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Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds
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The discrete quantum geometric effects play an important role in dynamical evolution in the loop
quantum cosmology. These effects which are significant at the high energies lead to the quadratic energy
density modifications to the Friedmann equation, as in the Randall-Sundrum braneworld scenarios but
with a negative sign. We investigate the scalar field dynamics in this scenario and show the existence of a
phase of superinflation independent of the inverse scale factor modifications as found earlier. In this
regime the scalar field mimics the dynamics of a phantom field and vice versa. We also find various
symmetries between the expanding phase, the contracting phase and the phantom phase in the loop
quantum cosmology. We then construct the scaling solutions in the loop quantum cosmology and show
their dual relationship with those of the Randall-Sundrum cosmology.
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I. INTRODUCTION

The standard model of cosmology has successfully pro-
vided us a consistent picture of the evolution of our
Universe in various epochs. However, it is expected that
when the limit of validity of general relativity is reached, in
the regime of very high curvature, the standard Friedmann
dynamics shall be modified. It thus has been an attractive
idea to seek modifications to the Friedmann equations at
the high energy scales. A theory of quantum gravity shall
naturally provide us these modifications. Motivated by the
string theory, modifications to the Friedmann dynamics in
the Randall-Sundrum (RS) braneworld scenarios [1] have
been extensively studied [2]. Randall-Sundrum braneworld
scenarios are based on the Horova-Witten model [3] where
a 3� 1 dimensional universe is obtained after compactifi-
cation of a 6 dimensional Calabi-Yau manifold. The bulk
spacetime in Randall-Sundrum model is 5 dimensional
anti–de Sitter with the extra dimension being spacelike
and large. The anti–de Sitter bulk in the Randall-Sundrum
scenario leads to the localization of gravity on the brane
and the modified Friedmann equation on the brane is of the
form H2 / ��1� �=2�� where H is the Hubble rate, � is
the energy density of matter and� is the brane tension. The
�2 modification in the effective Friedmann equation is
directly an effect of the existence of a large extra dimen-
sion in this model, as it arises by using the Israel junction
conditions on the bulk-brane system.

Modifications to the Friedmann dynamics appear also in
loop quantum cosmology (LQC) [4] which is the symmetry
reduced quantization of homogeneous and isotropic space-
times based on the loop quantum gravity (LQG) [5]. LQG
which is one of the background independent and nonper-
turbative candidate theories for quantizing Einsteinian
gravity in four dimensions predicts that at quantum level,
classical spacetime continuum is replaced by a discrete
quantum geometry and operators corresponding to length
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of a curve, area of a surface and volume of an enclosed
region have discrete eigenvalues. The geometrical opera-
tors in LQC, for example the scale factor and the inverse
scale factor, also have a discrete spectrum and the under-
lying dynamics in loop quantum cosmology is governed by
a non-singular discrete quantum difference equation [4].
However recent investigations, pertaining to the study of
evolution of the semiclassical states have shown that the
discrete quantum dynamics can be very well approximated
by an effective modified Friedmann dynamics till scales
very close to the Planck scale [6–8]. The modifications to
the Friedmann dynamics due to loop quantum effects are of
two types. First is based on the modification to the behavior
of inverse scale factor below a critical scale factor a�
determined by a half integer parameter j. This parameter
arises because inverse scale factor operator is computed by
tracing over SU(2) holonomies in an irreducible spin j
representation. It turns out that the eigenvalues of the
inverse scale factor operator become proportional to the
positive powers of scale factor for a & a�. This change
regulates the divergence of energy density for arbitrary
matter [9] and changes the classical frictional term to
antifrictional in the Klein-Gordon equation for the scalar
field in an expanding Universe, thus leading to a phase of
superinflation [10]. Various interesting applications have
been found, for example resolution of big bang singularity
by loop quantum dynamics [11], avoidance of many cos-
mological [12] and gravitational collapse scenarios [13] by
inverse scale factor modifications, increasing the viability
of the onset of inflation [10,14,15] nonsingular cyclic
models [16], natural trans-Planckian modifications to the
frequency dispersion relation [9] etc.

The second type of modification essentially encodes the
discrete quantum geometric nature of spacetime, as pre-
dicted by the loop quantum gravity, in the Friedmann
dynamics. As we would discuss in the next section, this
modification arises because the loops on which holonomies
are computed have a nonvanishing minimum area given by
the eigenvalues of the area operator in LQG [6–8,17,18]. It
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leads to a �2 modification of the Friedmann equation of the
form, H2 / ��1� �=�crit� where ��1

crit � ���2‘2
P=3 and �

in general has modifications due to inverse scale factor for
a < a�. Here � � 8�G with G being the four dimensional
gravitational constant, ‘P �

����
G
p

is the Planck length [20],
� � 0:2375 is the dimensionless Barbero-Immirzi parame-
ter whose value is set by the black hole thermodynamics in
LQG [21] and � is a constant of the order unity determined
by the eigenvalues of the area operator. The form of the
modification in the Friedmann equation leads to a non-
singular bouncing cosmology [8].

For small values of j parameter or for scale factors a >
a�, the modifications to the effective Friedmann dynamics
due to change in the behavior of the inverse scale factor can
be neglected and only those originating from discreteness
effects are important. Working in this setting we would
consider the evolution for a Universe composed of a mas-
sive scalar field � with a conjugate momentum �� and
matter component with a constant equation of state w �
pw=�w. Our consideration of matter in LQC would be on
the similar phenomenological lines as in Ref. [9].

We would aim to investigate various features pertaining
to the effective dynamics in this paper. After deriving the
necessary effective equations in Sec. II, we would analyze
in detail the scalar field dynamics in Sec. III and show that
LQC generically leads to a phase of superinflation, inde-
pendent of the inverse scale factor modifications, when
� > �crit=2. Most of the phenomenological applications
in LQC are based on the existence of this phase originating
from the change in behavior of inverse scale factor for a <
a�. However, if value of j is chosen to be small then most of
these effects become weak. Our result about the existence
of this phase which originates due to discrete quantum
effects establishes the robustness of these applications.
By considering the dynamical evolution of a massive scalar
field and a phantom field in LQC, we would show a
peculiar relation between them. In the regime � >
�crit=2, a massive scalar field behaves as a phantom field
in the standard cosmology, and a phantom field mimics
dynamics of an ordinary scalar field. We would then in-
vestigate various symmetries between the expanding
branch, the contracting branch and the dynamics of a
phantom scalar field and show that as in the standard
Friedmann cosmology [22,23] and the Randall-Sundrum
scenario [23], they have a dual relationship with each other
in the effective theory of LQC.

One of the most important questions pertinent for any
dynamical evolution is its stability. For that we would
derive scaling solutions in LQC which are useful to study
the stability properties of cosmological models [24–27].
As has been further established in Ref. [26], these scaling
solutions may provide useful links between distinct cos-
mological scenarios. We explore this avenue in Sec. IVand
find that the scaling solutions in LQC have a dual relation-
ship with those in the Randall-Sundrum scenario. We shall
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note that the scaling solutions in LQC have been con-
structed earlier [28,29] and correspondences between
string-inspired scenarios and loop inspired cosmologies
have been found [29], though in the case when only inverse
scale factor modifications to the effective dynamics are
important and the discrete quantum gravity effects play no
role (which may happen if �� �crit in all phases of the
cosmological evolution). In this sense the scaling solutions
found here would be complimentary to those in
Refs. [28,29].

In Sec. V, we summarize the results obtained in this
paper and discuss the implications for the duality symme-
try between scaling solutions of LQC and Randall-
Sundrum scenario. We would discuss the way this relation-
ship can be used for various useful applications and to
extract physical predictions, for example, the perturbation
spectrum in LQC. Just with its use as a mathematical
device this duality can be used to investigate the detailed
properties of solutions in LQC given those in Randall-
Sundrum scenario. However we would also discuss if it
points out to a deeper relationship between two frame-
works and its ramifications.
II. EFFECTIVE DYNAMICS IN LOOP QUANTUM
COSMOLOGY

LQG is a quantization of gravity based on Ashtekar-
Barbero connection variables with the gravitational phase
space spanned by SU(2) connection Aia and the triad Eai on
a 3-manifold M (labels a and i denote space and internal
indices respectively). In LQC, on imposition of symmetries
of the framework, the nontrivial information about the
classical phase space gets encoded in variables c related
to Aia and p related to the triad Eai which can have two
orientations. On classical solutions (of general relativity) c
is given by c � k� � _a, k being curvature index which we
would take to be zero in this work. The triad p is related to
the scale factor a of the homogeneous and isotropic metric
via jpj � a2, where the modulus arises due to two possible
orientations of p and in this work we choose the positive
one without any loss of generality. In LQG, the connection
does not have a corresponding quantum operator hence it is
more useful to work with holonomies defined over a loop.
The holonomy over an edge � of a loop is defined as hi :�
cos�	c=2� � 2
i sin�	c=2� where 
i are related to the
Pauli spin matrices as 
i � �i�i=2, and dimensionless
	 is related to the physical length �� of the edge � as �� �
	jpj1=2.

Given this classical phase space structure, we then per-
form quantization on the lines of LQG by promoting
holonomies and triads to quantum operators [30]. It turns
out that the triad operator p̂ has a discrete eigenvalue
spectrum with eigenvalues 	,

p̂j	i �
4�	�‘2

P

3
j	i (1)
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including the eigenvalue zero. Thus the naive inverse of the
triad operator is not densely defined. The eigenvalues of
the inverse triad operator are important as they give us
information about the way curvature which is proportional
to the inverse powers of the scale factor (or equivalently the
triad) would behave in LQC. In order to evaluate it we use a
classical identity of the Ashtekar-Barbero phase space

1�������
jpj

p �
1

2�G�
tr
�X

i


ihifĥ
�1
i ; V1=3g

�
: (2)

Here V denotes volume related to p as V � jpj3=2. The

operator �
d�������
jpj

p
��1 commutes with the operator p̂ and has

eigenstates j	i. It can be shown that its eigenvalue spec-
trum is bounded on the entire Hilbert space [30]. This
implies that the curvature in LQC remains finite and does
not blow up, even for the state j	 � 0i which corresponds
to a � 0 (the classical big bang).

The Hamiltonian constraint operator is made of the

gravitational and the matter part, Ĥ � Ĥ G � ĤM.
The classical gravitational constraint consists of inverse
powers of the triad and curvature which are expressed in
terms holonomies and their Poisson brackets with positive
powers of V (as in Eq. (2)). The quantum operator for the
gravitational part of the classical Hamiltonian constraint is
given by [30]

cH G �
i

4��‘2
P�

3 �	3

X
ijk

�ijk tr�ĥiĥjĥ
�1
i ĥ�1

j ĥk	ĥ
�1
k ; V̂
�

�
6i

��‘2
P�

3 �	3 sin2

�
�	c
2

�
cos2

�
�	c
2

�

�

�
sin
�

�	c
2

�
V̂ cos

�
�	c
2

�
� cos

�
�	c
2

�
V̂ sin

�
�	c
2

��
(3)

where we have used the definition of the holonomies.
These holonomies are computed over square loops with
physical area given by the minimum eigenvalue of the area
operator in LQG which is �‘2

P where � is of the order
unity. We have denoted the physical length of an edge of
such a loop by �	jpj1=2 with the area of the loop A �
�	2jpj � �	2a2, then its equality with minimum eigenvalue

of area operator in LQG yields

�	 2a2 � �‘2
P: (4)

Thus quantum geometry acts like a regulator for the size of
the loops over which holonomies are evaluated and brings
in elements of quantum discreteness inherited from LQG.

Using the relation V � jpj3=2, we can also define the
volume and the inverse volume operator which lead to a
discrete eigenvalues of V̂ given by V	 � �4�	�‘2

P=3�3=2

and of dV�1 given by [10]
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dj�	� �
�

4

3�‘2
P� �	j�j� 1��2j� 1�

Xj
n��j

nV1=2
	�2n �	

�
6

(5)

which is bounded and implies that physical densities re-
main finite in LQC. Here �	 is given by Eq. (4). The
parameter j arises due to tracing over SU(2) holonomies
in an irreducible spin j representation. In particular it
determines a critical scale factor a� �

���������������������
8��j �	=3

p
‘P be-

low which the eigenvalues of inverse scale factor operator
become proportional to the positive powers of scale factor
[4]. However, for a * a�, the eigenvalues dj quickly ap-
proximate the classical behavior i.e. dj � a�3.

The physical states are given by j i �
P
	 �	;��j	i,

where � denotes matter degrees of freedom which con-

stitute the matter Hamiltonian operator ĤM. The action of

these states on Ĥ yields the quantum evolution given by
the following discrete difference equation

3

4��2 �	
	C�	� 4 �	� �	� 4 �	;�� � 2C�	� �	;��

� C�	� 4 �	� �	� 4 �	;��
 � ĤM �	;�� � 0 (6)

with

C�	� �
1

4�� �	‘2
P

�V	� �	 � V	� �	�: (7)

The quantum evolution determined by the above equation
has been shown to be nonsingular at the big bang [8,11,30].
At the classical level, HM in general would contain in-
verse scale factors which would blow up when a ���! 0 and
the evolution would break down. This is cured in LQC due
to modification to the behavior of the eigenvalues of the
inverse volume operator by Eq. (5) which remain bounded
through the whole evolution.

In order to compare the discrete dynamics resulting from
the difference equation and the classical theory, one can
construct semiclassical states, study their discrete quantum
evolution and compute the expectation values of the ob-
servables [6–8,17]. These investigations show that for
scale factors greater than of the order Planck length we
can consider the emergence of a continuous spacetime
picture with the dynamics governed by the following ef-
fective Hamiltonian constraint which approximates very
well the evolution via the difference equation [7,8,17,31]

H eff � �
3

�2� �	2 sjsin2� �	c� �HM (8)

where sj is given by [32]

sj � �
3

4�‘2
P� �	j�j� 1��2j� 1�

Xj
n��j

nV	�2n �	 (9)

with a behavior similar to that of dj�	�. For a > a� it is
-3
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very well approximated by sj � a. Effects due to quantum
geometric regulator for the minimum area of loops over
which holonomies are computed are manifest in the gravi-
tational part of H eff . The matter Hamiltonian HM in
general includes the modified behavior of the inverse scale
factor (Eq. (5)).

We can compare the effective Hamiltonian obtained in
LQC with the classical Hamiltonian constraint,

H cl � �
3

�
_a2a�HM � �

3

�2�
c2p1=2 �HM: (10)

where we have used the relation c � � _a. In the limit when
a a� and �	c� 1 it is easily seen that Eq. (8) reduces to
Eq. (10). We should note that the modifications in the
effective Hamiltonian due to the change in behavior of
eigenvalues of the inverse scale factor operator are of
significance if a & a�, where as those due to discrete
quantum effects become important whenever �	c is large.
Since �	 / a�1 and c / _a, the discrete quantum effects
become significant at large values of H or �1=2, strictly
speaking when � becomes of the order of �crit in Eq. (17).
The domain in which inverse scale factor modifications can
be important is determined solely by the parameter jwhich
determines a�, whereas the domain in which discrete
quantum effects are important depends on the value of
energy density. For a general choice of matter configura-
tion it is possible that inverse scale factor modifications
and discrete quantum effects are significant in distinct
domains. To see this let us consider an example of energy
density ���� sourced by a massless scalar field. Then �� �
�crit implies a critical scale factor acrit near which discrete
quantum geometric effects become significant. This criti-
cal scale factor can be easily computed to be acrit �

�8���2=6�1=6�1=3
� ‘P where �� is the scalar field mo-

menta in Planck units. Further we can compute a� which
on using Eq. (4) turns out to be a� �
�8��1=2�=3�1=3j1=3‘P. Comparing the two scales we find
that acrit > a� for �� > 4j. Thus for these values of ��

we have a regime where discrete quantum effects are
important and the modifications due to inverse scale factor
can be ignored in the dynamics. However we should also
note that even for values of �� such that acrit < a�,
numerical investigations indicate that the discrete quantum
effects dominate those due to inverse scale factor, unless
we choose an initial matter configuration such that �	c� 1
through out the evolution [7]. The effects due to inverse
scale factor modifications are further weakened when com-
pared to discrete quantum effects if we take into account
theoretical arguments which favor a small value of j pa-
rameter [33]. For these reasons in this work we would
focus exclusively on the modifications due to discrete
quantum geometry effects present in the first term of
Eq. (8). This choice can be made by considering the matter
configuration for a given value of j such that acrit > a�.
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Then modification due to inverse scale factor can be ne-
glected in (8), especially the matter Hamiltonian HM and
the corresponding expressions for energy density and pres-
sure remain same as classically [9].

In general the matter Hamiltonian, HM, would be
composed of a massive scalar field � with a conjugate
momentum ��, energy density �� and a matter compo-
nent with a constant equation of state w � pw=�w, and
thus the total energy density � � �� � �w. For our case of
interest, a > a�, the matter Hamiltonian in the modified
dynamics is given by [9]

H M �
1

2

�2
�

p3=2
� p3=2V��� � �wp

3=2: (11)

Also for this case the energy density and pressure for the
scalar field are equal to their classical values [9], i.e.

�� �
1
2

_�2 � V���; p� �
1
2

_�2 � V��� (12)

where we have used the Hamilton’s equation _� �
��=p3=2. It is then straightforward to find the Klein-
Gordon equation using the Hamilton’s equations for _�
and _��, which turns out to be of the same form as the
one classically and satisfies the stress-energy conservation
law, _�� � 3� _a=a���� � p�� � 0.

The effective Hamiltonian which is now given by

H eff � �
3

�2� �	2 asin2� �	c� �HM (13)

leads via the Hamliton’s equation of _p,

_p � fp;H effg � �
��
3

@
@c

H eff (14)

the rate of change of the scale factor

_a �
1

� �	
sin� �	c� cos� �	c�: (15)

Further, the vanishing of the Hamiltonian constraint im-
plies

sin 2� �	c� �
��2 �	2

3a
HM (16)

which on using Eq. (15) yields

H2 �
�
3
�
�
1�

�
�crit

�
; ��1

crit � ���2‘2
P=3 (17)

where we have used Eq. (4).
The modifications originating due to discrete quantum

effects to the effective Friedmann equation in LQC are thus
of the type where a �2 term becomes important in the
regime of high energies. This feature holds even at scales
less than a� with � now including modifications due to the
peculiar behavior of eigenvalues of the inverse scale factor
operator. When energy density becomes small compared to
�crit, the modification �=�crit becomes very small and the
-4
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effective Friedmann equation reduces to the classical
Friedmann equation.

Comparing with the string-inspired Randall-Sundrum
scenario, the sign of the correction term is negative which
leads to a nonsingular bouncing cosmology [8].
Interestingly, similar Friedmann equation arises in a brane-
world scenario which is a modification of the Randall-
Sundrum model in the sense that the extra dimension is
considered to be timelike [34]. As we would see the
correspondence between the effective dynamics in LQC
and the Randall-Sundrum braneworlds is much deeper,
with the dual relationships between the scaling solutions
of both of the scenarios.
III. SCALAR FIELD DYNAMICS

Let us consider the dynamics in the effective theory for a
Universe with only a massive scalar field contributing as
the matter component. We further work with a general-
ization that we would allow the scalar field to be of
phantom type which has a negative kinetic energy [35].
The energy density and the pressure in Eq. (12) then
generalize to

�� � n
_�2

2
� V���; p� � n

_�2

2
� V��� (18)

where n � �1 for the standard scalar field and the phan-
tom field, respectively. The Klein-Gordon equation can
then be written as

_�� � �3H��� � p�� � �3nH _�2: (19)

Using Eq. (17), we can find the rate of change of the
Hubble rate

_H � �
�
2
n _�2

�
1� 2

�
�crit

�
(20)

and

�a
a
�
�
3

�
�
�
1�

�
�crit

�
�

3n
2

_�2
�
1� 2

�
�crit

��
: (21)

It is easy to then see from these equations dynamical
features of the effective theory. In the case when ��
�crit, the dynamical evolution is classical. For the case of
a standard scalar field, _H < 0 and the sign of �a depends on
whether or not the potential term dominates over the
kinetic term. Whereas for the phantom field, _H > 0 and
�a is positive leading to a phase of superinflation.

The effect of �crit term on the scalar field dynamics is
very peculiar, especially when �crit=2< �< �crit. In this
case, for the standard scalar field _H > 0 and �a > 0 leading
to a phase of superinflation, irrespective of the choice of
the potential. However, for the phantom field _H < 0 and
the sign of the _a term would now depend on the ratio of
potential to the kinetic energy, as for the standard scalar
field in standard Friedmann cosmology. The behavior of
063508
the massive scalar field in the regime when loop quantum
modifications are very significant (�crit=2< �< �crit)
mimics that of a phantom field and the phantom field in
this regime behaves like an ordinary scalar field.

We note that for a < a�, existence of a superinflationary
phase in LQC due to modifications pertaining to the inverse
scale factor behavior is known [10] and has been inves-
tigated in detail [14,15]. It has been established that this
phase can yield generic conditions for chaotic inflation to
start even when the inflaton is initially at the bottom of the
potential. Further, it also leads to distinct signatures in the
cosmic microwave background [14]. However, here we
have shown that this phase generically exists in LQC
even for a > a� due to discrete quantum geometric effects.
This would further increase the range of initial parameters
for the onset of inflation. For a < a�, it would lead to an
additional superinflation and thus increase the number of e-
foldings in the loop modified phase.

In classical as well as the Randall-Sundrum braneworld
cosmology, it has been shown that different phases of the
scalar field dynamics are related by some symmetry trans-
formations [23]. We would now investigate this issue for
the loop cosmology. For that we define a new variable

h��� �
�

�crit � �
(22)

such that the Friedmann Eq. (17) can be written as

a���;�h���;� � �n�a���h��� (23)

with a��� determined as

a��� � exp
�
��

Z
d�h���h�1

;�

�
: (24)

An important property of Eq. (23) is that two distinct
cosmological models/phases represented by
�a1���; h1���; V1���� and �a2���; h2���; V2����, leave
Eq. (23) invariant if

a2��� � h‘1���; h2��� � a1=‘
1 ��� (25)

where ‘ is a constant. Cosmological models/phases related
via (25) are said to be dual to each other. This property is
immensely useful to establish correspondence between
different cosmological phases [23] or between different
models [25,26]. Here we would study its symmetries for
different phases of the scalar field dynamics. In the next
section, we would apply this to establish dualities of loop
cosmology with braneworld scenarios.

Let us consider an expanding cosmological phase with a
standard scalar field, specified by a1��� and h1���. Then a
simple duality based on Eq. (23) which is given by
h2��� � a1��� leads to

a2��� � h1��� �
�1���

�crit � �1���
(26)

on using Eq. (24). It is then straightforward to find the rate
-5
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of change of the dual scale factor,

_a 2��� � �
3H1

_�2
1

�crit
�1� h1����2 (27)

with

H1 �

�
��crit

3

�
1=2 h1���

1=2

�1� h1����
(28)

and

_� 1 � �n
�
�crit

3�

�
1=2 h1;�

h1���1=2�1� h1����
: (29)

Since, H1 > 0 we obtain _a2 < 0 and thus the duality
a��� $ h��� maps an expanding phase to a contracting
phase, for the standard scalar field.

Another simple duality transformation is when a3��� �
h�1

1 ��� and h3��� � a1���. In this case it can be checked
that a3��� and h3��� satisfy the Friedmann equation for
the phantom field,

a3���;�h3���;� � �a3���h3���: (30)

It is also easy to verify that

_a 3��� �
3H1

_�2
1

�crit

�1� h1����2

h1���
2 (31)

so that if a1��� corresponds to an expanding (contracting)
branch then a3��� also denotes an expanding (contracting)
branch. Thus, this duality transformation maps an expand-
ing branch for the standard scalar field to an expanding
branch of a phantom field. Further, since h��� is greater
(less) than unity for � greater (less) than �crit=2, this dual-
ity maps orbits h1��� _ 1 belonging to the superinflation-
ary phase for the standard scalar field to the orbits
a3��� + 1 for the phantom field. Similarly, the contracting
branch of the standard scalar field and the phantom branch
are dual to each other under the map, a2��� � a�1

3 ���,
h2��� � h3���.

IV. SCALING SOLUTIONS AND DUALITIES WITH
RANDALL-SUNDRUM BRANEWORLDS

A significant issue concerning the effective dynamics in
LQC is its stability. For that it is useful to construct the
scaling solutions as they provide insights on the asymptotic
behavior of solutions and can also serve to establish sym-
metries between distinct cosmologies [26]. In a model
when only modifications due to eigenvalues of the inverse
scale factor operator are important, scaling solutions have
been obtained [28,29]. For the case of our interest, these
modifications can be neglected and hence our scaling
solutions would be different from those in Ref. [28,29].
We would consider the energy density with contributions
from a massive scalar field and matter with a fixed equation
of state w. In order to study the scaling solutions it is useful
to define new variables:
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x :� � _�2=2��1=2; y :� �V=��1=2 (32)

and

� :� �
��1=2

�1� �=�crit�
1=2

V;�
V
: (33)

Then the set of dynamical equations composed of Eq. (17),
the stress-energy conservation law

_�w � 3
_a
a
��w � pw� � 0 (34)

and the Klein-Gordon Eq. (19) can be casted into dynami-
cal equations in �x; y;��,

dx
dN
� �3x� �3=2�1=2�y2 � �3=2�xB�x; y;�� (35)

dy
dN
� ��3=2�1=2�xy� �3=2�yB�x; y;�� (36)

d�

dN
� �

���
6
p
x�2V

�V;��
V2
;�

� 1
�
�

3�

2
B�x; y;��

�
�=�crit

�1� �=�crit�
(37)

where N :� loga and

B�x; y;�� :� 2x2 � �1� w��1� x2 � y2�: (38)

As before we also express the Friedmann Eq. (17) in the
form (23), with h��� now given as

h��� � exp
�
�x2 � y2�

Z d�
��1� �=�crit�

�
(39)

where we have used x2 � y2 � ��=�. Also the scale factor
a��� is determined by Eq. (24) with the above h���.

The scaling solutions can then be obtained by solving

dx
dN
�
dy
dN
�
d�

dN
� 0:

It is straightforward to check that for the case when �w 
��, the critical point is given by

xc �
�
3

2

�
1=2 1� w

�
; yc �

1

�

�
3�1� w2�

2

�
1=2

(40)

with the constraint

�
�;��
�2
;�

�
1

2

�=�crit

�1� �=�crit�
� 1: (41)

Further, when ��  �w the critical point is

xc � �=
���
6
p
; yc �

�
1�

�2

6

�
1=2

(42)

with the same constraint as Eq. (41). Interestingly, if � is
treated as a constant then the form of the Eqs. (35)–(37) is
identical to the one obtained in the standard FRW cosmol-
ogy [24]. This important feature has been noted earlier in
the context of modified gravity scenarios in the string-
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inspired cosmologies [25,26]. Because of this correspon-
dence with the classical equations we expect that the
critical points for our case belongs to the set of critical
points in the classical theory. This turns out to be true if we
recall that for classical theory, the corresponding variables
defined as

xcl �

�
� _�2

6H2

�
1=2
; ycl �

�
�V

3H2

�
1=2
;

�cl � �

� V;�
�1=2V

� (43)

do indeed lead to the critical points given by Eq. (40) and
(42) for the cases when �w  �� and ��  �w respec-
tively [24]. The stability analysis of Ref. [24] then implies
that both of the critical points (40) and (42) are attractors if
the former satisfies �2 > 3�1� w� and latter satisfies
�2 < 3�1� w�.

The potential for the scaling solutions can be determined
by integrating Eq. (41) and using Eq. (32), which turns out
to be

V��� � y2
c�critsech2���1=2��=2�: (44)

On integrating Eqs. (24) and (39) we can obtain a��� and
h��� for the two scaling solutions

a��� � cosh2��2�x2
c�y2

c�
�1
���1=2��=2� (45)

h��� � ��x
2
c�y2

c�
crit csch2�x2

c�y2
c����1=2��=2�: (46)

Once we have found the set �a���; h���; V���� for the
scaling solutions in LQC, we can then find a model with
a dual scaling solutions using Eq. (23). Such dualities
have been studied for modified gravity scenarios
earlier and in Ref. [26] it was established that if a cosmo-
logical model with a modified Friedmann equation of
the form H2 � ��=3�����G1��� has a scaling solution
�a1���; b1���; V1����, then a necessary and sufficient
condition for different cosmological model with
H2 � ��=3�����G2��� and scaling solution
�a2���; b2���; V2���� to satisfy Eq. (25) and to be the
dual is that

G1=2
1 ��� � �

‘f

G1=2
2 ���

(47)

with

f � �x2
c � y2

c�
2�1�2: (48)

In order to find the dual of the scaling solution in LQC, we
first note that G1��� � 1� �=�crit which using Eq. (44)
and (32) gives

�1� �=�crit�
1=2 � tanh���1=2�1�=2�: (49)

Interestingly, the corresponding function G2��� for the
Randall-Sundrum scenario is [26]

�1� �=2��1=2 � coth���1=2�2�=2� (50)
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which on using Eq. (47) and further choosing �1 � �2 �
� implies that the scaling solution of the effective theory
of LQC and the Randall-Sundrum scenario are dual to each
other if ‘ � �1=�x2

c � y2
c�

2�2 and �crit is identified with
the brane tension �,

�crit �

�
���2‘2

P

3

�
�1
� 2�: (51)

In the Randall-Sundrum braneworld scenarios � plays the
role of a critical energy density scale near and above which
the effects due to extra dimensions become significant and
the standard Friedmann dynamics is modified. In the ef-
fective theory of LQC, the analog of brane tension is �crit

which contains the fundamental loop parameter �. Since
both �crit and � play the same role in the modified
Friedmann dynamics originating from LQC and the
string-inspired scenarios, respectively, the above corre-
spondence leads to the dual relationship at the level of
scaling solutions between the two scenarios.
V. SUMMARY

In this work we have analyzed the effective dynamics in
LQC when effects due to discrete quantum geometric
modifications are important and those from the change in
behavior of the eigenvalues of the inverse scale factor
operator are negligible. We have shown that in this case
the Friedmann equations gets a �2 modification similar to
the Randall-Sundrum scenario but with a negative sign
(which also arises in a modified Randall-Sundrum model
with a timelike extra dimension). The �2 term is also
present if the modifications to the inverse scale factor for
a < a� are included.

The modification to the Friedmann equation has various
interesting properties. We have shown that it leads to a
generic phase of superinflation when � > �crit=2. This
phase is independent of the one earlier studied [10,14,15]
which originates due to change in behavior of the kinetic
term in the Klein-Gordon equation for a < a�. Existence of
this additional phase of superinflation in the very early
Universe would increase the number of e-foldings origi-
nating in the loop quantum modified phase and assist onset
of conventional inflation. Further, an ordinary scalar field
behaves as a phantom field and the vice versa in this
regime. We have also found various symmetries linking
the expanding and the contracting branch with the phantom
field dynamics in the effective theory.

We have obtained scaling solutions in the effective
theory which give us valuable information about the stabil-
ity of the dynamics and can also be used to find symmetries
between distinct cosmological models. We find that the
scaling solutions in the effective theory are dual to those of
the Randall-Sundrum scenario if the critical density arising
in LQC is identified with the brane tension. Scaling solu-
tions for effective dynamics in LQC with arbitrary j but
without any discrete quantum geometric effects have been
-7
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obtained earlier and dualities with standard cosmology and
the string-inspired scenarios have also been noted [28,29].
The scaling solutions obtained here and those in
Ref. [28,29] thus belong to complimentary domains of
the effective theory. It would be interesting to consider
effective dynamics with discrete quantum corrections for
scale factors below a� and obtain the scaling solutions and
the associated dualities with other modified gravity
scenarios.

It is very interesting to see that two distinct quantization
schemes for gravity yield �2 modification to the Friedmann
equation at high energies. Though the effective theory of
LQC is dual to the Randall-Sundrum braneworlds in the
sense described above we shall remember that both models
yield different predictions for the early Universe. For ex-
ample, the phase of superinflation in the very early
Universe and of a nonsingular bounce in a contracting
Universe which are the features generically present in
LQC, are absent in the Randall-Sundrum scenario. Let us
now point out various uses of this duality symmetry. The
first and perhaps the most straightforward use is to apply
this duality to classify the similarities and differences in
various dynamical solutions between LQC and Randall-
Sundrum braneworlds. Such a classification is important to
compare physical results predicted by scenarios which
predict modifications to the standard Friedmann dynamics.
Detailed comparison of dynamical solutions between
Randall-Sundrum scenario, Dvali-Gabadadze-Porrati
(DGP) braneworlds [36] and Cardassian cosmology [37]
has been done earlier [26]. Thus with the duality estab-
lished between LQC and Randall-Sundrum scenario, we
can further explore the connection of LQC with Cardassian
and DGP models, compare the dynamical properties and
obtain insights into links between seemingly unrelated and
distinct cosmological models.

An interesting use of duality symmetry can be to explore
the detailed dynamical properties of LQC by using the
established results in braneworld scenarios. For example,
the duality relation can be used to calculate the spectral
index of scalar perturbations in the effective theory in
LQC. For this let us recall that recently the duality relation
between inflationary and cyclic models was used to con-
firm the the value of spectral index in cyclic model, given
the value in inflationary models [23]. In LQC, a full fledged
calculation of spectral index by including inhomogeneities
and reducing the symmetry of the framework is yet to be
undertaken and the effective theory with inhomogeneities
is not known. However, a calculation on the above lines
starting from the spectral index in Randall-Sundrum cos-
mology and obtaining the one in LQC would provide a first
estimate of what we may obtain by a detailed analysis.
Such an exercise would also provide a test for the duality
relation found in this paper as the calculation of spectral
index by using duality symmetry should confirm with the
result obtained from the effective theory obtained after
including inhomogeneities in the quantum theory.
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We should note that in LQC, the evolution is generically
nonsingular and a flat Universe bounces at scales close to
Planck length [8] whereas it has remained an outstanding
problem to obtain generic nonsingular bouncing solutions
in string-inspired cosmologies. It has been shown that
duality relation can be used to relate singular cosmological
background with nonsingular one [26]. This may help in
shedding some light on construction of nonsingular bounc-
ing models in string-inspired cosmologies by using the
solutions in LQC. Further since LQC is based on Dirac’s
method of canonical quantization, another the use of this
duality can be to establish a similar construction for brane-
world scenarios.

The existence of an exact duality between the scaling
solutions of LQC and the Randall-Sundrum scenario
comes as a surprise since they are derived from two very
different unrelated approaches to quantize gravity. At high
energies both of the scenarios predict a �2 modification to
the Friedmann equation (although with a different sign) but
the origin of this modification is the existence of an extra
dimension in Randall-Sundrum scenario and the discrete
quantum geometry in LQC. Note that the spacetime ge-
ometry in string-inspired Randall-Sundrum scenario is
continuous whereas LQC is based on a four dimensional
quantization of spacetime. Existence of any symmetry
relationship between such two significantly distinct models
to describe nature of the very early Universe is very non-
trivial and perhaps more than a mere coincidence. The
duality symmetry between Randall-Sundrum model and
LQC suggest that some of the effects originating due to
existence of extra dimensions in a continuous spacetime
bulk might be mimicked by the quantum geometric nature
of a four dimensional spacetime. This signifies the non-
trivial and deep nature of this duality symmetry. We should
here emphasize that both string theory and LQG, the under-
lying theories on which Randall-Sundrum scenario and
LQC are, respectively, based, are still far from being
complete theories. In fact they suffer from complimentary
problems: lack of a nonperturbative background indepen-
dent treatment in string theory and little insights on the way
to obtain a semiclassical perturbative description in LQG.
Therefore any relation like above, if proved as a deep link
between two theories by future investigations, might prove
immensely useful in gaining insights on the resolution of
these problems [38] and may also provide a new paradigm
for a complete theory of quantum gravity which may
include both stringy and loopy ideas.
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