words we have to add to the
initial Lagrangian of Eq. (1) the following terms:

L, = —30,00*0 — jmzo?, (56)

where for simplicity we have chosen a quadratic potential.
Since the field is light it develops quantum fluctuations
with an almost scale invariant spectrum during the phase I,
in which H is constant. The spectral index is given by

2
2my;

C3H%

ng, =1

(37

The reason why it differs from the ¢ fluctuations is that
fluctuations in a minimally coupled field are sensitive only
to the slow-roll parameters (that is the evolution of the
background), while a nonminimally coupled field is also
sensitive to the coupling B.%

Also, since it has no coupling with ¢, its energy-
momentum tensor is conserved and so the variable

It is immediate from the second of our basic requirements in
Sec. III and from Egs. (20).

8 Another way to see it is to compute the perturbations in the
Einstein frame [12]. In this frame the field ¢ becomes slowly
rolling, with the € parameter very suppressed in the exponential
phase and the 7 parameter proportional to B. So, the spectral
index n — 1 for ¢ is proportional to 7 and therefore to 38, while
for a curvaton field it is suppressed, since it is only proportional
to € and not to 1 [22]. For a more general analysis of perturba-
tions for a two-field system in the Einstein frame, the case of the
present Lagrangian is also recovered by generalized theories of
gravity examined in [23].
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o
—H2Pe (58)
Po

(=

is constant on large scales. In fact, as it was shown in [24],
the quantities

(=—¢— HOP (59)

i

[T¥E2]

(where the subscript ““i”’ refers to one single component of
the energy content of the Universe) are conserved on large
scales if the energy-momentum tensor of the i component
is conserved, irrespective of the gravitational field equa-
tions. This applies to generalized metric theories of gravity
and so also to our case. Now, the total { can be expressed as
a combination of the individual ;:

_ grestprest + ga'p()'

{= : :
Prest T P

, (60)
where the subscript “rest” stands for any other component
in the Universe. So, if p, evolves differently from p .,
then £ is no more constant. In particular, if the numerator is
dominated by £, p,, then the variable { acquires also a flat
spectrum.

The curvaton scenario uses the fact that when H be-
comes smaller than m,,, the field starts oscillating. In our
case we also need that m, < T %ﬁ , so that the oscillations
start after the end of inflation ¢, so everything proceeds as
in the conventional curvaton scenario. Therefore the rest is
the usual radiation component during the radiation era.

In fact, o is frozen to its initial value (o) before the time
tg (which is the moment at which radiation is created by
the nucleation and collisions of bubbles) and then it starts
oscillating when H = m,,. So at this point it starts behaving
like matter and eventually it becomes dominant as in the
usual curvaton models [22], since it redshifts less fast than
radiation. Therefore its {,p, = —3H{,p, can dominate
and so { = {,. In this case the amplitude of the power
spectrum is given by

P =rel, (61)

where r is the ratio of energy density in the curvaton field
to the energy density stored in radiation at the epoch of
curvaton decay (it is constrained to be 1 = ro = 1072),
and o is the value of the field o during the phase I of
inﬁatigon. The amplitude of Eq. (61) has to be the observed
1075,

In order for this mechanism to work, the curvaton has to
dominate the Universe before the nucleosynthesis epoch,
SO

“Note that it is reasonable that {y [see Eq. (S51)] is suppressed
with respect to . In fact, since ¢; is unstable, it is natural to
have ¢1 = agj.

063514-8



“GRACEFUL” OLD INFLATION

—mg oy

1 , ,/MeV?
R

ks MeV* (62)
= MeV™.
ma'MP1>
Now, the maximal value for m,, is F%? and the value for o
is around 10°H,, so there is a possibility of making the
mechanism work if

H; =107 GeVry /%, (63)

which generalizes the usual result that H, = 10’ GeV in
the simplest curvaton scenario [25].

C. Gravitational waves

Here we stress that in our scenario gravity waves are
created in the usual way on cosmological scales during the
phase of exponential expansion. As long as ¢ is small so
that we are in the phase I, the spectrum for the gravity
waves is exactly the usual one and exactly scale invariant:

2H?
Pr=51. 64
T 772M2 ( )
This is constrained to be smaller than A% = 107! by CMB
experiments [17], so

A 105, 65)
M
which is consistent with Eq. (55).

V. LATE TIME GRAVITY

Since the parameter [ has to be big enough [see
Eq. (37)], it is apparent that the model does not lead
directly to Einstein gravity in the late universe but to
Brans-Dicke gravity. In fact an additional scalar may me-
diate a “fifth force” between bodies at the level of the solar
system, spoiling the successful predictions of general
relativity.

‘We may distinguish two possibilities. If the scalar field is
very massive (with respect to the inverse of the solar
system length) then its influence is negligible in solar
system experiments, since it mediates a force with too
short of a range.

If, instead, the scalar mass is small with respect to the
inverse solar system distance, then it must be presently
very weakly coupled to matter for the model to be consis-
tent with observational data. Deviations from general rela-
tivity in scalar-tensor theories are usually parametrized,
defining

F(¢) = (M* + Bg?), (66)
by the following post-Newtonian parameters:

_ (aF/d¢)

 F +2(dF/d¢)*

1 F(dF/d¢) dy

4 2F +3(dF/d¢)? d¢

(67)
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The limits coming from the experimental bounds on these
parameters [26] lead to the following constraint:

2 2 42
(dF/d¢) _ o 4, (68)
Fo Mt Be
This was recognized as a potential problem also in the
extended inflation scenario, since in the original
Lagrangian there is no mass for the ¢ field. However the
problem is not so hard to tackle, since there is a long time
evolution in the system between the inflationary epoch and
the epoch in which gravity is tested. So, just as for the
extended inflationary scenario we can use different possi-
bilities for recovering Einstein gravity at late times.

There are several strategies to overcome this problem:

(i) Drive ¢ at late times to a value smaller than M, so
that Eq. (68) is satisfied for any 8. This is possible,
for example, adding a potential term for ¢ that
drives it to zero. In this case M really corresponds
to the observed Mp;. In order not to change the
previous discussion, the potential V has to satisfy
V <« A. Note that in this case we have Einstein
gravity irrespective of the value of S—and irre-
spective of the fact that the field has a mass today.

(ii) In a similar way one can imagine a potential V()
(that again has to satisfy the condition V < A) that
locks the field ¢ at some generic value (which can
be also bigger than M) giving it a mass bigger than
the inverse of the solar system length. In this case
there may well be significant post-inflationary evo-
lution, and the value Mp; today may be significantly
different from the value M. The fifth force experi-
ment constraints are avoided since the field is mas-
sive today.

(iii)) Another strategy is to modify the model (as in
hyperextended inflation as in [8], or in [9,27]), in
such a way that § is not a constant, but it can vary
with time. In this case it is sufficient to have a
dynamics such that 8 can end up having a very
small value at late times, so that Eq. (68) is
satisfied.

(iv) Finally another interesting strategy is to couple ¢
differently to the matter sector (as in [28]) and to
the vacuum energy. This is a clear procedure in the
so-called Einstein frame (in which gravity is de-
scribed by the usual RM3, term only). In our frame
[28] the modification consists in substituting the A
term with:

1 2\2(1-17)
Sy = —ifd4xJTgA<ﬂ%> T 69)

The addition of the new parameter 7 (introduced
by the generalized Brans-Dicke model of [29])
makes it possible to satisfy all the constraints de-
rived in Sec. III without contradicting current ex-
periments on gravity.
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Models with a potential are simple possibilities, but on
the other hand one may argue that they introduce small
parameters. It is true in fact that, in the sense of [30], the
potentials have to be very flat: if one computes the ratio
AV /(Ap)* (where AV is the change in potential energy of
the field during the whole duration of inflation, and A ¢ is
the variation of the field) one finds that very small values
are required. However we think that this is not fine-tuning,
since the only physical requirement is that V < A (where
a small hierarchy is sufficient): then the fact that A ¢* can
become much bigger than V is a result of the dynamics and
it is not put by hand.

VI. OTHER CONSEQUENCES AND POSSIBLE
EFFECTS

In this section we mention some of the observational
consequences of the model that have to be explored and
that are not covered in this paper.

One is the production of bubbles on the small scales,
which could be a striking signature of the model. If bubbles
are produced at small scales, these could be detected as
additional power in the CMB spectrum at high multipole
(I = 1000) and as presence of many voids on the small
scale of the galaxy distributions. Already a few groups
have investigated in this direction [31-33], and we will
explore in future work the possible imprints of our specific
model in the observations on small scales.

A second consequence is that our model can automati-
cally incorporate a change of the spectral index at some
small scale, which might be necessary to fit the data as
suggested by the WMAP [17]. In fact the spectral index of
any fluctuating field becomes smaller at the scale corre-
sponding to the transition from the exponential inflation to
the power-law inflation.

Another effect to be computed is the non-Gaussianity in
the cosmological perturbations produced in this specific
model; for example, in case these are produced by a
curvaton this is likely to be relevant. Finally also the
production of gravity waves from bubble collisions might
be potentially observable.

Also, we mention here some possible variations on the
model and some points that are still missing in the analysis
of this paper.

First of all, in the presence of a time-dependent back-
ground metric, the decay rate I'y,. could acquire a time
dependence [34]. This could lead to a different constraint
on the parameters of the theory. In particular the constraint
on 3, and thus on the spectral index of the ¢ fluctuations
can be different (for example an order of magnitude dif-
ference in Iy, at the beginning of inflation and I', . during
the asymptotic stage leads to a 0.02 difference in the
spectral index). This effect will be subject to further study.

Then, there are ways to make the model viable even with
the field ¢ alone. One might in fact invoke a different
coupling of the field ¢ with the Ricci scalar. Instead of the
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BR@? coupling one may consider for example:
R

This was proposed in [35], where the author suggested that
such a term in the Lagrangian can arise through quantum
corrections. In this case the cosmological dynamics is
described by an effective time-dependent quantity,

eff — Kln[%} 71)
where k is a number. This is justified as long as the
variation in B is sufficiently slow that its time derivatives
may be neglected. As R decreases, B.y increases thus
making the process more efficient. In this way the bound
on the spectral index of the perturbations of the field ¢ gets
relaxed.

The same thing applies for any quantum correction to
the parameter S, that could change the bounds in a relevant
way.

Generally speaking our idea of having exponential in-
flation slowed down by an unstable scalar field could be
implemented easily in other variants of the model, which
make the transition stronger so that the curvaton becomes
unnecessary [12]. Basically what is needed is to have a
coupling with R that grows with ¢, faster than the ¢>R
coupling analyzed in the present paper.

VII. CONCLUSIONS

We have shown in this paper that a false vacuum can
successfully decay to a true vacuum, producing inflation, in
the presence of a nonminimally coupled scalar ¢, since
exponential inflation is slowed down to power-law
inflation.

Then we have analyzed the constraint coming from the
fact that we do not want to produce large bubbles that
would spoil the CMB. This implies the following con-
straints: ry = [y,c/HT = 1077 (where Ty, is the tunneling
rate per unit volume of the false vacuum to the true
vacuum, and H; is the Hubble constant during de Sitter
inflation) and the nonminimal coupling has to be 8 =
1/57.

If ¢ is responsible also for primordial density fluctua-
tions then the spectral index is ng =~ 1 — 8§ 8 < 0.86, which
is in disagreement with observations.

However, if there is also a minimally coupled scalar, it
can produce a flat spectrum through the curvaton
mechanism.

Moreover, generally speaking the same idea easily can
be adapted modifying slightly the model in order to have a
stronger transition to power-law inflation, and so without
the need for a curvaton field. One example [12] is given by
generalizing the coupling ¢?R to a generic function
f(h)R, where f(¢p) grows faster than ¢? for large ¢.
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Another example [35] is to couple a slightly different
function of R to ¢ (see Sec. VI).

Finally the model can lead to other observable conse-
quences (as discussed in Sec. VI) as a change in the
spectral index (“‘running” spectral index) at some small
scale, the production of bubbles on the small scales (de-
tectable as voids in the large-scale structure and at large / in
the CMB), and possibly the presence of some non-
Gaussianity. All these effects are subject to future work.
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APPENDIX A: BUBBLES ON THE CMB

Here we follow [14] to estimate the constraint on ry =
[yoc/Hf, using the WMAP data.

As we have mentioned, the presence of a bubble would
be directly detected as a void region (so a region with
8p/p = —1) in the CMB, if the bubble size (whose co-
moving value will be called r) is large enough with respect
to the resolution (corresponding to a comoving size r;) of
the experiment. The fluctuation in the temperature
(through a fluctuation in the Newtonian gravitational po-
tential ®) that it would produce is

® 176 2
M w - (22) LY, (A1)
T 3 3 pP Llss
where 6p/p = —1 for voids, and where L, is the comov-

ing horizon size at last scattering (and the Doppler contri-
bution has been neglected as in [14]). If the bubble size is
smaller than the resolution, it can still be detected, but the
8T/T is reduced by a factor (r/r,)>. Also, if a bubble is
smaller than the last scattering surface width (whose co-
moving value we call r,,), it is reduced by a factor (r/r,,)*.
So, the minimal bubble size that can be detected is
r, = (3 X 1073L2 r7r)/® ~ 6 Mpc,

1ss”

(A2)

where we have used the following values: L =
190! Mpc, r, =7h~! Mpc, and r, =6.7h~! Mpc.
Any bubble which produces a fluctuation bigger than
what is observed (some 1077) is in contradiction with
observations.

Note that the pixel size of the WMAP experiment is 30
times smaller than the COBE’s [17], but we have used only
the data up to [ = 600 (which corresponds to a comoving
scale of about 7h~! Mpc), for which the signal-to-noise
ratio is less than 1. Such a small resolution is what makes
the bound stronger today, with respect to the numbers used
by [14].

The requirement in order to be safe from seeing big
bubbles is that we demand that the number of voids inside
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the horizon be less than that which gives a 95% confidence
level that at least one is in the last scattering surface. This is

true if
o 4qL2 dN,
l f Sl L Hr3 (—B>dr <1,
3 r, (477/ 3)L H dr
where % is the spectrum of bubbles (Np is the number of
bubbles) which is generated by a specific model and where
Ly = 3000h~" Mpc is the present horizon distance.
This spectrum, in our model, is calculated as follows:
A bubble nucleated at time #; with zero initial size grows
at the speed of light within the expanding universe and it

has size x at time ¢:

X 1) = alt) f ot

At time ¢, the bubble nucleation probability per unit co-
moving volume is

(A3)

(A4)

dNp

dr, = I‘vaca(tl)\%-

(A5)

We can change variables to x and evaluate the spectrum at
the end of inflation (7.,4):

dNg _ alts)? a(t))? dtl
= q )
dx vac en (tend)’<§
and then, compute it in a sphere whose radius [/ corre-

sponds to the physical size of our present horizon at that
time (42 13)):

(A6)

a(t))? dt;
(tend)3 d-x

dar
=T 1? (AT)

dx

The evolution of the scale factor a(¢) (and so the ratio %)

could be evaluated numerically. However, we can use a
rough approximation that already gives us a correct esti-
mate: we assume that H(7) is constant until it reaches the
value «/t and then the scale factor goes as a power-law %,
Using this we obtain the following spectrum:

HiHlyf — 1)
((H[/Hend)a - Hl(a - I)Hendx))4’
(A8)

dNg _ 411y
dx 3

where we considered values of x that are much bigger than
the horizon at the end of inflation (H,).

Then we impose a correction factor (g) due to the fact
that the voids expand faster than the background, and in
principle there is also a correction due to the fact that voids
get filled by relativistic matter (so their size is reduced by a
length A), so the true comoving length of a bubble is

r= g(l;:x - A).

However, in a cold dark matter scenario matter becomes

(A9)
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nonrelativistic very early, so the void filling length A is
negligible. On the other hand, in a cold dark matter domi-
nated universe the void growth is nonnegligible [14] and it

1S
g = 1.85h2/5, (A10)

At this point we can extract the quantity in which we are
interested:

4 1 L -1 4
dNB —_ Zro L < (ail)/4L H(a ) > . (All)
dr b\ Lt — (0 — 1)r/g
Note now that the quantity I, H,,  is very big,
T,
IyH g =~ 4 X 107 7‘1> Al2
™ end (10‘5h GeV (Al2)

so we may safely neglect the first term in the denominator
and we get the very simple result:
dNg _47Tr0 g3L;’_I

dr 3 r

Finally, by integrating this in Eq. (A3) we obtain the
following:

(A13)

ro =< 107", (Al4)

APPENDIX B: AMPLITUDE OF ¢y, AND ¢

It is interesting to understand on physical grounds what
should be the value for ¢. If we put, for example, exactly
¢o = 0 as initial value [so that classically ¢ = 0 would be
an (unstable) solution of the equations of motions at all
times], we would find that the amplitude of the fluctuations
of C diverges for ¢, = 0. However, the fluctuation d¢ is
not divergent, and so the value that §¢ assumes in one
Hubble patch should be included into the initial classical
value 6. In other words the minimal value of ¢ should
be taken as given by the typical value of the quantum
fluctuation of the field. This value can be taken from the
expression:

2= kmax% — éz kmax%
0o = [ Pas, = (1) [ e

min ‘min

(B1)

As k;, we choose k.;, = aygH, the wavelength produced
at the beginning of the inflationary phase. As k,, we
choose instead k,,;, = a(¢;)H, the last produced wave-
length at the time defined by a(z;). As a result, we find
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€ 2 €
15602 = 2o |T(3/2 + e/z)Pi[(ﬂ) - 1}. (B2)
T € | \ay

N, tot

Substituting ;- = e N we get

€/2
1860 = 225 T3/2 + €/2) L oMM — 1, (83)
& Ve

This means that the field stays constant for about 2/€ e-
folds and then it starts to grow. So the physical initial value
that the field takes (assuming that classically the field is
initially set to zero) is the value of the quantum fluctuations
after about 2/ € e-folds from the beginning. This means that
the minimal initial condition is given by

2¢/21°(3/2 2
by ~ 2H, (\//;e/),

(gbo ~ \/%H, for small ,8).

Going back to the computation of the amplitude of the
perturbations, the last step consists of relating the spectrum
of C to a conserved quantity during the post-inflationary
evolution. One possibility is to use the variable defined in
Eq. (58) of [21], which is a conserved superhorizon and it is
equal to C.

Another possibility is to use the variable { that we have
defined in Eq. (53), where we may insert 6p.,; and P
following [20]. In particular 6 p,, corresponds to Eq. (33)
of [20] where one has to insert the solutions of the system
of Egs. (54)—(56) of that work. In fact the energy density
and pressure defined in Egs. (30) and (31) coincide with
Pt and py; and they are conserved, if one sets the potential
V defined in those equations equal to a constant A:

(B4)

M? [ §? .
ptot=—<—+A—3HF>=p¢+A,

73 (BS)

2 12
M7<¢——A+F+2HF>=p¢—A, (B6)

Prot = 2

where F = M? + B¢?. One can verify explicitly that they
obey the continuity equation p,,y = —3H(pio T Piot)-

So, one can express { as a function of 6¢ and therefore
as a function of C, finding (after a lengthy computation)
that { = C.

[1] S.R. Coleman and F. De Luccia, Phys. Rev. D 21, 3305
(1980).
[2] T. Banks, hep-th/0211160.

[3] A.H. Guth, Phys. Rev. D 23, 347 (1981).
[4] A.D. Dolgov, in The Very Early Universe, edited by G. W.
Gibbons, S. W. Hawking, and S.T.C. Siklos (Cambridge

063514-12



“GRACEFUL” OLD INFLATION

(5]
(6]

(71
(8]

(91

[10]
[11]

[12]
[13]

University Press, Cambridge, 1983).

C. Mathiazhagan and V.B. Johri, Classical Quantum
Gravity 1, L29 (1984).

D. La and P.J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989);
62, 1066(E) (1989).

A.R.Liddle and D. H. Lyth, Phys. Lett. B 291, 391 (1992).
P.J. Steinhardt and F. S. Accetta, Phys. Rev. Lett. 64, 2740
(1990).

J.D. Barrow and K.I. Maeda, Nucl. Phys. B341, 294
(1990).

F.C. Adams and K. Freese, Phys. Rev. D 43, 353 (1991).
A.R. Liddle and D. Wands, Phys. Rev. D 45, 2665
(1992).

T. Biswas and A. Notari, hep-ph/0511207.

A.D. Linde, Particle Physics and Inflationary Cosmology,
Contemporary Concepts in Physics Vol. 5 (Harwood,
Chur, Switzerland, 1990), p. 362.

A.R. Liddle and D. Wands, Mon. Not. R. Astron. Soc.
253, 637 (1991).

S. Weinberg, Phys. Rev. D 40, 3950 (1989).

D. La, P.J. Steinhardt, and E. W. Bertschinger, Phys. Lett.
B 231, 231 (1989).

H.V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 213
(2003); C.L. Bennett et al., Astrophys. J. Suppl. Ser.
148, 1 (2003).

M.S. Turner, E.J. Weinberg, and L.M. Widrow, Phys.
Rev. D 46, 2384 (1992).

K. Dimopoulos and D. H. Lyth, Phys. Rev. D 69, 123509
(2004).

J.C. Hwang and H. Noh, Phys. Rev. D 54, 1460 (1996).
J.C. Hwang and H. Noh, Classical Quantum Gravity 185,
1387 (1998).

D.H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
A. A. Starobinsky, S. Tsujikawa, and J. Yokoyama, Nucl.
Phys. B610, 383 (2001); F. Di Marco, F. Finelli,
and R. Brandenberger, Phys. Rev. D 67, 063512 (2003);

(24]
[25]
[26]
(27]
(28]
[29]
(30]
(31]

(32]

(33]

[34]

(35]

063514-13

PHYSICAL REVIEW D 73, 063514 (2006)

F. Di Marco and F. Finelli, Phys. Rev. D 71, 123502
(2005).

D. Wands, K. A. Malik, D.H. Lyth, and A.R. Liddle,
Phys. Rev. D 62, 043527 (2000).

D.H. Lyth, Phys. Lett. B 579, 239 (2004).

G. Esposito-Farese and D. Polarski, Phys. Rev. D 63,
063504 (2001); C.M. Will, Living Rev. Relativity 4, 4
(2001); Ann. Phys. (Berlin) 15, 19 (2006).

J. Garcia-Bellido and M. Quiros, Phys. Lett. B 243, 45
(1990).

R. Holman, E. W. Kolb, and Y. Wang, Phys. Rev. Lett. 65,
17 (1990).

T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev.
Lett. 64, 123 (1990).

F.C. Adams, K. Freese, and A. H. Guth, Phys. Rev. D 43,
965 (1991).

N. Sakai, N. Sugiyama, and J. Yokoyama, Astrophys. J.
510, 1 (1999).

L. M. Griffiths, M. Kunz, and J. Silk, Mon. Not. R. Astron.
Soc. 339, 680 (2003); L. M. Ord, M. Kunz, H. Mathis, and
J. Silk, astro-ph/0501268; H. Mathis, J. Silk, L.M.
Griffiths, and M. Kunz, Mon. Not. R. Astron. Soc. 350,
287 (2004).

C. Baccigalupi, L. Amendola, and F. Occhionero, Mon.
Not. R. Astron. Soc. 288, 387 (1997); F. Occhionero,
C. Baccigalupi, L. Amendola, and S. Monastra, Phys.
Rev. D 56, 7588 (1997); P.S. Corasaniti, L. Amendola,
and F. Occhionero, Mon. Not. R. Astron. Soc. 323, 677
(2001); P.S. Corasaniti, L. Amendola, and F. Occhionero,
astro-ph/0103173.

R. Holman, E. W. Kolb, S.L. Vadas, Y. Wang, and E.J.
Weinberg, Phys. Lett. B 237, 37 (1990); R. Holman, E. W.
Kolb, S.L. Vadas, and Y. Wang, Phys. Lett. B 250, 24
(1990); E.S. Accetta and P. Romanelli, Phys. Rev. D 41,
3024 (1990).

L. H. Ford, Phys. Rev. D 35, 2339 (1987).



