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w and w0 of scalar field models of dark energy
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Important observables to reveal the nature of dark energy are the equation of state w and its time
derivative in units of the Hubble time w0. Recently, it was shown that the simplest scalar field models of
dark energy (quintessence) occupy rather narrow regions in the w� w0 plane. We extend the w� w0 plane
to w<�1 and derive bounds on w0 as a function of w for tracker phantom dark energy. We also derive
bounds on tracker k-essence. The observational window for w0 for w<�1 is not narrow, ��w0� &

6j1� wj.
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I. INTRODUCTION

The equation of state w � p=� of dark energy is a key
observable to reveal the nature of dark energy which
accelerates the Universe. w � �1 for the cosmological
constant and w is in general a function of time for scalar
field models of dark energy (quintessence). w and its time
derivative in units of the Hubble time, w0 � dw=d lna, are
currently constrained from the distance measurements of
SNIa (assuming a prior on �m) asw0 � �1:31�0:22

0:28; w
0
0 �

�1:48�0:90
0:81 (at 95% confidence level) [1]. The important

question is precisely how much we should determine the
equation of state observationally.

In this respect, Caldwell and Linder have recently at-
tempted an observation-oriented phase space analysis of
quintessence [2]. Namely, instead of the scalar field and its
time derivative, they numerically studied the dynamics in
the w� w0 plane and found that ‘‘phase space’’ of quin-
tessence in the w� w0 plane is narrow and that a desired
measurement resolution should be ��w0� & �1� w�. More
recently, Scherrer analytically derived a tighter lower
bound on w0 [3]. In this paper, after reviewing the limits
(Sec. II) and slightly updating the result in [3], we extend
these results to phantom dark energy (Sec. III) and
k-essence (Sec. IV).
II. LIMITS OF QUINTESSENCE REVISITED

Firstly, we review the limit of tracker quintessence [3] to
introduce the notation. Then we obtain a lower bound onw0

for tracker quintessence models.

A. Generic bound

We consider a flat universe consisting of (nonrelativis-
tic) matter and scalar field dark energy � (quintessence).
The equation of motion of the quintessence field � is

��� 3H _�� V;���� � 0; (2.1)

where V;� � �V=��. The equation of state w is given by
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w �
_�2=2� V
_�2=2� V

: (2.2)

Equation(2.2) suggests that the equation of motion (2.1)
may be rewritten by using w0 � dw=d lna. In fact, it is
rewritten as [4]

�
V;�
V
�

������������������������
3�2�1� w�

��

vuut �
1�

x0

6

�
; (2.3)

where the minus sign corresponds to _�> 0�V;� < 0� and
the plus sign to the opposite, �2 � 8�G, and �� is the
density parameter of dark energy. x is defined by

x � ln
�
1� w
1� w

�
; (2.4)

and x0 is the derivative of x with respect to lna and is
related with w0 as

x0 �
2w0

�1� w��1� w�
: (2.5)

Since the left-hand side of Eq. (2.3) is positive, 1� x0=6>
0. In terms of w0 by the use of Eq. (2.5), we obtain [3]

w0 >�3�1� w��1� w�: (2.6)

This bound applies to a more general class of quintessence
field which monotonically rolls down the potential.

B. Tracker quintessence

The bound can be tightened for tracker fields which have
nearly constant w initially and eventually evolve toward
w � �1. Tracker fields have attractorlike solutions in the
sense that a very wide range of initial conditions rapidly
converges to a common cosmic evolutionary track [4].
Taking the derivative of Eq. (2.3) with respect to �, we
obtain [3,5]
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FIG. 2. Same as Fig. 1 but for narrower range of w. The loops
on the shaded region are the trajectories for V � V0

�������
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p
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�� 1 �
3�wB � w��1����

�1� w��6� x0�
�

�1� w�x0

2�1� w��6� x0�

�
2x00

�1� w��6� x0�2
; (2.7)

where � � VV;��=V2
;�, wB is the equation of state of

background matter, and x00 is the second derivative of x
with respect to lna. Since w is a constant for tracker fields
and �� is initially negligible, w is written in terms of � as

w �
wB � 2��� 1�

2��� 1� � 1
: (2.8)

Since w0 � 0 for tracker fields, x0 � 0. However, since w
asymptotically approaches toward �1, x0 eventually stops
decreasing and then increases toward zero. The minimum
of x0, x0m gives the minimum of w0 via Eq. (2.5). To find x0m,
we put x00 � 0 in Eq. (2.7) and find that

x0m � �6
w�1���� � 2�1� w���� 1�

�1� w� � 2�1� w���� 1�

>�6
2�1� w���� 1�

�1� w� � 2�1� w���� 1�
: (2.9)

Since xm is an increasing function of w�<� 1�, a lower
bound is given by w of the tracker solution Eq. (2.8)

x0m >
6w

1� 2w
: (2.10)
FIG. 1. Bounds on w0 as a function of w. For w>�1, the
curves are lower bounds: The solid curve is our lower bound
while the dotted curve is from Ref. [3]. The dashed curve is the
generic lower bound Eq. (2.6). The shaded region is bounded by
lower and upper bounds for the phantom. The loops in the
shaded region are the trajectories for V � V0 log����.
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From Eq. (2.5), in terms of w0, we obtain a lower bound on
w0,

w0 >
3w

1� 2w
�1� w��1� w� 	 ��1� w��1� w�:

(2.11)

The last inequality is the limit derived by Scherrer [3]. In
[3], �> 1 is used to derive the final inequality. However,
for tracker quintessence, � � 1� w=2�1� w��>1� and
thus a slightly stronger bound is obtained. These bounds
are shown in Figs. 1 and 2.
III. LIMITS OF PHANTOM

We extend the range of w to w<�1. The phantom is
scalar field dark energy with w<�1 [6]. Although there
are several models of phantom, we consider a simple scalar
field model with the wrong sign of the kinetic term (ghost)
[6]. We understand that there are several serious obstacles
(e.g. rapid gravitational decay of vacuum) for such a ghost
field to be a cosmologically relevant field [7]. Our intention
here is more observation-oriented and to provide observ-
ables related with the dynamics of the field which behaves
like a phantom. After giving the generic lower bound for
phantom dark energy, we derive an upper bound on w0 for
tracker phantom models.

A. Generic bound

In this model, the energy density and the pressure of
dark energy is given by � � � _�2=2� V, p � � _�2=2�
V, respectively. We consider a non-negative V���. The
equation of motion is given by
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��� 3H _�� V;� � 0: (3.1)

Therefore, the scalar field rolls down the inverted potential
�V (or rolls up the potential V). Similar to quintessence,
the phantom equation of motion can be rewritten as

�
V;�
V
�

����������������������������
�3�2�1� w�

��

vuut �
�1�

x0

6

�
; (3.2)

where the minus sign for _�> 0�V;� > 0� and the plus sign
for the opposite. Since the left-hand side is positive, we
have an upper bound on x0, x0 < 6, which in turn gives a
lower bound of w0:

w0 > 3�1� w��1� w�: (3.3)

An interesting feature about this lower bound may be that it
is not connected smoothly with the quintessential bound
Eq. (2.6) since the kinetic term changes its sign across w �
�1.
B. Tracker phantom

The tracker equation for phantom field is given by

�� 1 �
3�wB � w��1����

�1� w��6� x0�
�

�1� w�x0

2�1� w��6� x0�

�
2x00

�1� w��6� x0�2
: (3.4)

Therefore, for the tracker solution for which w is nearly
constant and �� ! 0, w is given by

w �
wB � 2��� 1�

2��� 1� � 1
: (3.5)

Thus �< 1=2 is required for tracking phantom w<�1.
Another issue to be addressed is the stability of the

tracker solution against perturbation. In the case of quin-
tessence, positive effective mass squared V;�� > 0 is re-
quired for the stability. For the phantom the opposite
condition V;�� < 0 is required since the phantom rolls
down the inverted potential. For constant w, to which a
tracker solution corresponds, it can be shown that

V;�� � �
9

4
H2�1� w���1����w� 2�: (3.6)

Thus, V;�� < 0 implies �2<w<�1 and in terms of �
the condition is �< 0.

As tracker phantom models, we consider a solution in
which w is initially nearly constant and then it evolves
toward �1. Such solutions are obtained for convex V,
V;�� < 0 (a simple example is V /

����
�
p

). This is because
if V;�� < 0, then jV;�j decreases as � climbs up the
potential and jV;�j becomes negligible but H increases as
the phantom becomes dominated and the dynamics of � is
063501
eventually dominated by the Hubble friction ( �� ’ �3H _�)
and � ceases to move.

Since w0 	 0 for these tracker solutions, x0 � 0. As the
phantom is attracted toward w � �1, x0 stops decreasing
and then increases back to a value near zero, being similar
to tracker quintessence [3]. The minimum value of x0, x0m,
gives an upper bound on w0 through Eq. (2.5).

To find x0m, we put x00 � 0 in Eq. (3.4) and find that

x0m � �6
w�1���� � 2�1� w���� 1�

�1� w� � 2�1� w���� 1�
: (3.7)

Since xm is an increasing function of w�<� 1�, a lower
bound is given by w of the tracker solution Eq. (3.5):

x0m > 6w�� > 6w: (3.8)

From Eq. (2.5), in terms of w0, we obtain an upper bound
on w0:

w0 < 3w�1� w��1� w�: (3.9)

The bound is shown in Figs. 1 and 2. The trajectories of
�w;w0� for a logarithmic potential V � V0 exp���2�2�
(Fig. 1) and for V � V0

�������
��
p

(Fig. 2) are also shown for
several initial conditions.
IV. LIMITS OF TRACKER K-ESSENCE

We finally give bounds on w0 for k-essence with w>
�1. K-essence is a scalar field model of dark energy which
has a noncanonical kinetic term [8–10]. The pressure of the
scalar field �, p, is given by the Lagrangian density
p��;X� itself where X � �@��@��=2 and is equal to
_�2=2 for the Friedmann model. The energy density � is

given by � � 2X@p=@X � p 
 2XpX � p.
The equation of motion of the scalar field is given by

���pX � _�2pXX� � 3HpX _�� pX� _�2 � p� � 0; (4.1)

where p� � @p=@�, for example. For the factorized form
of

p��;X� � V���W�X�; (4.2)

we can express the equation of motion of � in an alter-
native form similar to quintessence [11]:

�
V;�
V3=2

�
�
2

�����������������������
�1� w�WX

3��

s
�6� Ax0�; (4.3)

A �
�XWX �W��2XWXX �WX�

XW2
X �WWX � XWWXX

�
1� w

c2
s � w

; (4.4)

where the minus (plus) sign corresponds to _�> 0 (< 0),
respectively. c2

s is the speed of sound of k-essence defined
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by [12]

c2
s �

�p
��
�

pX
pX � 2XpXX

�
WX

WX � 2XWXX
: (4.5)
063501
A. Tracker K-essence

Similar to quintessence, we define a dimensionless func-
tion � by � � VV;��=V

2
;�. Taking the time derivative of

Eq. (4.3), we obtain [11]
��
3

2
� �

1

�1� w��6� Ax0�

�
3�w� wB��1���� �

�1� w�2

2�c2
s � w�

x0

�
2�1� w��c2

s � w�x
00 � 2� _w�1� c2

s� � �c
2
s�
��1� w��x0=H

�6� Ax0��c2
s � w�

2

�
: (4.6)
Equation (4.6) might be called the k-essential counterpart
of the tracker equation. Therefore for the tracker solution
(assuming � ’ const and �� � 1) we can write w in
terms of �:

w �
wB � 2��� 3=2�

2��� 3=2� � 1
’ const: (4.7)

For tracker k-essence models with w>�1, w is nearly
constant, so X is also constant since w only depends on X
for the factorized p��;X�, Eq. (4.2). Then the evolution of
energy density depends only on V���, so _�> 0 (< 0)
corresponds to V;� < 0 (> 0) and the left-hand side of
Eq. (4.4) is positive. This implies 6� Ax0 > 0, which is
written in terms of w0 as

w0 >�3�c2
s � w��1� w�: (4.8)

This bound is similar to Eq. (2.6). However, in deriving it,
we restrict ourselves to tracker k-essence models.

Similar to tracker quintessence, we can sharpen the
bound by considering the dynamics more carefully. Since
w0 � 0 for tracker fields, x0 � 0. However, since w asymp-
totically approaches toward �1, x0 eventually stops de-
creasing and then increases toward zero. The minimum of
x0, x0m gives the minimum of w0 via Eq. (2.5). The analysis
is the same as that of tracker quintessence and we only give
the final result:

w0 >
3w

1� 2w
�c2
s � w��1� w�: (4.9)

This is the k-essential counterpart of the lower bound on
w0. If we impose the upper bound on the sound speed as
c2
s � 1, then the above bound is reduced to that of tracker

quintessence:

w0 >
3w

1� 2w
�1� w��1� w�: (4.10)

The sound speed of dark energy [13–15] is currently
difficult to measure (see, for example, [16]). Therefore, it
seems difficult to distinguish quintessence from k-essence
from the measurements of w and w0.

V. SUMMARY

In this paper, we have extended and generalized bounds
on dark energy models in the w� w0 plane. First, we have
slightly improved the lower bound for tracker quintes-
sence. Second, we have derived both a lower bound for
the phantom and an upper bound for the tracker phantom.
Finally, we have obtained two lower bounds for k-essence.
While the required observational accuracy of w0 is similar
for quintessence and k-essence, ��w0� & �1� w�, the win-
dows ofw0 for the phantom may not be so narrow, ��w0� &

6j1� wj. Although the fate of the universe with w<�1
would be disastrous (the future big rip singularity and the
disintegration of bound objects) [17,18], be aware of the
possibility.
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