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Destruction of small-scale dark matter clumps in the hierarchical structures and galaxies
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A mass function of small-scale dark matter clumps is calculated in the standard cosmological scenario
with an inflationary-produced primordial fluctuation spectrum and with a hierarchical clustering. We take
into account the tidal destruction of clumps at early stages of structure formation starting from a time of
clump detachment from the Universe expansion. Only a small fraction of these clumps, �0:1%–0:5%, in
each logarithmic mass interval � logM� 1 survives the stage of hierarchical clustering. The surviving
clumps can be disrupted further in the galaxies by tidal interactions with stars. We performed the detailed
calculations of the tidal destruction of clumps by stars in the Galactic bulge and halo and by the Galactic
disk itself. It is shown that the Galactic disc provides the dominant contribution to the tidal destruction of
small-scale clumps outside the bulge. The results obtained are crucial for calculations of the dark matter
annihilation signal in the Galaxy.
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I. INTRODUCTION

One of the promising indirect manifestation of the dark
matter (DM) particles is their possible annihilation in the
Galactic halo [1]. A local annihilation rate is proportional
to the square of the number density of DM particles.
Therefore, annihilation proceeds more efficiently in the
dense DM substructures of the Galactic halo. Both analyti-
cal calculations [2–5] and numerical simulations [6–8]
with the inflationary-produced adiabatic density fluctua-
tions predict the existence of DM clumps in the Galactic
halo. The enhancement of the annihilation signal due to the
presence of substructures in the Galactic halo depends on
the fraction of the most dense small-scale clumps [4,9].
The most essential characteristics of clumps for calcula-
tions of DM annihilation in the Galactic halo are the
minimum mass and distribution function of clumps. At
the same time the tidal destruction of clumps [4] strongly
influences the number density of clumps in the Galaxy.

The small-scale clumps [2–4] are formed only if the
corresponding density fluctuations are large enough. The
inflation models predict the power-law primordial fluctua-
tion spectrum with a power index np � 1:0. The small-
scale clumps are formed earlier than the larger ones and
captured by the larger clumps in the process of a hierarch-
ical clustering in the expanding Universe. Eventually all
clumps consist in part of the smaller ones and of the free
DM particles. An effective index of the density perturba-
tion power spectrum n! �3 at small-scales (when mass
inside the perturbation M ! 0). This means that a gravi-
tational clustering of small-scale structures proceeds very
fast. As a result the formation of new clumps and their
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capture by the larger ones are nearly simultaneous
processes.

A convenient formalism, which describes statistically
this hierarchical clustering, is the Press-Schechter theory
[10] and its extensions, in particular, the ‘‘excursion set’’
formalism developed by Bond et al. [11] (for a clear
introduction see [12]). However, this theory does not in-
clude an important process of the tidal destruction of small
clumps inside the bigger ones. This process has been taken
into account in our previous work [4], where it was dem-
onstrated that only a small fraction of the small-scale
clumps survives the tidal destruction in the hierarchical
clustering. Nevertheless, even this small fraction of sur-
vived small-scale clumps is enough to dominate the DM
annihilation rate for the most reasonable spectra of primor-
dial fluctuations.

A mass distribution of small-scale clumps survived in
the hierarchical structuring was derived in [4]:

�int
dM
M
’ 0:01�n� 3�

dM
M

; (1)

where M is a clump mass, n is a power index of density
perturbations at a mass scale M. The distribution function
�int is a mass fraction of DM in the form of clumps in the
logarithmic mass interval d logM.

The minimal mass of DM clumpsMmin is determined by
the leakage of DM particles from the growing density
fluctuations (the diffuse leakage and free streaming) and
depends on the properties of DM particles [3,13–18]. The
existing estimates of Mmin for neutralino DM are substan-
tially different, from Mmin � 10�12M� in [19] to Mmin �
�10�7 � 10�6�M� in [15–17]. In [4] we performed de-
tailed calculations of a DM particle diffusion and free
streaming in the kinetic equation approach. For the case
of a neutralino considered as a pure bino, we obtained for
the minimal mass of DM clumps
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where ~M2 � ~m2 �m2
�, with m� being a neutralino mass,

~m is a sfermion mass, and �
 has only a logarithmic
dependence on ~M and m�. In the considered range of
parameters �
 ’ 83. Our value of Mmin agrees reasonably
well with [15–17] and strongly disagrees with [19] for the
reasons explained in [4].

Because of uncertainties in the SUSY parameters, a
numerical value of Mmin is not exactly predicted. With
our choice of SUSY parameters [4], Mmin � 10�8M� is
of the Moon-scale mass. With the other choice of SUSY
parameters [17], Mmin � 10�6M� is of the Earth-scale
mass. In the numerical simulations [20], Mmin � 10�6M�
was actually assumed by putting the corresponding cutoff
in the initial density perturbations.

The very interesting numerical simulations of the for-
mation of small-scale DM clumps with a mass larger than
the Earth mass have been performed recently in [20]. There
is a direct correspondence of this simulation with the ear-
lier theoretical calculations:
(i) T
he density profile of large-scale clumps is influ-
enced by the hierarchical clustering of the smaller
ones. The new important result of numerical simu-
lations [20] is a resolution of the density profile of
the isolated minimal mass clumps, Mmin �
10�6M�. The clumps of minimal mass are formed
directly from the isolated fluctuations and their
density profile is not influenced by the hierarchical
clustering. The internal density profile of small-
scale clumps in these simulations is proved to be
the same as in the theoretical calculations [21]
performed for the isolated density fluctuations.
The agreement between the theory and numerical
simulations for the predicted internal density profile
of clumps, / r��, is fairly good within the involved
uncertainties: � � 1:7–1:8 in [21], and � �
1:5–2:0 in [20] respectively.
(ii) T
he numerical simulations [20] agree rather well
with the shape of theoretically derived mass func-
tion of small-scale clumps [4] but with the different
normalizations.
A tidal destruction in the Galaxy of the Earth-size
clumps from simulations [20] has been recently considered
in [22–24]. The results are rather controversial. Authors of
[22,23] conclude that all the Earth-mass clumps are des-
tructed in tidal interactions with stars in the Galaxy, while
in [24] this result was not confirmed under a different
assumption on the star number density.

In this paper we present the alternative and independent
calculations for all processes of the tidal destruction of
small-scale clumps: (i) in the hierarchical clustering, (ii) by
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stars from the stellar bulge, (iii) by stars from the halo and
(iv) by the Galactic disc. The last of these processes is the
most effective. We also describe a new method for calcu-
lations of clump destruction in the hierarchical clustering,
which is a more general (valid for the arbitrary spectra of
primeval fluctuations) and formally more transparent than
the earlier one in [4].

Our calculations of the tidal destruction of clumps by
stars in the Galaxy are quite different from [22–24] by
both methods and results. While in the references above
only the tidal destructions in collisions of clumps with the
individual stars were studied, we found that dominant
effect is provided by the destruction of clumps in the
collective gravitational field of the Galactic disc. As a
result we predict that only 17% of the Earth-mass clumps
survived the tidal destruction at the position of the Sun.
This result is crucial for the rate of DM annihilation in the
Galaxy.

The paper is organized as it follows: In Sec. II we
describe a new method for calculation of the small-scale
clump destruction in the hierarchical clustering. We calcu-
late a mass function of survived clumps and compare it
with a corresponding one from numerical simulations. In
Sec. III the tidal destruction of clumps by the Galactic disk
is considered. In Sec. IV the lifetime of clumps in the
central stellar bulge and stellar halo spheroid is calculated.
In Sec. V we discuss the obtained results.

We perform our calculations for the standard cosmologi-
cal model with a matter density parameter �m � 0:3, a
cosmological constant term �� � 1��m ’ 0:7 and the
Hubble constant h � 0:7.

II. DESTRUCTION OF CLUMPS IN
HIERARCHICAL CLUSTERING

The process of hierarchical clustering and tidal destruc-
tion of DM clumps can be outlined in the following way.
The DM clumps of minimal mass are formed first in the
expanding Universe. The clumps of larger mass, which
host the smaller ones are formed later, and so on. Some
parts of the clumps are destroyed tidally in the gravitational
field of their host clumps.

In this section we study the destruction of DM clumps in
the process of hierarchical structuring long before the final
galaxy formation. At small mass scales the hierarchical
clustering is a fast and rather complicated nonlinear pro-
cess. We use a simplified model which nevertheless takes
into account the most important features of hierarchical
clustering.

To describe the formation of clumps we will use the
model of spherical collapse [12] in flat cosmology without
the �-term. This assumption is well justified at early times
of clumps formation when the �-term is negligible in
comparison with the matter density. In this model a for-
mation time of clump with an internal density � is t �
���eq=��1=2teq, where � � 18�2 and �eq � �0�1� zeq�
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is a cosmological density at the time of matter-radiation
equality teq, 1� zeq � 2:35	 104�mh

2 and �0 � 1:9	
10�29�mh2 g cm�3. The index eq here and throughout
below refers to quantities at the time of matter-radiation
equality teq.

The DM clumps of mass M can be formed from density
fluctuations of different peak-height � � �eq=	eq�M�,
where 	eq�M� is the fluctuation dispersion on a mass-scale
M at the time teq. A mean internal density of clump �
is fixed at the time of clump formation and according to
[12] equals � � ��eq��	eq�M�=�c�3, where �c �
3�12��2=3=20 ’ 1:686.

The tidal destruction of clumps is most effective at the
early epochs of the Galactic halo formation, when the host
density profiles are not finally established. The tidal inter-
action of clumps is a complicated process and depends on
many factors: a clump formation history, host density
profile, an existence of different substructures inside the
host, orbital parameters of individual clumps in the hosts,
etc. Only in numerical simulations can all these factors be
taken into account properly. In this paper we use a sim-
plified approach by calculating an energy gain per each
tidal interaction and a number of tidal interactions per
dynamical time in the hosts.

An internal energy of self-gravitating object increases in
tidal interactions. This energy increase was calculated e.g.
in [25] for the case of a star globular cluster in a spherical
galaxy. By using the model of tidal heating from [25], we
determine now a survival time (or a time of tidal destruc-
tion) T of some chosen small-scale clump due to the tidal
heating inside of a larger mass host clump. The motion of a
clump would be rather complicated in the case of a fast
hierarchical clustering of hosts. During a dynamical time in
the host tdyn ’ 0:5�G�h��1=2, where �h is a mean internal
density of the host, the chosen small-scale clump can
belong to several successively destructed hosts. We will
consider a typical clump orbit inside the host and assume
for simplicity in this section the isothermal internal density
profile of the clump.

A clump trajectory in the host experiences successive
turns accompanied by the ‘‘tidal shocks’’ [25,26]. For the
considered small-scale clump with a mass M and radius R,
the corresponding internal energy increase after a single
tidal shock is

�E ’
4�
3

1G�hMR

2; (3)

where a numerical factor 
1 � 1. Let us denote the number
of tidal shocks per dynamical time tdyn by 
2. A corre-
sponding rate of clump internal energy growth is _E �

2�E=tdyn. A clump is destroyed in the host if its internal
energy increase due to tidal shocks exceeds a total energy
jEj ’ GM2=2R. As a result, for a typical time T �
T��; �h� of the tidal destruction of a small-scale clump
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with density � inside a more massive host with a density �h
we obtain:

T�1��; �h� � _E=jEj ’ 4
1
2G
1=2�3=2

h ��1: (4)

It turns out that a resulting mass function of small-scale
clumps (see in the section below) depends rather weakly on
the value of 
1
2.

During the lifetime of an individual small-scale clump, it
can sequentially inhabit many host clumps of larger mass.
After the tidal disruption of the first lightest host, a small-
scale clump becomes a constituent part of a heavier one,
etc. The process of hierarchical transition of a small-scale
clump from one host to another occurs almost continuously
in time up to the final host formation, where the tidal
interaction becomes inefficient.

A corresponding mass fraction of small-scale clumps
with mass M escaping the tidal destruction in hierarchical
clustering (or probability of clump survival) is given by the
exponent function e�J with

J ’
X
h

�th
T��; �h�

: (5)

Here �th is a difference of formation times th of two
successive hosts, and summation is over all clumps of
intermediate mass-scales, which successively host the
chosen small-scale clump of a mass M. By changing the
summation to integration in (5) we obtain

J��; �f� �
Z tf

t1

dth
T��; �h�

’ 

�1 � �f

�
’ 


�1

�
; (6)

where


 � 2
1
2�
1=2G1=2�1=2

eq teq ’ 14�
1
2=3�; (7)

and t1, tf, �1, and �f are, respectively, the formation times
and internal densities of the first and final hosts. It can be
seen from (6) that the first host provides a major contribu-
tion to the tidal destruction of small-scale clumps, espe-
cially if the first host density �1 is close to �, and
consequently e�J 
 1.

A mass function of small-scale clumps (i.e. a differential
mass fraction of DM in the form of clumps survived in
hierarchical clustering) can be expressed as

�
dM
M

d� � dMd��2=��e��
2=2
Z �

0
d�1e

��2
1=2

	
Z t0

t1��1�
d~t
��������@

2F�M;~t�
@M@~t

��������e�J�����;��~t��: (8)

In this expression t0 is the present age of the Universe and
F�M; t� is the mass fraction of unconfined clumps (i.e.
clumps not belonging to the more massive hosts) with
a mass smaller than M at time t. According to [12], the
mass fraction of unconfined clumps is F�M; t� �
erf��c=�

���
2
p
	eq�M�D�t���, where erf�x� is the error function
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andD�t� is the growth factor normalized byD�teq� � 1. An
upper integration limit t0 in (8) is not crucial and may be
extrapolated to infinity because a main contribution to the
tidal destruction of clumps is provided by the early formed
hosts at the first steps of hierarchical clustering.

Two processes respond for a time evolution of the frac-
tion @F�M; t�=@MdM of unconfined clumps in the mass
interval dM: (i) the formation of new clumps and (ii) the
capture of smaller clumps into the larger ones. Both of
these processes are equally effective at the time when
@2F=�@M@t� � 0. To take into account the confined
clumps (i.e. clumps in the hosts) we need only the 2nd
process (ii) for the fraction @F�M; t�=@M. Nevertheless, in
(8) the fraction @F�M; t�=@M is influenced by both pro-
cesses. This is not accurate at a typical formation time of a
clump with a mass M when clump density is comparable
with the density of hosts. Fortunately, for this time the
exponent in (8) is very small, e�J 
 1, as can be seen from
(6) and (7). Respectively, an uncertain contribution from
the process (i) to the integral (8) is also very small.
Meanwhile, only the process (ii) dominates in the integra-
tion region where the exponent e�J is not small. For this
reason (8) provides a suitable approximation for the mass
fraction of clumps survived in the hierarchical clustering.

Finally, we transform the distribution function (8) to the
following form:

�
dM
M

d� ’
1�������
2�
p e��

2=2y���d�
d log	eq�M�

dM
dM: (9)

Here the numerically calculated function y��� depends
rather weakly on the parameter 
 from (7) and is shown
in the Fig. 1. By deriving (9), we take into account that
	�M� is a slowly varying function of clump mass M. For
the same reason, providing an integration in (8) we use the
dependence of t1��1� only on the variable � by neglecting
the dependence on M. Physically the rising of y��� with �
corresponds to a more effective survival of high-density
clumps (i.e. with large values of �) with respect to the low-
density ones (with small values of �). Integrating (9) over
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FIG. 1. Numerically calculated function y��� from (9).
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�, we obtain

�int
dM
M
’ 0:017�n� 3�

dM
M

: (10)

This mass function is in a reasonable agreement with the
similar one from (1) in the our earlier work [4]. An effec-
tive power-law index n in (10) is given by

n � �3
�

1� 2
@ log	eq�M�

@ logM

�
(11)

and depends very weakly on M. At the small mass scales
one has approximately n ’ np � 4. Equation (10) implies
that for the suitable values of n only a small fraction of
clumps, about 0.1%–0.5%, survives the stage of hierarch-
ical tidal destruction in the each logarithmic mass interval
� logM� 1. A simple M�1 shape of the mass function
(10) is in a very good agreement with the corresponding
one obtained recently in the numerical simulations [20].

It must be stressed that a physical meaning of the
survived clump distribution function �d�dM=M is differ-
ent from the similar one for the unconfined clumps, given
by the Press-Schechter mass function @F=@M. For com-
parison, the Press-Schechter mass function of unconfined
clumps [12] is

�PS�t�
dM
M
�

2�c�������
2�
p

	2
eqD�t�

d	eq

dM
exp

�
�

�2
c

2	2
eqD2�t�

�
dM;

(12)

where 	eq � 	eq�M� The mass function of clumps sur-
vived in a hierarchical clustering (10) is several times less
than the Press-Schechter mass function (12) at a mean time
of clump formation with 	eq�M�D�t� ’ �c.

In further calculations we will use an interpolation fitting
of the fluctuation dispersion 	eq�M� from [27] (see also
[28]):

	eq�M� ’
2	 10�4����������������
fs����

p
�
k
kh0

�
�np�1�=2

�
log

�
k
keq

��
3=2
; (13)

where the wave vector k / M�1=3, respectively keq and kh0,
correspond to a mass inside the cosmological horizon at the
moments teq and t0, np is a primordial perturbation index,
and fs���� � 1:04� 0:82�� � 2�2

�. It must be noted
that interpolation (13) is valid only for the small-scale
clumps, with M � 103M�. The analysis of the WMAP
data of the CMB anisotropy [29] reveals a power-law
spectrum of initial perturbations with np � 0:99� 0:04
in a good agreement with the canonical inflation value
np � 1:0. However, when the data from 2dF galaxy
power-spectrum and Ly-� are included in the analysis,
the best-fit favors in a softer spectrum with np � 0:96�
0:02. Nevertheless, the recent observations do not exclude
even the values np � 1:1.
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Note that a differential number density of small-scale
clumps in the Galactic halo n�M�dM / dM=M2 from (10)
coincides not only with a similar one from the recent
numerical simulations of small-scale clumps [20] but is
also very close to that obtained in the numerical simula-
tions for large-scale clumps with mass M � 106M�. See
Fig. 2 for a comparison.

Strictly speaking, our calculations are not valid for
large-scale clumps because of their continuing tidal de-
struction in the halo up to the present epoch t0 and the
accretion of the additional large-scale clumps into the halo
from the intergalactic space. Nevertheless, our approach
remains valid even for the large-scale clumps in the narrow
mass range, where the power-law perturbation spectrum
can be used as a rather good approximation.

In Fig. 2, a differential number density of small-scale
clumps from (10) is shown by the solid line. As it was
noted above, the region of validity for this curve is M �
103M�. For larger masses an extrapolation is shown (right
part of the solid line). The corresponding mass functions
from numerical simulations can be parametrized in the
form ��M�dM=M � AM1��dM. The constant A can be
determined by fixing a power-law index � and a fraction "
of the halo mass in the form of clumps with mass from
Mmin ’ 106M� to Mmax ’ 1010M�:
" �
Z Mmax

Mmin

AM1��dM: (14)
With this parametrization, a mass function of large-scale
DM clumps may be expressed as
FIG. 2. A differential number of small clumps in the Galaxy
from (10) for np � 1:0 is shown by the solid line. These
calculations are valid only for small-scale clumps with M<
103M� and extrapolated to the larger masses (the right part of the
solid line). Other curves are the corresponding number densities
of large-scale clumps with M> 106M� from numerical simula-
tions (see details in the text) for different values of parameters "
and � from (15). The left parts of these curves are the extrap-
olations to small masses.
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��M�
dM
M
� "

dM
M

8<
:
�2���M2��

M2��
max�M

2��
min

; � � 2;

log�1�Mmax

Mmin
�; � � 2:

(15)

In Fig. 2, a differential number density of large-scale
clumps �MH=M���M�dM=M from (15) is shown for differ-
ent values of � and " taken from various numerical simu-
lations: " ’ 0:2, � � 2 from [6]; " ’ 0:15, � � 1:9 from
[30], and " ’ 0:05, � � 1:78 from [31]. Observations of
the Galactic halo lensing [32] give a smaller clump fraction
value, " ’ 0:02. One can see in Fig. 2 a reasonable agree-
ment between the extrapolation of our calculations and the
corresponding numerical simulations of the large-scale
clumps.

III. DESTRUCTION OF CLUMPS BY DISK

Crossing the Galactic disc, a clump can be tidally des-
tructed by the collective gravitational field of stars in the
disc. This phenomenon is similar to the destruction of a
globular cluster by the ‘‘tidal shocking’’ in the Galactic
disc [33].

The rate of energy gain per unit mass due to the tidal
shocking was calculated in [33]:

d ~E
dt
�

4g2
m��z�2

Tcv
2
z;c

: (16)

Here gm is the maximum gravitational acceleration ac-
quired by the constituent DM particle of the clump moving
in the gravitational field of the disk, �z � is a vertical
(perpendicular to the disk plane) distance of a DM particle
from the clump center, Tc is an orbital period of clump in
the halo, vz;c is a vertical velocity of disk crossing. In (16)
the two crossings of disks by a globular cluster during the
orbital period Tc are assumed, while only one disk crossing
is typical in the case of elongated orbits of DM clumps in
the halo (see below).

A surface mass of the Galactic disk can be approximated
by a simple exponential law [34]

	s�r� �
Md

2�r2
0

e�r=r0 ; (17)

with Md � 8	 1010M� and r0 � 4:5 kpc. The maximum
gravitational acceleration during the disk crossing is

gm�r� � 2�G	s�r�: (18)

Following to [21], we use a power-law parametrization of
the internal density profile of DM clumps:

�int�r� �
3� �

3
�
�
r
R

�
��
; (19)

where � and R is, respectively, a mean internal density and
radius of clump,� � 1:7–1:8 and we put �int�r� � 0 at r >
R. The corresponding power-law profile of small-scale
clumps with � ’ 1:5� 2 has been recently found in nu-
merical simulations [20]. For this profile a total (kinetic
-5
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and potential) energy of a clump is given by

jEj �
3� �

2�5� 2��
GM2

R
: (20)

Integrating (16) over the clump volume with the profile
(19), one can obtain a total rate of energy gain by clump
dE=dt and then a time of clump destruction by the disk:

td �
jEj

_E
�

2�5� ��
3�5� 2��

GTc�v
2
z;c

g2
m

: (21)

Note that the adiabatic correction for the disk shocking (see
e.g. [35]) is very small in the case of DM clumps and may
be neglected.

To estimate the tidal shocking effect produced by differ-
ent parts of the Galactic disk at radial distance r, let us
consider at first a toy halo model by assuming the circular
orbits of DM clumps. Then a disk crossing velocity vz;c
equals to a circular velocity:

vz;c � vrot�r� �
�
GMH�r�

r

�
1=2
; (22)

where MH�r� is a halo mass inside the sphere of radius r.
Using for a clump orbital period Tc � 2�r=vrot�r�, one
finally finds

td �
�5� ��

3��5� 2��
r4

0�M
1=2
H �r�r

1=2

G1=2M2
d

e2r=r0 : (23)

Comparison of a clump destruction time td from (23) with
the Universe age t0 shows that all clumps with the internal
density � < 2	 10�22 g cm�3 are effectively destructed
within the radius r < 15 kpc from the Galactic center. In
particular, the major part of the Moon-mass clumps with
M � 2	 10�8M�, np � 1 and � � 2 do not survive in-
side the central 15 kpc.

However, in the real Galactic halo the DM clumps have
an elongated orbits in general. These orbits cross the stellar
Galactic disk only once during the orbital period.
Therefore, we must introduce a factor 2 in (21) for these
orbits. At the same time it is much more important that
clumps with elongated orbits have the longer orbital peri-
ods Tc than in the previous toy model. This elongation of
orbits significantly increases the probability of clump
survival.

As an example let us consider the Galactic halo model
with an isotropic velocity distribution. This model is ap-
propriate for the halo formed by the hierarchical clustering
of clumps. In this model, according to [36], the energy
distribution function f�E� of DM particles is related with
the density profile of the halo �H�r� as

�H�r� � 25=2�
Z 0

U�r�

��������������������
E�U�r�

p
f�E�dE; (24)
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f�E� �
1

23=2�2

d
dE

Z 1
r�E�

dr��������������������
E�U�r�

p d�H�r�
dr

; (25)

where U�r� is a gravitational potential energy and function
r � r�E� is defined by the equation U�r�E�� � E.

We suppose here for simplicity a pure isothermal density
profile of the halo

�H�r� �
1

4�
v2

H

Gr2 ; (26)

where vH � �GMH=RH�
1=2 is the halo rotational velocity

and RH is the Galactic halo radius. At r > RH we put
�H�r� � 0. In the absence of an analytical model of the
finite isothermal sphere, we construct a simplified model
which approximates the isothermal sphere in the inner
region, at r
 RH. A gravitational potential energy U�r�
corresponding to the density profile (26) is

U�r� � mv2
H�log�r=RH� � 1�; (27)

where m is a mass of DM particle. The radial motion of a
particle with mass m and angular momentum L in the
spherical potential obeys the equation

_r 2 �
2

m
�E�U�r�� �

L2

m2r2 : (28)

By introducing the dimensionless variables

s �
r
RH

; x �
E

mv2
H

; y �
L2

R2
Hm

2v2
H

; (29)

the equation for the turning points, _r2 � 0, in the potential
(27) can be written as

y

s2 � 2�x� logs� 1�: (30)

The derivatives of the left and right sides of this equation
are equal at s � y1=2. Respectively, the roots smin�x; y� and
smax�x; y� of (30) satisfy the condition smin�x; y�< y1=2 <
smax�x; y�. A condition for the existence of the solution of
(30) is x � �logy� 1�=2. The equality in this condition
corresponds to the circular orbit with smin � smax. From
(28) one can determine the orbital period:

Tc�x; y� � 2
RH

vH

Z smax

smin

ds0���������������������������������������������������
2�x� logs0 � 1� � y=s02

p : (31)

In the following we will solve (30) and find the orbital
period Tc�x; y� from (31) numerically. Denoting p � cos
,
where 
 is an angle between the radius-vector ~r and the
particle velocity ~v, we have

y � 2�1� p2�s2�x� logs� 1�: (32)

We find from (25) the distribution function of particles
with an energy x <�1 by using the density profile (26)
with a cutoff at r � RH:
-6
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f�x� �
1

25=2�3e

v1=2
H

Gm3=2R2
H

F�x�; (33)

where

F�x� �
�������
2�
p

e�2xerf�
����������������������
�2�x� 1�

p
� �

e2��������������������
��x� 1�

p : (34)

Note that the isotropic distribution function (33) reprodu-
ces the density profile (26) only in the inner halo region, at
r
 RH. The assumed isotropy of particle distribution (i.e.
an independence of distribution function on the particle
angular momentum L) is violated near the boundary of the
halo, at r ’ RH. Nevertheless, the distribution function (33)
is adequate for our purpose because a tidal destruction of
clumps by the Galactic disk takes place only in the inner
halo region, at r
 RH. At the same time, in the considered
model the clumps on the outer orbits at r ’ RH provide
only small contribution to the halo density at r
 RH.
Neglecting these outer clumps, we can define the proba-
bility of clump survival in tidal destruction by the Galactic
disk (or the fraction of survived clumps) as a function of
radius r � sRH in the following form:

Pd�r� �

R
1
0 dp

R
�1
logs�1 dx

���������������������������
x� logs� 1
p

F�x�e�t0=tdR
�1
logs�1 dx

���������������������������
x� logs� 1
p

F�x�
:

(35)

Here td is from (21) but with an additional factor 2 (one
disk crossing per orbital period) and with the replacements
Tc ) Tc�x; y� from (31), gm ) gm�rmin�, vz;c ) v�rmin�,
where rmin � sminRH, smin is the minimal root of (30) and
v�r� �

��������������������������������
2�E�U�r��=m

p
. See in Figs. 4–6 the resulting

probabilities of clump survival in the Galaxy (or fractions
of clumps survived the tidal destruction).

Note that the probability of clump survival Pd�r� in (35)
is an approximate expression averaged over an angle be-
tween the plane of the Galactic disk and the clump orbit
plane. In the real Galactic halo there must be some anisot-
ropy in clump distribution with respect to the disk plane.
For example, the clumps with orbits in the Galactic disk
plane are destructed more efficiently than ones outside the
Galactic plane.
IV. DESTRUCTION OF CLUMPS BY STARS

The internal energy increase of a clump during a single
star flyby is

�E �
1

2

Z
d3r�int�r��vz � ~vz�2; (36)

where vz is a velocity increase of constituent DM particle
inside a clump in the direction of axis z and ~vz is a similar
one for a clump center-of-mass. The axis z is directed
along the line connecting a clump center-of-mass with a
star at the moment of a star’s closest approach. In the
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impulse approximation, by neglecting the internal motion
of DM particles in a clump during the star encounter and
assuming the straight line orbit of a star (see e.g. [25]) we
have

vz � ~vz ’
@vz
@l

�l �
@vz
@l

r cos ; (37)

where l is the distance of a star closest approach to a DM
clump and  is a polar angle in the spherical coordinates.

Let us take vrel as the relative velocity of a star with
respect to a DM clump. In the approximation of a recti-
linear motion, an angle � between the line connecting a
clump center-of-mass and ~vrel evolves as

d�
dt
� �

vrel

l
cos2�: (38)

Changing a variable t to � in the Newton equation of
motion, one gets

dvz
d�
� �

Gm

vrell

cos�; (39)

where m
 is a typical star mass. After integration of this
equation we obtain

vz �
2Gm

vrell

: (40)

Now by integrating (36) over a clump volume with a
density profile �int�r� from (19), we find in the case of l >
R:

�E �
2�3� ��
3�5� ��

G2MR2m2



v2
rell

4 : (41)

The opposite case l < R was considered e. g. in [4]. It is
easily verified that the maximum internal energy increase
occurs for a star flyby with l ’ R.

At this step we must distinguish two cases: (i) clump
destruction during a single star flyby and (ii) clump de-
struction after numerous star collisions. In the first case a
threshold for clump destruction is achieved at �E � jEj,
where a total energy of clump E is given by (20). From the
equality �E � jEj one finds the maximal impact parame-
ter l
 for a single flyby destruction

�
l

R

�
4
�

4�5� 2��
3�5� ��

Gm2



MRv2
rel

�

�
V
vrel

�
2
�
m

M

�
2
; (42)

where V ’ �GM=R�1=2 is a velocity dispersion of DM
particles in the clump. The fraction l
=R as a function of
clump mass M is shown in Fig. 3. Note that condition
l
=R > 1 is satisfied for clumps of the smallest mass. A
total rate of clump destruction by stars in the case of
l
=R > 1 is given by

t�1

 �

_E
jEj
� �l2
n
vrel �

_E�l > l
�
jEj

: (43)
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FIG. 3. The fraction l
=R according to (42) as a function of
clump mass M at the distance from the Galactic center r �
2 kpc, � � 2 and np � 1:0 and np � 1:1, respectively.
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FIG. 5. The same as the Fig. 4 but for M � 10�6M�.
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where n
 is a number density of stars and

_E�l > l
� � 2�
Z 1
l


�E�l�n
vrelldl: (44)

After integration in (44) with l
 from (42), we find that the
second term in (43) is equal to the first one. Thus, the
resulting time of clump destruction in the case of l
=R > 1
is

t
 �
1

2�l2
vreln

�

1

4�n
m


�
3�5� ��
�5� 2��

M

GR3

�
1=2
: (45)

We see from (45) that the time of clump destruction by
stars does not depend on vrel in the case of l
=R > 1.
5 10 15 20 25 30 35
r, kpc

0.2

0.4

0.6

0.8

1

P
(
r
)

total

halo

disk

FIG. 4. The fraction of clumps with mass M � 2	 10�8M�
and peak-height � � 2 survived a tidal destruction in the
Galactic disc Pd, in the Galactic halo PH and the resulting total
fraction Ptot � PHPd as a function of distance from the Galactic
center. The cutoff at r < 3 kpc is due to the destruction of
clumps inside the bulge.
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Similarly, the time of clump destruction by stars in the
case of l
 <R is

t
 �
3�5� ��

8��5� 2��
vrelM

GRm2

n


: (46)
A. Destruction of clumps in the bulge

The bulge is central spheroidal subsystem of the Galaxy.
Following [37], we approximate the radial number density
distribution of stars in the bulge in the radial range r �
1–3 kpc as

nb;
�r� � ��b=m
� exp���r=rb�1:6�; (47)

where �b � 8M�=pc3 and rb � 1 kpc. By using (47) to-
gether with (45) or (46) it can be shown that inside the
bulge, at r � 3 kpc, all small-scale clumps with M �
10�8M� are tidally destructed during the Hubble time,
i.e. t
 
 t0. Therefore, there is an empty cavity in clump
distribution in the Galactic center with a radius r ’ 3 kpc
as it can be shown in Figs. 4–6.

What is the fate of the core of a tidally destructed
clump? Let us consider the scaling of destruction time t

in dependence on a varying clump radius r and mass
5 10 15 20 25 30 35
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FIG. 6. The same as the Fig. 4 but for M � 10�3M�.
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FIG. 7 (color online). The survived fraction of small-scale
clumps Ptot�r� in the Galactic halo inside the radial distance r �
100 kpc. A mean internal density of clump � is in g cm�3.
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M�r� / r3��. According to (45) or (46), a time of clump
destruction is scaled, respectively, as t
 / r��=2 or t
 /
r2��. In order for the core to survive, it is necessary that
t
 ! 0 at r! 0. This is possible only if the internal density
profile ��r� / r�� is rather steep, �> 2. Meanwhile, both
the theoretical models and numerical simulations predict
�< 2, and therefore, the core does not survive during the
tidal destruction of DM clump.

B. Destruction of clumps in the halo

The radial number density distribution of stars in the
Galactic halo (outside the Galactic disk) at radii r > 3 kpc
can be approximated as

nh;
�r� � ���=m
��r�=r�3; (48)

where �� � 10�4M�=pc3 and r� � 8:5 kpc. The stellar
density profile in the Galactic halo is rather poorly known,
and so (48) must be considered only as an upper limit [24].
We will describe the distribution of clumps in the halo the
same way as in the Sec. III. To take into account a varying
number density of stars nh;
�r�, we made an averaging of
the rate of clump destruction by stars t�1


 along the orbital
trajectory during the orbital period:

ht�1

 �x; y�i �

2RH

vHTc�x; y�

Z smax

smin

ds0t�1

���������������������������������������������������

2�x� logs0 � 1� � y=s02
p :

(49)

In this expression the dimensionless variables x and y are
from (29), a clump orbital period Tc�x; y� is from (31) and
destruction time of clump t
 is from (45) or (46) with the
replacements ns ) nh;
�r� and vrel )

��������������������������������
2�E�U�r��=m

p
.

The averaging procedure (49) is in fact the integration of
energy gain rate

R
_Edt along the clump orbit.

The resulting probability of clump survival in tidal
destruction by the Galactic halo stars PH�r� is defined by
a similar expression as (35) but with a replacement
e�t0=td ) e�t0ht

�1

 �x;y�i, where ht�1


 �x; y�i is from (49).
The results of numerical calculations of the tidal de-

struction of DM clumps by different Galactic components
are summarized in Figs. 4–6. These calculations were
performed for DM clumps originating from fluctuations
with the peak-height � � 2.

Correspondingly, 32%, 27%, and 18% of clumps survive
the destruction by the Galactic disk tidal shocking at the
Sun position, r� � 8:5 kpc, for clump masses M � 2	
10�8M�, M � 10�6M�, and M � 10�3M�. The Galactic
disk destroys clumps even outside its boundary, at r >
15 kpc, because some of DM clumps with the extended
orbits intersect the Galactic disk in the inner part of the
halo. The destruction of clumps by the Galactic disk be-
comes inefficient at r > 40 kpc. The respective fractions of
clumps of the same masses surviving the tidal destruction
by stars in the Galactic halo (outside the Galactic disk) are
66%, 63%, and 57%. The final fractions of clumps of the
063504
same masses survived the tidal destruction both by the
Galactic disk and stars in the Galactic halo P�r�� �
PH�r��Pd�r�� are 21%, 17%, and 10%, respectively.

In the Fig. 7 the fraction of survived small-scale clumps
in the Galactic halo is shown in dependence on a mean
internal density of small-scale clumps.

V. CONCLUSIONS

We calculated the number density distribution of small-
scale DM clumps in the Galactic halo in dependence on a
clump massM, radius R (expressed through the fluctuation
peak-height �) and radial distance r to the Galactic center.
These calculations were performed by taking into account
the tidal destruction of clumps in the early hierarchical
clustering and later in the Galaxy.

Calculations of the distribution function of small-scale
clumps are carried out, following [4], in the framework of
the standard cosmological model and the hierarchical
model of structure formation. The primeval power spec-
trum of density perturbations P�k� / knp is taken from the
inflation models with np ’ 1 (the Harrison-Zeldovich
spectrum). In this model the small-scale clumps are formed
earlier than the bigger ones. The minimal mass Mmin of
clumps is determined by the free streaming of DM particles
from a growing fluctuation. The value of Mmin is a model
dependent quantity. For neutralino as DM particle, the
minimal mass Mmin is given by (2), and it is the Moon-
scale mass.

In the process of hierarchical clustering, the small
clumps are captured by the bigger ones, and so on. Thus
the hierarchical structure is formed, when all clumps con-
sist in part the smaller ones and the free DM particles.
Some part of DM clumps are tidally disrupted in the
gravitational field of the bigger host clumps. In this sce-
nario we calculated the differential distribution of the
survived clumps given by (9) as a function of two inde-
pendent parameters: e.g. a clump mass M and fluctuation
peak-height � (or a clump mass M and radius R). The
corresponding integral mass function is given by (10),
-9
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where the small factor �int ’ 0:017�n� 3� gives the mass
fraction of clumps survived the tidal destruction in the
hierarchical structuring.

The predicted differential number density of small
clumps ��M���H=M�dM=M is very close to our previous
calculations [4], and both are in a good agreement with the
recent results of numerical simulations [20].

Our calculations are valid only for small-scale clumps
with masses M � 103M�. The physics of larger mass
clumps is rather different. For large-scale clumps the dy-
namical friction, tidal stripping and accretion of new
clumps into the halo proceed in a different way.
Nevertheless, the calculated mass function is in good
agreement with a mass function of the large clumps (ob-
tained in the numerical simulations) in the intermediate
mass range (see in Fig. 2).

The mutual tidal destruction of small-scale DM clumps
is effective only at the early stage of hierarchical cluster-
ing. At later stages the DM clumps are additionally des-
tructed by stars and by the collective gravitational field of
the Galactic disc. In the Galaxy at radial distance r �
3 kpc all small-scale clumps are destructed by stars in
the central bulge. At radial distances in the range r �
3–40 kpc the DM clumps are destructed by stars from
the halo and by the tidal shocking in the Galactic disk.
The latter provides the major contribution to the tidal
destruction of clumps outside the bulge. Only 21%, 17%,
and 10% of clumps survive the tidal destruction near the
Sun position for clump masses M � 2	 10�8M�, M �
063504
10�6M�, and M � 10�3M� respectively. Our results on
the tidal destruction of clumps differ from [22–24] with
the intermediate conclusions. At radial distances r >
40 kpc the destruction of clumps by the Galactic disk
becomes inefficient, and the number density of clumps is
determined only by the early epoch of hierarchical
clustering.

The tidal destruction of clumps by the Galactic disk and
stars affects the annihilating signal mainly in the central
region of the Galaxy where destructions are most effective.
Therefore, a growing fraction of survived clumps P�r�
smooths the anisotropy of the awaited annihilation signal
at the Sun position. A local annihilation rate is proportional
to the clumps number density and, respectively, to P�r�.
For example, at the position of the Sun the 17% of clumps
survive, and so the local annihilation rate is more than 5
times less in comparison with the P � 1 case.
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