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The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM)
halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of
gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear
regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we
numerically estimate the stochastic gravitational-wave background generated by CDM halos during the
fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this
background is comparable to that produced by primordial tensor modes at frequencies » =
10~'8-10"'7 Hz if the energy scale of inflation is V'/* =~ 1-2 X 10'® GeV, and that these gravitational
waves could give rise to several cosmological effects, including secondary CMB anisotropy and

polarization.
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I. INTRODUCTION

Sources of gravitational waves (GW) are commonly
separated in two types: astrophysical and cosmological.

The first kind of sources can produce a stochastic back-
ground which provides interesting information on the dis-
tribution of compact objects at relatively low redshifts,
such as star formation and supernova rates, black-hole
growth mechanisms and other important phenomena.
Such a background is generated by neutron stars, black
holes and the associated binary systems, which emit in the
frequency range v, = 10°-10* Hz. (e.g. [1,2]), or by ga-
lactic merging of unresolved binary white dwarfs with
frequencies in the range v, = 10~4-1072 Hz [3-7].

Besides binary systems of supermassive black holes in
the galaxy center, which could emit at v, = 10™* Hz,
hence detectable by LISA (e.g. Ref. [8]), the principal
example of gravitational waves of cosmological origin is
represented by the relic radiation which has been generated
by quantum fluctuations of the metric tensor during the
inflationary era. The detection of this relic background
would shed light on the physics of the very early
Universe, since its strain amplitude is proportional to the
square of the inflation energy scale. Primordial back-
grounds can be generated by various mechanisms and are
characterized by a large frequency interval which extends
from a few 10~!8 Hz to a few GHz, allowing their detec-
tion by markedly different ways of observation [1].

One of the best strategies for detecting the relic gravi-
tational radiation is to exploit the imprints it leaves on the
Cosmic Microwave Background (CMB) temperature an-
isotropy and polarization [9-11]. More specifically, the
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CMB photons are very sensitive to primordial GWs with
frequencies = 10~!7 Hz, which correspond to the comov-
ing size of the Hubble radius at last scattering, when tensor
metric modes, being damped by the horizon entering,
produce the largest amount of temperature quadrupole
anisotropy and, consequently, by Thomson scattering, the
largest amount of polarization [12]. It may be shown that
the curl component in the polarization pattern, commonly
known as B-mode, is excited by vector and tensor cosmo-
logical perturbations only; therefore, if initial fluctuations
are created very early, e.g. during inflation so that the
vector growth is damped, primary B-modes can be pro-
duced only by tensor perturbations and, therefore, a pos-
sible detection will represent the incontrovertible proof of
their existence [13-15].

Unfortunately, there are mechanisms that can produce
secondary B-modes, the principal one being represented by
the gravitational lensing, i.e. cosmic shear (CS) [16],
which distorts the primary CMB pattern, in particular,
converting E- into B-modes [17]. Luckily, although com-
parable, B-modes from primordial GW exhibit their peak at
multipoles / = 100, corresponding to the degree scale,
while, for lensed B-modes, the peak is at [ = 1000, corre-
sponding to the arcminute scale. Nonetheless, if the energy
scale of inflation is V'/* =2-4 X 10" GeV, the CS-
induced curl is a foreground for the / = 50100 primordial
GW-induced B-polarization. This important contamination
has to be removed in order to detect relic gravitational
waves [18]. However, as suggested by WMAP measure-
ments, early reionization should produce a large-angle
bump in the primordial GW-induced B-modes, allowing
a possibly easier detection, without confusion with the CS-
induced curl [19].

Actually, besides gravitational lensing, for cosmological
models which constantly seed fluctuations in the geometry,
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e.g. topological defects, vector metric perturbations can be
huge and can produce non-negligible effects on the CMB
photons as, in particular, B-mode polarization, unlike to
what happens in inflationary models [20]. On the other
hand, no relevant contribution from these objects is indi-
cated by the modern cosmological probes.

In the present paper, we are interested in the cosmologi-
cal stochastic GW background produced by Cold Dark
Matter (CDM) halos via power transfer from scalar and
possible vector perturbations to tensor metric modes, dur-
ing the strongly nonlinear stage of their evolution [21]. It
differs from other cosmological backgrounds, as that pro-
duced during the mildly nonlinear stage [22], since density
and velocity fields can be, in this case, highly nonlinear.

Since the nonlinear evolution of CDM halos occurs on a
cosmological timescale, the produced gravitational radia-
tion may be relevant at frequencies comparable to those of
the primordial GW which affect the CMB photons and,
therefore, can produce secondary CMB anisotropy and
polarization, expecially B-modes, that could represent a
foreground for the detection of the relic radiation.

Moreover, as for the case of black holes and neutron
stars, the analysis of the stochastic background produced
by highly nonlinear cosmic structures, could bring infor-
mation on their distribution, evolution, shape and compo-
sition, shedding light on many open issues.

The plan of paper is as follows. In Sec. II we briefly
outline the mathematical formalism and show the analyti-
cal formulas we use to estimate the GW output from CDM
halos. In Sec. III we introduce the homogeneous ellipsoid
dynamics as an approximation to the halo virialization and
adopt the halo mass function of Ref. [23] to describe their
distribution. In Sec. IV we explain the technique used for
the numerical evaluation of the stochastic GW background,
while in Sec. V we show and discuss our results. Finally
Sec. VI contains our concluding remarks.

II. GRAVITATIONAL RADIATION: BASIC
EQUATIONS

The evolution of cosmological perturbations away from
the linear regime is rich of several effects, such as the
mode-mixing of different types of fluctuation, which not
only implies that different Fourier modes influence each
other, but also that density perturbations act as a source for
curl vector modes and gravitational waves.

Accordingly, cosmic structures can generate tensor met-
ric modes during the nonlinear stage of their evolution and,
in particular, this mechanism applies to dark matter halos
around galaxies and galaxy clusters in the highly nonlinear
regime.

In the present paper, adopting the mathematical formal-
ism developed in Ref. [21], we estimate the output in
gravitational waves from cosmic structures, following their
evolution from the linear to the highly nonlinear level.
More specifically, the evaluation of this gravitational ra-
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diation is possible on scales much larger than the
Schwarzschild radius of collapsing bodies, by means of a
“hybrid approximation’ [21] of the Einstein field equa-
tions, which mixes post-Newtonian (PN) (e.g. [24-30])
and second-order perturbative techniques (e.g. [31-36]) to
deal with the perturbations of matter and geometry. This
approach gives a more accurate description of gravitational
waves generated by nonlinear CDM structures than the
standard second-order perturbation theory [22], which
can only account for small deviations from the linear
regime, or the Newtonian quadrupole radiation [37,38];
indeed, it upgrades the weak-field limit of Einstein equa-
tions to account for PN scalar and vector metric perturba-
tions and for leading-order source terms of metric tensor
modes. It provides, on small scales, a PN approximation to
the source of gravitational radiation, and, on large scales, it
converges to the first and second-order perturbative equa-
tions as obtained e.g. in Ref. [39], but still describing, on all
the cosmologically relevant scales, the dynamics of the
involved CDM structures by means of the standard
Newtonian Poisson, Euler and continuity equations (e.g.
[401)

Vg = 47wGa’sp, (1)
p' +3Hp +9,(pv") =0, )
v, + Hv, +v,0"v, = —d,0, 3)

where ¢ is the gravitational potential associated with the
density perturbation, p = p + dp is the total matter den-
sity composed by the background matter density, p, and the
matter density perturbation, dp, and, finally, v is the pecu-
liar velocity field associated to the CDM halos. Greek
indices denote spatial components; we adopt conformal
time 7 and comoving coordinates x“, in the Poisson gauge,
and assume that the Universe is spatially flat and filled with
a cosmological constant A and a pressureless fluid whose
stress-energy tensor reads T'; = pu'u; (u'u; = —1).
Finally, H = a’/a, where primes indicate differentiation
with respect to 7 and a is the scale factor of the Universe
which evolves according the Friedmann-Robertson-Walker
background model.

Indeed, as the background cosmology, we have adopted
a flat ACDM model with present baryon density given by
Qp, = 4318 X 1072, dark and CDM energy density
Qop = 0.7434, Qocpym = 0.2134, Hubble constant Hy =
1004 km/ sec /Mpc where h = 0.7199 and three massless
neutrino species; the primordial perturbation spectrum is
made by scalars only, normalized by o3 = (R =
8h~! Mpc) = 0.9, with spectral index n, = 0.96 [41,42].

According to Ref. [21], in order to evaluate the stochas-
tic background of gravitational radiation generated by
CDM halos, we will exploit the formula expressing the
solution of the inhomogeneous GW equation on scales well
inside the Hubble horizon and in the so-called wave zone,
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where r is the comoving distance between source and
observer while the projection operator is given by P¢ g =
o g x“xﬂ/ r?. Equation (4) expresses the GW output
h® g in terms of integrals over the source “stress distribu-
tion” Reyg, given by

1
Rgffﬁ = p<v“vB - 51)25’1[;)

1 1
+——(0%pdge — = 0"0d,@d%; ) (5
477Ga2< Pipp — 30" @de B) o)
The subscript “ret” in Eq. (4) means that the quantity has
to be evaluated at the retarded space-time point (7 —

r/c, X), i.e. at the source and at the emission time.

III. THE ELLIPSOIDAL COLLAPSE MODEL

Recently, N-body simulations in CDM models have
shown departure of the halo density profile from the spheri-
cal symmetry (e.g. [43]) and suggest a triaxial shape which
seems to be confirmed by optical, X-ray and lensing ob-
servations of galaxy clusters (e.g. [44,45]).

Consequently, according to the arguments in the pre-
vious section, CDM halos are potential sources of gravita-
tional radiation through power injection from the
gravitational potential and peculiar velocity, especially
during the highly nonlinear stage of their evolution, when
density contrasts and velocity fields can be strongly non-
linear. Since the aim of this paper is to evaluate the sto-
chastic GW background generated by a distribution of
cosmic structures, in this section we will describe the
model adopted to approximate their dynamics and
virialization.

A. The homogeneous ellipsoid dynamics

We will use the gravitational collapse of homogeneous
ellipsoids as described in Ref. [46], which developed a
picture of cosmic structure formation that identifies virial-
ized cosmological objects with peak patches in the initial
Lagrangian space. These peaks represent overdensities in
the initial Gaussian density field whose evolution is ap-
proximated by a homogeneous ellipsoid dynamics. Each
perturbation evolves under the influence of its own gravity
and under the external tidal field (generated by the sur-
rounding matter) which, together with initial conditions, is
chosen to reproduce the Zel’dovich approximation in the
linear regime. Virialization is defined as the time when the
third axis collapses and, following Ref. [46], each axis is
frozen once it has reached a freeze-out radius, chosen so
that the density contrast at virialization, in the limit of
spherical collapse, is the same as prescribed by the top-
hat model.

PHYSICAL REVIEW D 73, 063503 (2006)

The peculiar velocity field is conveniently described in
the system identified by the three principal axes, charac-
terized by three different scale factors R, (a = 1,2, 3);
thus, inside the homogeneous ellipsoid, peculiar velocities
may be written as

R, .
v, (a R, a)xa, (6)
where we are still adopting comoving coordinates but now
time derivatives are with respect to the proper time dt =
adn.

The internal peculiar gravitational potential, still with
respect to the principal-axis system, is given by (see
Ref. [46] for details)

3
o= WGazp[ S (8b, + u'a)xg} (7)

a=1

where 8 = 8p/p is the matter density contrast while the
factors b, are given by (see e.g. Refs. [47,48])

b, = RRyR fm ds
a — OA2A3 .
O (R + 5)\(R} + $)(R3 + )(RE + s)

®)

Finally, the coefficients 47Ga’p A, are the eigenvalues of
the traceless external tidal tensor (proportional to the trace-
less part of the peak strain) for which a linear approxima-
tion is assumed [46], imposing that it evolves through the
same equations satisfied by the linear growth factor of
density fluctuations in the considered cosmological
background.

After imposing the Zel’dovich approximation to fix the
initial conditions on the proper ellipsoid axis lengths and
their time derivatives, the evolution of an ellipsoidal per-
turbation is specified through the equations [46]

2R A 1 & b
_ddfza = SR - 477(;,3RQ<g Fo+ T A;), ©)
d? 477G _  Ac?
d_t;’ _ <—_3 5+ T)a, (10)
PR RyR; = const, (11)
pa’ = const, (12)

where, in Eq. (9), b!, = b, — 2/3.

Equations (9)—(12) have been numerically integrated
using a fourth-order Runge-Kutta scheme and the integrals
(8) have been evaluated by means of the so-called
Carlson’s elliptic function of the third kind.

Figure 1 shows the axis evolution versus time of a
homogeneous ellipsoid of mass M = 5 X 10> M, and ini-
tial overdensity 8(z; = 40) = 6.4 X 102 at comoving dis-
tance D = 100 Mpc from the observer. The shape of the
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ellipsoid is the most probable in terms of the distribution of
ellipticity and prolateness, to be defined in the next sub-
section. The evolution follows Eqgs. (9)—(12) and the axis
freezing out method suggested in Ref. [46]. Let us stress
that, contrary to other ellipsoidal collapse schemes (e.g.
[49]), this model implies that virialization is reached when
the third and not the first axis collapses, while the freezing
out method avoids 6 — oo.

In order to estimate the GW output by CDM cosmic
structures, we insert Egs. (6) and (7) in Egs. (4) and (5)
during the collapse of each homogeneous ellipsoid which
represents, in our simulation, a CDM halo evolving to-
wards virialization.

In Fig. 2 we show two of the three nonvanishing trace-
less source components generated by the halo collapse of
Fig. 1. These components are evaluated with respect to the
eigenframe of the ellipsoid principal axes at rest with
respect to the expanding cosmological background; by
performing a transverse projection, the gravitational waves
in the observer frame are obtained. Actually, Fig. 2 repre-
sents these two components divided by 1 + z = 1/a(z), in
order to separate the effects of the background expansion,
included in Eq. (4), from the halo evolution itself.

T
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FIG. 1 (color online). Evolution of the principal-axis scale
factors for the most probable ellipsoid of mass M =
5X 10" M, and initial overdensity &(z; = 40) = 6.4 X 1072,
embedded in a flat ACDM universe, at distance D = 100 Mpc
from the observer.
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FIG. 2 (color online). Two of the three nonvanishing traceless
source components generated by the halo collapse of Fig. 1.

B. The most probable ellipsoid and the halo mass
function

Once the cosmological background model is fixed, the
evolution of an ellipsoidal perturbation is determined by
three parameters given by the three initial eigenvalues of
what, in the Zel’dovich approximation, is called the defor-
mation tensor, d,g = (1/a*)V; V3 @; the latter are related
to the initial ellipticity e, prolateness p and linear density
contrast 6 of the perturbation; those relations read [23]

AL A
=—, 13
e 75 (13)
A+ A =22,
g ML e, 14
p 25 (14)
6= )l1 + /\2 + /\3, (15)

where the A, are the eigenvalues of d,g with A} = A, =
A3, which, if 6 = 0, implies e =0 and —e = p < e.

For a Gaussian random density field, smoothed in real
space with a top-hat filter of size V = 47R3/3 and mass
M = 47pR3 /3, on average and for a given & the prolate-
ness is p = 0; consequently, the most probable ellipticity is
emp = (0/8)/ V5. Here o = o(R) represents the linear
rms value of the 6 distribution [23].

From these considerations and from the homogeneous
ellipsoid collapse model as described in Ref. [46], the
authors of Ref. [23] have determined the shape of the
moving barrier, i.e. the critical overdensity required for
CDM structure virialization at redshift z; that is

063503-4



STOCHASTIC GRAVITATIONAL WAVE BACKGROUND ...

B(0?, 2) = \/gd. (21 + Blav)™ ], (16)

where v = [8,.(z)/a(M)]?, 8,.(z) is the critical overden-
sity required for spherical collapse at z extrapolated using
linear theory to the present time, and o is the linear rms
value of the initial density fluctuation field also extrapo-
lated to the present time. The parameters 8 =~ 0.485 and
a = (0.615 come from ellipsoidal dynamics and the value
g = 0.75 comes from normalizing the model to simula-
tions [50].

Using Eq. (16) in the excursion set approach in order to
obtain the distribution of the first crossings of the barrier by
independent random walks, the authors of Refs. [23,51]
have derived the average comoving number density of
halos of mass M, i.e., the so-called unconditional halo
mass function

— 2q_Az& 5sc(z) O'(M) 2p
n(M, 2)dM = . o U(M)[l +<—\/c"18$c(z)> }

‘dlna- < q62.(z)
exp| —

dInM 20(M)?
where p, is the mean comoving cosmological mass den-
sity, while p = 0.3 and A = 0.32218. The Press-Schechter
mass function is recovered for ¢ = 1, p = 0 and A = 0.5
[52].
In what follows, o(M) and 6.(z) are computed accord-
ing to the formulas [53—55]

o« (1 +2.208m? — 0.7668m2? + 0.7949m3?)~2/0d),
(18)

)dM, (17)

where d = 0.0873, m = M(T'h)?>/(10'’M) and
I = Qomhexp[—Qoy(1 + V21/ Qo)) (19)
The quantities related to the density contrast are

8CD+(Z = O)

5.c(2) = : 20

RN ()
2/3

5, ~ 3(122775)(1 +0.0123log;0Qy). (21

The linear growth factor of density fluctuations, normal-
ized to unity at present, may be approximated as [56]

_ 5glm 4/7 _ an QA -
D+(Z)_2(1+z)[9‘“ Q”(HT)(HWH
(22)
where O, = Q. (1 + 2)3/E%(2), Q) = Qp/E*(z), and
E(z) = H(z)/Hy = [Qon(1 + 2> + Qop V2 (23)

IV. THE STOCHASTIC GW BACKGROUND

In order to evaluate the GW output generated by a spatial
distribution of CDM halos we will exploit Eq. (17) which
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provides a good fit to N-body simulations of structure
clustering in a variety of cosmological models, at least
over the redshift range 7z = 0-4 [23,50,51,57,58].

For theoretical consistency, we have chosen to follow
the same strategy adopted by Ref. [23] as described in the
previous section. Therefore, in our numerical computation,
we consider CDM structures over a mass range M = 5 X
10°M4—5 X 10 M, which virialize at redshifts from z =
0 to 4. Each of these structures is approximated by a
homogeneous ellipsoidal perturbation with mass M, linear
mass variance o>(M) and critical linear density contrast
8(M, z) = B(o?, z); in other words, every perturbation
represents the most probable ellipsoid (p =0 and e =
emp) of mass M which collapses at redshift z.

Given the density contrast, the ellipticity and the pro-
lateness, we then calculate the eigenvalues of the external
tidal tensor, using Eqs. (13)—(15) and the relation A/, =
A, — 8/3. Next, we linearly rescale all quantities to the
initial redshift z; = 40, at which the ellipsoidal evolution
of the density perturbation starts, following Eqgs. (9)—(12).
In fact, while the mass function provides the number of
halos virializing at a given redshift (in our case z = 0-4),
the evolution of matter density perturbations, giving rise to
these virialized objects, begins much before, i.e. at very
high redshifts (in our case z; = 40). The initial conditions
on the scale factor are given by the relation a(z;) = 1/(1 +
z;) and by the well-known Friedmann equations, while, as
we have already anticipated, the initial conditions on the
axis lengths and their time derivatives are specified by the
Zel’dovich approximation setup

R,(z;) = a(z;)(1 = A,) (24)

and
Ra(Zi) = H(Zi)[Ra(Zi) - a(Zi)f(Zi)/\al (25)

where f(z) = Q% + (1/70)[1 — 1/2Q,,(1 + Q)] is the
growth rate of density fluctuations (e.g. Ref. [59]).

For each M and z, using Eq. (4) and switching to the
proper time #, we evaluate the two independent compo-
nents of the gravitational radiation produced by a CDM
halo, assuming that it is casually oriented and placed at a
comoving distance r(z) from the observer, where z is the
collapse redshift. In this way, we observe today the radia-
tion emitted at the virialization time when, according to our
ellipsoidal model, the GW output has the maximum value.
Actually, adopting this strategy, we slightly underestimate
the total GW background, since we do not take into ac-
count those CDM halos which are still away from virial-
ization. Moreover it is noteworthy here that, in our
approach, we have extrapolated Eq. (4) outside its range
of validity. In fact, this formula holds on scales well inside
the Hubble horizon and in the wave zone (i.e. at distances
larger than both the characteristic wavelengths and the
characteristic size of the source), while, as we previously
noticed, CDM halos generate gravitational waves whose
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frequency is comparable with the inverse of the Hubble
time. Nonetheless, as shown in the next section, our results
agree with several analytic approximations and previous
works.

To account for all the directions of observation, we
convert the two independent states hgﬁ(t) of tensor polar-
ization from the frame associated with the ellipsoid prin-
cipal axes to the observer frame, assuming that CDM
structures emit in all directions and are uniformly distrib-
uted all around the observer. For this purpose, we use the
relation  h%,(1, Q) = RT“,,(Q)h;’#(t)R“B(Q) where
R« ﬁ(Q) is the general form of the rotation matrix with ¢ =
0 [60]

cos¢ sing 0
R*(Q) = ( —cosfsing  cosfcos¢p  sinf >
sinfsingg ~ —sinfcos¢ cosf

and the solid angle Q) = (6, ¢) is defined following the
conventions of Ref. [61].
Since our aim is to estimate the energy density

Qene(r) = 2 ,3PSD(r) 26)
GW 3H%

associated with the stochastic GW background at the ob-
server (e.g. Ref. [1]), we need to know the power spectral
density PSD(»), which one can obtain from the Parseval’s
theorem as

(h (DR” (1)) = / o; dvPSD(). 7)

That depends on the redshifted proper frequency v =
v,/(1 + z), where v, is the proper frequency at the emis-
sion time. In Eq. (27) angle brackets denote time averaging
at a given spatial point.

Thus, we first numerically evaluate the PSD(v, z, M, (})
of each individual component of 7% 4(z, }) at each fixed

value of M, z and (), then we average the calculated PSDs
over all directions by integrating over the solid angle and
dividing by 47 and, finally, we sum over the components in
order to get a mean power spectral density PSD(v, z, M) for
every z and M.

Since in our model each CDM halo is approximated by a
most probable ellipsoid of mass M which collapses at
redshift z, we multiply each PSD(», z, M) by the number
dN(z, M) = n(z, M)dMdV of halos in the comoving vol-
ume dV(z) = 4cmr*(z)dz/(agH(z)) where c is the speed of
light and ay = 1 is the present value of the scale factor.
Finally, we insert the resulting quantity in the definition of
the GW energy density Eq. (26) and integrate over all
redshifts and masses to obtain the total Qgw(v).

All the results are presented in the next section.
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V. RESULTS

Our result concerning the GW output of each CDM halo,
an example of which is given in Fig. 2, is consistent with
previous works in this field [62,63]. Moreover it is com-
parable to analytic approximations (e.g. [37,64]) as

_3x1071  GM(109)2/7 M
D/100 Mpc L 10°M,°

(28)

where h represents the amplitude of a GW signal coming
from a nonspherically symmetric collapsing object with
characteristic size L at distance D from the observer.

It is worth noting that the produced gravitational radia-
tion has a very long characteristic period, approximately
given by the inverse of the halo evolution time, which,
according to the ellipsoidal model, corresponds to frequen-
cies of the order of v = 1078 Hz. This excludes, there-
fore, any direct detection of a complete pulse, but still
allows for the possibility of GW detection via secondary
CMB anisotropy and polarization and via the ‘“‘secular
effect” discussed in Refs. [62,63]. The latter takes place
when a gravitational-wave crosses two testing particles;
this induces a variation in their relative distance which
increases in time, since this effect lasts for many years.

Actually, besides what stressed in the previous section,
there are other reasons for which the ellipsoidal collapse
approximation to CDM halo virialization underestimates
amplitude and frequency characterizing the GW back-
ground. In fact, using this approach, the evolution of
cosmic structures is regarded as a continuous phenomenon
which neglects merging effects and any possible features
of variability that, according to Ref. [62], should be char-
acterized by a dynamical frequency of the order of v =
1077 Hz.

In Fig. 3 the main result of our paper is shown, i.e. the
total energy density Qgw(7) = 1072, associated with the
stochastic halo-induced GW background, as a function of
the proper frequency v at the observation. The total spec-
trum of the signal is composed by many single peaks which
represent the contribution to the total background from
each most probable halo weighted via the mass function
at different redshifts. On the other hand, as the following
discussion shows, these peaks are caused by the subset of
structures leading to a non-negligible GW signal. In fact
Eq. (4) shows that the GW amplitude is proportional to the
inverse of the comoving distance, while, from the expres-
sion of the efficiency € = GM /(c*L) and the total radiated
energy Egw = eMc?, where L represents the character-
istic halo size at virialization, it follows that more massive
objects give rise to higher values of the GW strain. This
effect is also confirmed by numerical estimates of the
power spectral density for different objects in the redshift
range 0 =z =4. In fact, masses of the order of
108-10°M,, although weighted via the mass function in
Eq. (17), contribute to Qgw(») by only a factor of orders of
10739-10728; since the amplitude of the gravitational
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FIG. 3 (color online). The total energy density Qgw(v) asso-
ciated with the stochastic GW background induced by CDM
halos as a function of the proper frequency » at observation.

waves decreases with distance, the greater is the redshift z,
the lower is their contribution. Thus only a few peaks are
visible in Fig. 3 since the energy density produced by less
massive structures is completely negligible with respect to
the effect (of orders of 1072!-1072%) of far more massive
objects (10'*-10°M,) at low redshifts, z=1.
Consequently, the dominant contribution to the stochastic
GW background is likely to be produced by CDM halos
corresponding to nearby galaxies and galaxy clusters
which contribute by several orders of magnitudes more
than their substructures, although the latter are far more
numerous. Indeed, in Fig. 4 we may look at the contribu-
tion to the total Qgw(») (see Fig. 3) by two most probable
halos of mass 5 X 103 M, placed at redshifts z = 0.025
and 0.075. In its maximum height, the signal reaches about
half of the corresponding value in Fig. 3. The remaining
part of the signal is caused by many halos of comparable
mass, as well as by those about 1 order of magnitude
lighter, for which the mass decrease is compensated by
the increase in the number. It is worth noting that the
ellipsoidal collapse model introduces a three-peak pattern
due to the freezing out method used to stop the axis
collapse, which as a zeroth order approximation imposes
stability at virialization, ignoring any residual dynamics. In
the case of the specific geometrical configuration of the
most probable ellipsoid considered in Fig. 4, this translates
in two prominent peaks and a third negligible one.
Actually, the residual dynamics at virialization would
most probably imply a broadening of the spikes, decreas-
ing the frequency splitting, possibly converging to a single
peak for configurations close to sphericity.
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FIG. 4 (color online). Contribution to the total energy density
Qgw() by two most probable CDM halos of mass 5 X 10°M,,
placed at redshifts z = 0.025 and 0.075.

Finally and most importantly, the quantity #>Qgw(v) =
10729 is comparable to the energy density associated with
the stochastic background induced by primordial GWs. In
fact, if the energy scale of inflation is V!/4 = 1-2 X
10'5 GeV, the energy density associated with the primor-
dial stochastic GW background, with a tensor spectral
index ny = 0, is = 1072!-10"!7 for frequencies of the
order of 1071810717 Hz (e.g Ref. [1]).

VI. CONCLUDING REMARKS

In this work, we have estimated the GW background
from cosmological tensor modes produced by the highly
nonlinear collapse of CDM density perturbations, i.e. gen-
erated during the strongly nonlinear stage of CDM halo
evolution.

We found that the signal is significant at very low
frequencies, v = 1078 Hz, as a consequence of the cos-
mological time scales involved in the collapse of CDM
halos. This signal appears as a broad peak made by the
superposition of many impulses, all centered around fre-
quencies of the order of 10~ '® Hz. Most importantly, our
results suggest that the signal is likely to be comparable to
the primordial tensor power if inflation occurred at the
grand unified theory scale.

We want to stress that the homogeneous ellipsoidal
collapse model, adopted to simulate CDM halo evolution
and virialization, underestimates the frequency and ampli-
tude of the emitted gravitational waves, since, at each
redshift z, it does not take into account nonvirialized
objects and neglects variability features and merging ef-
fects that could enhance the anisotropic stress sourcing
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tensor modes, which are more sensible to the velocity field
rather than to the peculiar gravitational potential.
Consequently, the total energy density Qgw(v) generated
by cosmic structures could even be of one or 2 order of
magnitudes greater and overcome the stochastic back-
ground associated with primordial gravitational waves at
the same frequencies (see also results in Ref. [63]).

The CDM halo GW background could also produce a
non-negligible contribution when considering the cosmo-
logical tensor-to-scalar ratio.

Because of the cosmological scales involved, and to the
amplitude of the signal, it is reasonable to expect that these
gravitational waves could affect the primary CMB anisot-
ropies, contributing to the Integrated Sachs Wolfe (ISW)
effect caused by the time evolution of cosmological per-
turbations between us and the last scattering surface. The
stochastic GW background from CDM halos might boost
the temperature anisotropies on large angular scales, where
however the contribution from density fluctuations domi-
nates. On the other hand, the produced temperature quad-
rupole can be scattered off by the free electrons of the
intracluster and intragalactic media, giving rise to second-
ary E- and B-polarization modes similarly to what happens

PHYSICAL REVIEW D 73, 063503 (2006)

for the primordial temperature quadrupole as described in
Ref. [65]. These contributions have to be taken into ac-
count when performing a precise evaluation of the level of
CMB polarization anisotropy expected for the forthcoming
polarization oriented CMB probes, in particular, for what
concerns the B-modes.

Most of these issues deserve a careful investigation in
future works. Here we conclude stressing again our main
results, suggesting that the amplitude of the stochastic GW
background generated by CDM halos in their nonlinear
evolutionary phase is comparable or larger than the signal
expected from the early universe in the inflationary sce-
nario. We also remark that our findings are consistent with
existing analytical approximations. The forthcoming steps
are the improvement of the calculation of the source of the
signal, making use of cosmological N-body simulations, as
well as the computation of the induced CMB anisotropy in
total intensity and polarization.
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